Search results for: clinical decision support systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20993

Search results for: clinical decision support systems

20423 Reading Knowledge Development and Its Phases with Generation Z

Authors: Onur Özdemir, M.Erhan ORHAN

Abstract:

Knowledge Development (KD) is just one of the important phases of Knowledge Management (KM). KD is the phase in which intelligence is used to see the big picture. In order to understand whether information is important or not, we have to use the intelligence cycle that includes four main steps: aiming, collecting data, processing and utilizing. KD also needs these steps. To make a precise decision, the decision maker has to be aware of his subordinates’ ideas. If the decision maker ignores the ideas of his subordinates or participants of the organization, it is not possible for him to get the target. KD is a way of using wisdom to accumulate the puzzle. If the decision maker does not bring together the puzzle pieces, he cannot get the big picture, and this shows its effects on the battlefield. In order to understand the battlefield, the decision maker has to use the intelligence cycle. To convert information to knowledge, KD is the main means for the intelligence cycle. On the other hand, the “Z Generation” born after the millennium are really the game changers. They have different attitudes from their elders. Their understanding of life is different - the definition of freedom and independence have different meanings to them than others. Decision makers have to consider these factors and rethink their decisions accordingly. This article tries to explain the relation between KD and Generation Z. KD is the main method of target managing. But if leaders neglect their people, the world will be seeing much more movements like the Arab Spring and other insurgencies.

Keywords: knowledge development, knowledge management, generation Z, intelligence cycle

Procedia PDF Downloads 518
20422 Artificial Intelligence and Governance in Relevance to Satellites in Space

Authors: Anwesha Pathak

Abstract:

With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.

Keywords: satellite, space debris, traffic, threats, cyber security.

Procedia PDF Downloads 78
20421 Understanding Farmers’ Perceptions Towards Agrivoltaics Using Decision Tree Algorithms

Authors: Mayuri Roy Choudhury

Abstract:

In recent times the concept of agrivoltaics has gained popularity due to the dual use of land and the added value provided by photovoltaics in terms of renewable energy and crop production on farms. However, the transition towards agrivoltaics has been slow, and our research tries to investigate the obstacles leading towards the slow progress of agrivoltaics. We applied data science decision tree algorithms to quantify qualitative perceptions of farmers in the United States for agrivoltaics. To date, there has not been much research that mentions farmers' perceptions, as most of the research focuses on the benefits of agrivoltaics. Our study adds value by putting forward the voices of farmers, which play a crucial towards the transition to agrivoltaics in the future. Our results show a mixture of responses in favor of agrivoltaics. Furthermore, it also portrays significant concerns of farmers, which is useful for decision-makers when it comes to formulating policies for agrivoltaics.

Keywords: agrivoltaics, decision-tree algorithms, farmers perception, transition

Procedia PDF Downloads 191
20420 Free Will and Compatibilism in Decision Theory: A Solution to Newcomb’s Paradox

Authors: Sally Heyeon Hwang

Abstract:

Within decision theory, there are normative principles that dictate how one should act in addition to empirical theories of actual behavior. As a normative guide to one’s actual behavior, evidential or causal decision-theoretic equations allow one to identify outcomes with maximal utility values. The choice that each person makes, however, will, of course, differ according to varying assignments of weight and probability values. Regarding these different choices, it remains a subject of considerable philosophical controversy whether individual subjects have the capacity to exercise free will with respect to the assignment of probabilities, or whether instead the assignment is in some way constrained. A version of this question is given a precise form in Richard Jeffrey’s assumption that free will is necessary for Newcomb’s paradox to count as a decision problem. This paper will argue, against Jeffrey, that decision theory does not require the assumption of libertarian freedom. One of the hallmarks of decision-making is its application across a wide variety of contexts; the implications of a background assumption of free will is similarly varied. One constant across the contexts of decision is that there are always at least two levels of choice for a given agent, depending on the degree of prior constraint. Within the context of Newcomb’s problem, when the predictor is attempting to guess the choice the agent will make, he or she is analyzing the determined aspects of the agent such as past characteristics, experiences, and knowledge. On the other hand, as David Lewis’ backtracking argument concerning the relationship between past and present events brings to light, there are similarly varied ways in which the past can actually be dependent on the present. One implication of this argument is that even in deterministic settings, an agent can have more free will than it may seem. This paper will thus argue against the view that a stable background assumption of free will or determinism in decision theory is necessary, arguing instead for a compatibilist decision theory yielding a novel treatment of Newcomb’s problem.

