Search results for: artificial communication
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6151

Search results for: artificial communication

5581 Singularity Theory in Yakam Matrix by Multiparameter Bifurcation Interfacial in Coupled Problem in Artificial Intelligence

Authors: Leonard Kabeya Mukeba Yakasham

Abstract:

The theoretical machinery from singularity theory introduced by Glolubitsky, Stewart, and Schaeffer, to study equivariant bifurcation problem is completed and expanded wile generalized to the multiparameter context. In this setting the finite deterinancy theorem or normal forms, the stability of equivariant bifurcation problem, and the structural stability of universal unfolding are discussed. With Yakam Matrix the solutions are limited for some partial differential equations stochastic nonlinear of the open questions in singularity artificial intelligence for future.

Keywords: equivariant bifurcation, symmetry singularity, equivariant jets and transversality, normal forms, universal unfolding instability, structural stability

Procedia PDF Downloads 5
5580 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: artificial neural network, Taguchi method, real estate valuation model, investors

Procedia PDF Downloads 490
5579 “I” on the Web: Social Penetration Theory Revised

Authors: Dr. Dionysis Panos Dpt. Communication, Internet Studies Cyprus University of Technology

Abstract:

The widespread use of New Media and particularly Social Media, through fixed or mobile devices, has changed in a staggering way our perception about what is “intimate" and "safe" and what is not, in interpersonal communication and social relationships. The distribution of self and identity-related information in communication now evolves under new and different conditions and contexts. Consequently, this new framework forces us to rethink processes and mechanisms, such as what "exposure" means in interpersonal communication contexts, how the distinction between the "private" and the "public" nature of information is being negotiated online, how the "audiences" we interact with are understood and constructed. Drawing from an interdisciplinary perspective that combines sociology, communication psychology, media theory, new media and social networks research, as well as from the empirical findings of a longitudinal comparative research, this work proposes an integrative model for comprehending mechanisms of personal information management in interpersonal communication, which can be applied to both types of online (Computer-Mediated) and offline (Face-To-Face) communication. The presentation is based on conclusions drawn from a longitudinal qualitative research study with 458 new media users from 24 countries for almost over a decade. Some of these main conclusions include: (1) There is a clear and evidenced shift in users’ perception about the degree of "security" and "familiarity" of the Web, between the pre- and the post- Web 2.0 era. The role of Social Media in this shift was catalytic. (2) Basic Web 2.0 applications changed dramatically the nature of the Internet itself, transforming it from a place reserved for “elite users / technical knowledge keepers" into a place of "open sociability” for anyone. (3) Web 2.0 and Social Media brought about a significant change in the concept of “audience” we address in interpersonal communication. The previous "general and unknown audience" of personal home pages, converted into an "individual & personal" audience chosen by the user under various criteria. (4) The way we negotiate the nature of 'private' and 'public' of the Personal Information, has changed in a fundamental way. (5) The different features of the mediated environment of online communication and the critical changes occurred since the Web 2.0 advance, lead to the need of reconsideration and updating the theoretical models and analysis tools we use in our effort to comprehend the mechanisms of interpersonal communication and personal information management. Therefore, is proposed here a new model for understanding the way interpersonal communication evolves, based on a revision of social penetration theory.

Keywords: new media, interpersonal communication, social penetration theory, communication exposure, private information, public information

Procedia PDF Downloads 374
5578 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: artificial neural networks, milling process, rotational speed, temperature

Procedia PDF Downloads 407
5577 Enhancing Problem Communication and Management Using Civil Information Modeling for Infrastructure Projects

Authors: Yu-Cheng Lin, Yu-Chih Su

Abstract:

Generally, there are many numerous existing problems during the construction phase special in civil engineering. The problems communication and management (PCM) of civil engineering are important and necessary to enhance the performance of construction management. The civil information modelling (CIM) approach is used to retain information with digital format and assist easy updating and transferring of information in the 3D environment for all related civil and infrastructure projects. When the application of CIM technology is adopted in infrastructure projects, all the related project participants can discuss problems and obtain feedback and responds among project participants integrated with the assistance of CIM models 3D illustration. Usually, electronic mail (e-mail) is one of the most popular communication tools among all related participants for rapid transit system (MRT), also known as a subway or metro, construction project in Taiwan. Furthermore, all interfaces should be traced and managed effectively during the process. However, there are many problems with the use of e-mail for communication of all interfaces. To solve the above problems, this study proposes a CIM-based Problem Communication and Management (CPCM) system to improve performance of problem communication and management. The CPCM system is applied to a case study of an MRT project in Taiwan to identify its CPCM effectiveness. Case study results show that the proposed CPCM system and Markup-enabled CIM Viewer are effective CIM-based communication tools in CIM-supported PCM work of civil engineering. Finally, this study identifies conclusion, suggestion, benefits, and limitations for further applications.

Keywords: building information modeling, civil information modeling, infrastructure, general contractor

Procedia PDF Downloads 152
5576 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 466
5575 Proposal of Data Collection from Probes

Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik

Abstract:

In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.

Keywords: communication, computer network, data collection, probe

Procedia PDF Downloads 362
5574 Mapping the Adoption Process of Communication Technology to Maintain Contact between Older Adults with Intellectual Disability in Out-of-home Residence and Their Families: A Multiple-Case Study Research

Authors: Carmit Noa Shpigelman, Michal Isaacson

Abstract:

Over the last decades, the improvement in welfare and health services and the increase in awareness of the needs of people with intellectual disability has led to an increase in their life expectancy, and many of them enter into old age. Furthermore, many older adults with intellectual disability live in out-of-home residence. This situation, in addition to the parents' aging process as the main caregivers, may lead to a reduction in contact with the family and, as a result, decreased level of the residents' (older adults with intellectual disability) well-being. A plausible solution for this condition may be using communication technologies. Previous studies indicate that using communication technologies among older adults contributes to maintaining the relationship with others, decreasing the older adult's sense of loneliness, and increasing their level of well-being. Using communication technologies may be especially valuable for older adults in the current global pandemic of COVID-19 and the associated restrictions of social distancing. However, to date, research on using communication technologies among people with intellectual disability has focused on younger cohorts. Moreover, research on the adoption of technologies among older adults with intellectual disability has focused more on assistive technologies and less on communication technologies. To address these practice and research gaps, the present study focuses on the adoption process of communication technology among older adults with intellectual disability (over the age of 45 years) who live in supported accommodation. Fifteen residents participated in an intervention program where they received a tablet with a video communication application and through which they were able to contact their families. A multiple-case study methodology was applied to capture the experiences, including barriers and needs, of the residents from three perspectives: the resident, the family member, and a staff member from the residential setting. The data was collected via quantitative and qualitative measures at different time points over the intervention. The findings demonstrate the contribution of using communication technology for the well-being of older adults with intellectual disability in supported accommodation. The findings also map the adoption process among this population, including pitfalls. The present study contributes to developing best practices on how to accommodate communication technologies to older adults with intellectual disability for maintaining contact with others.

Keywords: adoption, aging, communication, intellectual disability, technology

Procedia PDF Downloads 238
5573 Energy Efficient Lighting in Educational Buildings through the Example of a High School in Istanbul

Authors: Nihan Gurel Ulusan

Abstract:

It is obvious that electrical energy, which is an inseparable part of modern day’s human and also the most important power source of our age, should be generated on a level that will suffice the nation’s requirements. The electrical energy used for a sustainable architectural design should be reduced as much as possible. Designing the buildings as energy efficient systems which aim at reducing the artificial illumination loads has been a current subject of our times as a result of concepts gaining importance like conscious consumption of energy sources, environment-friendly designs and sustainability. Reducing the consumption of electrical energy regarding the artificial lighting carries great significance, especially in the volumes which are used all day long like the educational buildings. Starting out with such an aim in this paper, the educational buildings are explored in terms of energy efficient lighting. Firstly, illumination techniques, illumination systems, light sources, luminaries, illumination controls and 'efficient energy' usage in lighting are mentioned. In addition, natural and artificial lighting systems used in educational buildings and also the spaces building up these kind buildings are examined in terms of energy efficient lighting. Lastly, the illumination properties of the school sample chosen for this study, Kağıthane Anadolu Lisesi, a typical high school in Istanbul, is observed. Suggestions are made in order to improve the system by evaluating the illumination properties of the classes with the survey carried out with the users.