Keywords: decision theory, compatibilism, free will, Newcomb’s problem

Procedia PDF Downloads 322
20419 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion

Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao

Abstract:

Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.

Keywords: image classification, decision fusion, multi-temporal, remote sensing

Procedia PDF Downloads 125
20418 Presidential Interactions with Faculty Senates: Expectations and Practices

Authors: Michael T. Miller, G. David Gearhart

Abstract:

Shared governance is an important element in higher education decision making. Through the joint decision making process, faculty members are provided an opportunity to help shape the future of an institution while increasing support for decisions that are made. Presidents, those leaders who are legally bound to guide their institutions, must find ways to collaborate effectively with faculty members in making decisions, and the first step in this process is understanding when and how presidents and faculty leaders interact. In the current study, a national sample of college presidents reported their preparation for the presidency, their perceptions of the functions of a faculty senate, and ultimately, the locations for important interactions between presidents and faculty senates. Results indicated that presidents, regardless of their preparation, found official functions to be the most important for communicating, although, those presidents with academic backgrounds were more likely to perceive faculty senates as having a role in all aspects of an institutions management.

Keywords: college faculty, college president, faculty senate, leadership

Procedia PDF Downloads 124
20417 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process

Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse

Abstract:

Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.

Keywords: additive manufacturing, decision-makings, environmental impact, predictive models

Procedia PDF Downloads 132
20416 The Effect of Career Decision Self Efficacy on Coping with Career Indecision among Young Adults

Authors: Yuliya Lipshits-Braziler

Abstract:

For many young adults, career decision making is a difficult and complex process that may lead to indecision. Indecision is frequently associated with great psychological distress and low levels of well-being. One important resource for dealing with indecision is career decision self-efficacy (CDSE), which refers to people’s beliefs about their ability to successfully accomplish certain tasks involved in career choice. Drawing from Social Cognitive Theory, it has been hypothesized that CDSE correlates with (a) people’s likelihood to engage in or avoid career decision making tasks, (b) the amount of effort put into the decision making process, (c) the people’s persistence in decision making efforts when faced with difficulties, and (d) the eventual success in arriving at career decisions. Based on these assumptions, the present study examines the associations between the CDSE and 14 strategies for coping with career indecision among young adults. Using the structural equation modeling (SEM), the results showed that CDSE is positively associated with the use of productive coping strategies, such as information-seeking, problem-solving, positive thinking, and self-regulation. In addition, CDSE was negatively associated with nonproductive coping strategies, such as avoidance, isolation, ruminative thinking, and blaming others. Contrary to our expectations, CDSE was not significantly correlated with instrumental help-seeking, while it was negatively correlated with emotional help-seeking. The results of this study can be used to facilitate the development of interventions aiming to reinforce young adults’ career decision making self-efficacy, which may provide them with a basis for overcoming career indecision more effectively.

Keywords: career decision self-efficacy, career indecision, coping strategies, career counseling

Procedia PDF Downloads 258
20415 The Role of Artificial Intelligence in Criminal Procedure

Authors: Herke Csongor

Abstract:

The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.

Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment

Procedia PDF Downloads 42
20414 Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang

Abstract:

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine

Procedia PDF Downloads 595
20413 A Multi-Agent System for Accelerating the Delivery Process of Clinical Diagnostic Laboratory Results Using GSM Technology

Authors: Ayman M. Mansour, Bilal Hawashin, Hesham Alsalem

Abstract:

Faster delivery of laboratory test results is one of the most noticeable signs of good laboratory service and is often used as a key performance indicator of laboratory performance. Despite the availability of technology, the delivery time of clinical laboratory test results continues to be a cause of customer dissatisfaction which makes patients feel frustrated and they became careless to get their laboratory test results. The Medical Clinical Laboratory test results are highly sensitive and could harm patients especially with the severe case if they deliver in wrong time. Such results affect the treatment done by physicians if arrived at correct time efforts should, therefore, be made to ensure faster delivery of lab test results by utilizing new trusted, Robust and fast system. In this paper, we proposed a distributed Multi-Agent System to enhance and faster the process of laboratory test results delivery using SMS. The developed system relies on SMS messages because of the wide availability of GSM network comparing to the other network. The software provides the capability of knowledge sharing between different units and different laboratory medical centers. The system was built using java programming. To implement the proposed system we had many possible techniques. One of these is to use the peer-to-peer (P2P) model, where all the peers are treated equally and the service is distributed among all the peers of the network. However, for the pure P2P model, it is difficult to maintain the coherence of the network, discover new peers and ensure security. Also, security is a quite important issue since each node is allowed to join the network without any control mechanism. We thus take the hybrid P2P model, a model between the Client/Server model and the pure P2P model using GSM technology through SMS messages. This model satisfies our need. A GUI has been developed to provide the laboratory staff with the simple and easy way to interact with the system. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.

Keywords: multi-agent system, delivery process, GSM technology, clinical laboratory results

Procedia PDF Downloads 250
20412 Nursing Students’ Opinions about Theoretical Lessons and Clinical Area: A Survey in a Nursing Department

Authors: Ergin Toros, Manar Aslan

Abstract:

This study was planned as a descriptive study in order to learn the opinions of the students who are studying in nursing undergraduate program about their theoretical/practical lessons and departments. The education in the undergraduate nursing programs has great importance because it contains the knowledge and skills to prepare student nurses to the clinic in the future. In order to provide quality-nursing services in the future, the quality of nursing education should be measured, and opinions of student nurses about education should be taken. The research population was composed of students educated in a university with 1-4 years of theoretical and clinical education (N=550), and the sample was composed of 460 students that accepted to take part in the study. It was reached to 83.6% of target population. Data collected through a survey developed by the researchers. Survey consists of 48 questions about sociodemographic characteristics (9 questions), theoretical courses (9 questions), laboratory applications (7 questions), clinical education (14 questions) and services provided by the faculty (9 questions). It was determined that 83.3% of the nursing students found the nursing profession to be suitable for them, 53% of them selected nursing because of easy job opportunity, and 48.9% of them stayed in state dormitory. Regarding the theoretical courses, 84.6% of the students were determined to agree that the question ‘Course schedule is prepared before the course and published on the university web page.’ 28.7% of them were determined to do not agree that the question ‘Feedback is given to students about the assignments they prepare.’. It has been determined that 41,5% of the students agreed that ‘The time allocated to laboratory applications is sufficient.’ Students said that physical conditions in laboratory (41,5%), and the materials used are insufficient (44.6%), and ‘The number of students in the group is not appropriate for laboratory applications.’ (45.2%). 71.3% of the students think that the nurses view in the clinics the students as a tool to remove the workload, 40.7% of them reported that nurses in the clinic area did not help through the purposes of the course, 39.6% of them said that nurses' communication with students is not good. 37.8% of students stated that nurses did not provide orientation to students, 37.2% of them think that nurses are not role models for students. 53.7% of the students stated that the incentive and support for the student exchange program were insufficient., %48 of the students think that career planning services, %47.2 security services,%45.4 the advisor spent time with students are not enough. It has been determined that nursing students are most disturbed by the approach of the nurses in the clinical area within the undergraduate education program. The clinical area education which is considered as an integral part of nursing education is important and affect to student satisfaction.

Keywords: nursing education, student, clinical area, opinion

Procedia PDF Downloads 176
20411 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model

Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee

Abstract:

Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.

Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior

Procedia PDF Downloads 128
20410 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 116
20409 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: designing, education management, information systems, matrix technology, process affinity

Procedia PDF Downloads 439
20408 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories

Authors: Rene Hellmuth

Abstract:

The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.

Keywords: augmented reality, digital factory model, factory planning, restructuring

Procedia PDF Downloads 134
20407 Repeated Suicidal Attempts in Foster Teenagers: Breaking the Cycle Using a Stepped Care Approach

Authors: Mathilde Blondon, Salla Aicha Dieng, Catherine Pfister

Abstract:

In a paradoxical way, teenagers nowadays seem to use suicidal attempts to elaborate on their trauma abuses and regain some kind of control in their lives. As their behavior becomes life-threatening, the hospital offers a variety of expertise to address their need, with Child Protective Services also joining in, to a point when teenagers could have a feeling of losing control of their lives, which results in them making more suicidal attempts. Our goal here is to walk with these foster teenagers long enough to step therapy up first, then as their mental health is restored enough to step the therapy down in a way that is secure and will give them their life back. This would prevent them from making suicidal attempts to get a feeling of control over their life. We’ll present a clinical case of a 14-year-old girl named Sofia, who was suffering from parental deprivation, an identity disorder, and severe depression disorder. Our intervention took place in January 2024, after Sofia had undergone four hospitalizations, including a two-month period in a specialized clinic. In a stepping-up effort, a substantial setting has been built around Sofia. She was coming three days a week to therapeutic activities at the Child Psychiatry Day Hospital, she had one psychotherapy session a week at the Medical-Psychological Center, and she was meeting with the Adolescent Psychiatrist on a regular basis. However, her suicidal attempts frequency continued to increase to the point when she couldn’t stay more than four days outside the hospital unit without harming herself and being brought back to the Emergency Unit. We were all stuck in some kind of medical deadlock, writing to clinics that had no room for her while social workers were calling foster homes that wouldn’t even accept her either. At some point, a clinical decision was made by the psychiatrist to stop what appeared to be a global movement of traumatic repetition, which involved Sofia’s family, the medical team and the social workers as one. This decision to step therapy down created a surprise and put an end to the cycle. It provided a new path, a new solution where Sofia could securely settle without being unfaithful to her family. Her suicidal attempts stopped for four weeks. She had one relapse, then didn’t make another attempt so far. There is a fine line between too little and too much, a pathway with the right amount of care and support. We believe it is not a steady line but rather a path up and down the hill. It’s about building up this moment when medication and mental processes have improved the subject’s condition enough to allow the medical team to step therapy down and give more control back to the subject. These needed variations used to come from a change of hospital or medical team. Stepped care avoids any breaking of bonds and appears to be decisive in stopping teenagers’ suicidal attempts.

Keywords: child protection, adolescent psychiatry, teenager suicidal attempt, foster teenagers, parental deprivation, stepped care

Procedia PDF Downloads 36
20406 Investment Projects Selection Problem under Hesitant Fuzzy Environment

Authors: Irina Khutsishvili

Abstract:

In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations, since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Keywords: In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Procedia PDF Downloads 118
20405 Design and Development of Data Mining Application for Medical Centers in Remote Areas

Authors: Grace Omowunmi Soyebi

Abstract:

Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.

Keywords: data mining, medical record system, systems programming, computing

Procedia PDF Downloads 210
20404 AI In Health and Wellbeing - A Seven-Step Engineering Method

Authors: Denis Özdemir, Max Senges

Abstract:

There are many examples of AI-supported apps for better health and wellbeing. Generally, these applications help people to achieve their goals based on scientific research and input data. Still, they do not always explain how those three are related, e.g. by making implicit assumptions about goals that hold for many but not for all. We present a seven-step method for designing health and wellbeing AIs considering goal setting, measurable results, real-time indicators, analytics, visual representations, communication, and feedback. It can help engineers as guidance in developing apps, recommendation algorithms, and interfaces that support humans in their decision-making without patronization. To illustrate the method, we create a recommender AI for tiny wellbeing habits and run a small case study, including a survey. From the results, we infer how people perceive the relationship between them and the AI and to what extent it helps them to achieve their goals. We review our seven-step engineering method and suggest modifications for the next iteration.

Keywords: recommender systems, natural language processing, health apps, engineering methods

Procedia PDF Downloads 166
20403 Group Decision Making through Interval-Valued Intuitionistic Fuzzy Soft Set TOPSIS Method Using New Hybrid Score Function

Authors: Syed Talib Abbas Raza, Tahseen Ahmed Jilani, Saleem Abdullah

Abstract:

This paper presents interval-valued intuitionistic fuzzy soft sets based TOPSIS method for group decision making. The interval-valued intuitionistic fuzzy soft set is a mutation of an interval-valued intuitionistic fuzzy set and soft set. In group decision making problems IVIFSS makes the process much more algebraically elegant. We have used weighted arithmetic averaging operator for aggregating the information and define a new Hybrid Score Function as metric tool for comparison between interval-valued intuitionistic fuzzy values. In an illustrative example we have applied the developed method to a criminological problem. We have developed a group decision making model for integrating the imprecise and hesitant evaluations of multiple law enforcement agencies working on target killing cases in the country.

Keywords: group decision making, interval-valued intuitionistic fuzzy soft set, TOPSIS, score function, criminology

Procedia PDF Downloads 605
20402 Stress Perception, Ethics and Leadership Styles of Pilots: Implications for Airline Global Talent Acquisition and Talent Management Strategy

Authors: Arif Sikander, Imran Saeed

Abstract:

The behavioral pattern and performance of airline pilots are influenced by the level of stress, their ethical decision-making ability and above all their leadership style as part of the Crew Management process. Cultural differences of pilots, especially while working in ex-country airlines, could influence the stress perception. Culture also influences ethical decision making. Leadership style is also a variable dimension, and pilots need to adapt to the cultural settings while flying with the local pilots as part of their team. Studies have found that age, education, gender, and management experience are statistically significant factors in ethical maturity. However, in the decades to come, more studies are required to validate the results over and over again; thereby, providing support for the validity of the Moral Development Theory. Leadership style plays a vital role in ethical decision making. This study is grounded in the Moral Development theory and seeks to analyze the styles of leadership of airline pilots related to ethical decision making and also the influence of the culture on their stress perception. The sample for the study included commercial pilots from a National Airline. It is expected that these results should provide useful input to the literature in the context of developing appropriate Talent Management strategies. The authors intend to extend this study (carried out in one country) to major national carriers (many countries) to be able to develop a ultimate framework on Talent Management which should serve as a benchmark for any international airline as most of them (e.g., Emirates, Etihad, Cathay Pacific, China Southern, etc.) are dependent on the supply of this scarce resource from outside countries.

Keywords: ethics, leadership, pilot, stress

Procedia PDF Downloads 145
20401 Assessment of Barriers to the Clinical Adoption of Cell-Based Therapeutics

Authors: David Pettitt, Benjamin Davies, Georg Holländer, David Brindley

Abstract:

Cellular based therapies, whose origins can be traced from the intertwined concepts of tissue engineering and regenerative medicine, have the potential to transform the current medical landscape and offer an approach to managing what were once considered untreatable diseases. However, despite a large increase in basic science activity in the cell therapy arena alongside a growing portfolio of cell therapy trials, the number of industry products available for widespread clinical use correlates poorly with such a magnitude of activity, with the number of cell-based therapeutics in mainstream use remaining comparatively low. This research serves to quantitatively assess the barriers to the clinical adoption of cell-based therapeutics through identification of unique barriers, specific challenges and opportunities facing the development and adoption of such therapies.

Keywords: cell therapy, clinical adoption, commercialization, translation

Procedia PDF Downloads 401
20400 O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma

Authors: Mahkameh Asadi, Habibollah Dadgar

Abstract:

The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.

Keywords: positron emission tomography, amino acid positron emission tomography, magnetic resonance imaging, low and high grade glioma

Procedia PDF Downloads 177
20399 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 73
20398 Clinical Signs of Neonatal Calves in Experimental Colisepticemia

Authors: Samad Lotfollahzadeh

Abstract:

Escherichia coli (E.coli) is the most isolated bacteria from blood circulation of septicemic calves. Given the prevalence of septicemia in animals and its economic importance in veterinary practice, better understanding of changes in clinical signs following disease, may contribute to early detection of the disorder. The present study has been carried out to detect changes of clinical signs in induced sepsis in calves with E.coli. Colisepticemia has been induced in 10 twenty-day old healthy Holstein- Frisian calves with intravenous injection of 1.5 X 109 colony forming units (cfu) of O111: H8 strain of E.coli. Clinical signs including rectal temperature, heart rate, respiratory rate, shock, appetite, sucking reflex, feces consistency, general behavior, dehydration and standing ability were recorded in experimental calves during 24 hours after induction of colisepticemia. Blood culture was also carried out from calves four times during the experiment. ANOVA with repeated measure is used to see changes of calves’ clinical signs to experimental colisepticemia, and values of P≤ 0.05 was considered statistically significant. Mean values of rectal temperature and heart rate as well as median values of respiratory rate, appetite, suckling reflex, standing ability and feces consistency of experimental calves increased significantly during the study (P<0.05). In the present study, median value of shock score was not significantly increased in experimental calves (P> 0.05). The results of present study showed that total score of clinical signs in calves with experimental colisepticemia increased significantly, although the score of some clinical signs such as shock did not change significantly.

Keywords: calves, clinical signs scoring, E. coli O111:H8, experimental colisepticemia

Procedia PDF Downloads 377
20397 Evaluating the Learning Outcomes of Physical Therapy Clinical Fieldwork Course

Authors: Hui-Yi Wang, Shu-Mei Chen, Mei-Fang Liu

Abstract:

Background and purpose: Providing clinical experience in medical education is an important discipline method where students can gradually apply their academic knowledge to clinical situations. The purpose of this study was to establish self-assessment questionnaires for students to assess their learning outcomes for two fields of physical therapy, orthopedic physical therapy, and pediatric physical therapy, in a clinical fieldwork course. Methods: The questionnaires were developed based on the core competence dimensions of the course. The content validity of the questionnaires was evaluated and established by expert meetings. Among the third-year undergraduate students who took the clinical fieldwork course, there were 49 students participated in this study. Teachers arranged for the students to study two professional fields, and each professional field conducted a three-week clinical lesson. The students filled out the self-assessment questionnaires before and after each three-week lesson. Results: The self-assessment questionnaires were established by expert meetings that there were six core competency dimensions in each of the two fields, with 20 and 21 item-questions, respectively. After each three-week clinical fieldwork, the self-rating scores in each core competency dimension were higher when compared to those before the course, indicating having better clinical abilities after the lessons. The best self-rating scores were the dimension of attitude and humanistic literacy, and the two lower scores were the dimensions of professional knowledge and skills and problem-solving critical thinking. Conclusions: This study developed questionnaires for clinical fieldwork courses to reflect students' learning outcomes, including the performance of professional knowledge, practice skills, and professional attitudes. The use of self-assessment of learning performance can help students build up their reflective competencies. Teachers can guide students to pay attention to the performance of abilities in each core dimension to enhance the effectiveness of learning through self-reflection and improvement.

Keywords: physical therapy, clinical fieldwork course, learning outcomes assessment, medical education, self-reflection ability

Procedia PDF Downloads 116
20396 The Application of Participatory Social Media in Collaborative Planning: A Systematic Review

Authors: Yujie Chen , Zhen Li

Abstract:

In the context of planning transformation, how to promote public participation in the formulation and implementation of collaborative planning has been the focused issue of discussion. However, existing studies have often been case-specific or focused on a specific design field, leaving the role of participatory social media (PSM) in urban collaborative planning generally questioned. A systematic database search was conducted in December 2019. Articles and projects were eligible if they reported a quantitative empirical study applying participatory social media in the collaborative planning process (a prospective, retrospective, experimental, longitudinal research, or collective actions in planning practices). Twenty studies and seven projects were included in the review. Findings showed that social media are generally applied in public spatial behavior, transportation behavior, and community planning fields, with new technologies and new datasets. PSM has provided a new platform for participatory design, decision analysis, and collaborative negotiation most widely used in participatory design. Findings extracted several existing forms of PSM. PSM mainly act as three roles: the language of decision-making for communication, study mode for spatial evaluation, and decision agenda for interactive decision support. Three optimization content of PSM were recognized, including improving participatory scale, improvement of the grass-root organization, and promotion of politics. However, basically, participants only could provide information and comment through PSM in the future collaborative planning process, therefore the issues of low data response rate, poor spatial data quality, and participation sustainability issues worth more attention and solutions.

Keywords: participatory social media, collaborative planning, planning workshop, application mode

Procedia PDF Downloads 136
20395 Lived Experiences of Primary Caregiver of Schizophrenia Patients at Acute Crisis Intervention Service

Authors: Mykah W. Sumoldao, Maria Erissa C. Susa, Triny Cate M. Telan, Christian Arvin M. Torres, Jasmine I. Udasco, Franceis Jeramil M. Walis, Shellyn S. Wandagan, Janine May M. Warding, Queenie Diana Rose P. Zalun Hope Lulet A. Lomioan

Abstract:

This descriptive phenomenological study explored the lived experiences of the primary caregiver of schizophrenia patients at the Acute Crisis Intervention Service in Cagayan Valley Medical Center. The research aimed to understand the emotional, physical, and financial challenges these primary caregivers face. Data was gathered through interviews with nine (9) primary caregivers and analyzed using Colaizzi’s seven-step method. Two main themes emerged: Experience/ Challenges (Emotional, Physical, and Financial Challenges) and Managing Mechanisms (Support Systems and Resilience and Commitment). The study found that primary caregivers deal with a complex mix of difficulties, often with limited resources. They rely heavily on personal strength, faith, family, friends and community support to manage their roles. The findings highlighted the need for better support systems to ease primary caregivers' burdens. Financial aid, respite care, and mental health support are crucial for improving primary caregivers' quality of life and the care they provide. Additionally, raising awareness about primary caregivers' challenges can foster a supportive community, with more help from local organizations and government entities. Thus, this study provided insights into the caregiving experiences of those supporting schizophrenia patients. It emphasized the importance of practical support and emotional resilience. By addressing these needs, a more supportive environment can be created, benefiting both primary caregivers and their patients.

Keywords: primary caregiver burden, mental health, primary caregiver well-being, primary caregiver

Procedia PDF Downloads 33
20394 The Impact of Direct and Indirect Pressure Measuring Systems on the Pressure Mapping for the Medical Compression Garments

Authors: Arash M. Shahidi, Tilak Dias, Gayani K. Nandasiri

Abstract:

While graduated compression is the foundation of treatment and management of many medical complications such as leg ulcer, varicose veins, and lymphedema, monitoring the interface pressure has been conducted using different sensors that operate based on diverse approaches. The variations existed from the pressure readings collected using different interface pressure measurement systems would cause difficulties in taking a decision regarding the compression therapy. It is crucial to acknowledge the differences existing between direct and indirect pressure measurement systems while considering the commercially available systems such as AMI, Picopress and OPM which are under direct measurements systems, and HATRA (BSI), HOSY (RAL-GZ) and FlexiForce which comes under the indirect measurement system. Furthermore, Piezo-resistive sensors (Flexiforce) can measure the changes in resistance corresponding to the applied force on the sensing area. Direct pressure measuring systems are capable of measuring interface pressure on the three-dimensional states, while the indirect pressure measuring systems stretch the fabric in the two-dimensional direction and extrapolate pressure from surface tension measured on the device and neglect the vital factor which is the radius of curvature. In this study, a leg mannequin of known dimensions is selected with a knitted class 3 compression stocking. It has been decided to evaluate the data collected from different available systems (AMI, PicoPress, FlexiForce, and HATRA) and compare the results. The results showed a discrepancy between Hatra, AMI, Picopress, and Flexiforce against the pressure standard used to generate class 3 compression stocking. As predicted a higher pressure value with direct interface measuring systems were monitored against HATRA due to the effect of the radius of curvature.

Keywords: AMI, FlexiForce, graduated compression, HATRA, interface pressure, PicoPress

Procedia PDF Downloads 352