Keywords: educational buildings, energy efficient, illumination techniques, lighting

Procedia PDF Downloads 283
5572 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains

Authors: Sandip Suman

Abstract:

Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.

Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains

Procedia PDF Downloads 99
5571 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 128
5570 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.

Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint

Procedia PDF Downloads 601
5569 Performance Improvement of Cooperative Scheme in Wireless OFDM Systems

Authors: Ki-Ro Kim, Seung-Jun Yu, Hyoung-Kyu Song

Abstract:

Recently, the wireless communication systems are required to have high quality and provide high bit rate data services. Researchers have studied various multiple antenna scheme to meet the demand. In practical application, it is difficult to deploy multiple antennas for limited size and cost. Cooperative diversity techniques are proposed to overcome the limitations. Cooperative communications have been widely investigated to improve performance of wireless communication. Among diversity schemes, space-time block code has been widely studied for cooperative communication systems. In this paper, we propose a new cooperative scheme using pre-coding and space-time block code. The proposed cooperative scheme provides improved error performance than a conventional cooperative scheme using space-time block coding scheme.

Keywords: cooperative communication, space-time block coding, pre-coding

Procedia PDF Downloads 360
5568 Examining the Role of Willingness to Communicate in Cross-Cultural Adaptation in East-Asia

Authors: Baohua Yu

Abstract:

Despite widely reported 'Mainland-Hong Kong conflicts', recent years have witnessed progressive growth in the numbers of Mainland Chinese students in Hong Kong’s universities. This research investigated Mainland Chinese students’ intercultural communication in relation to cross-cultural adaptation in a major university in Hong Kong. The features of intercultural communication examined in this study were competence in the second language (L2) communication and L2 Willingness to Communicate (WTC), while the features of cross-cultural adaptation examined were socio-cultural, psychological and academic adaptation. Based on a questionnaire, structural equation modelling was conducted among a sample of 196 Mainland Chinese students. Results showed that the competence in L2 communication played a significant role in L2 WTC, which had an influential effect on academic adaptation, which was itself identified as a mediator between the psychological adaptation and socio-cultural adaptation. Implications for curriculum design for courses and instructional practice on international students are discussed.

Keywords: L2 willingness to communicate, competence in L2 communication, psychological adaptation, socio-cultural adaptation, academic adaptation, structural equation modelling

Procedia PDF Downloads 357
5567 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 226
5566 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 398
5565 Opportunities for Effective Communication Through the Delivery of an Autism Spectrum Disorder Diagnosis: A Scoping Review

Authors: M. D. Antoine

Abstract:

When a child is diagnosed with an illness, condition, or developmental disorder, the process involved in understanding and accepting this diagnosis can be a very stressful and isolating experience for parents and families. The healthcare providers’ ability to effectively communicate in such situations represents a vital lifeline for parents. In this context, communication becomes a crucial element not only for getting through the period of grief but also for the future. We mobilized the five stages of grief model to summarize existing literature regarding the ways in which the experience ofan autism spectrum disorder diagnosis disclosurealigns with the experience of grief to explore how this can inform best practices for effective communication with parents through the diagnosis disclosure. Fifteen publications met inclusion criteria. Findings from the scoping review of empirical studies show that parents/families experience grief-like emotions during the diagnosis disclosure. However, grief is not an outcome of the encounter itself. In fact, the experience of the encounter can help mitigate the grief experience. The way parents/families receive and react to the ‘news’ depends on their preparedness, knowledge, and the support received through the experience. Individual communication skills, as well as policies and regulations, should be examined to alleviate adverse reactions in this context. These findings highlight the importance of further research into effective parent-provider communication strategies and their place in supporting quality autism care.

Keywords: autism spectrum disorder, autism spectrum disorder diagnosis, diagnosis disclosure, parent-provider communication, parental grief

Procedia PDF Downloads 176
5564 Developing Oral Communication Competence in a Second Language: The Communicative Approach

Authors: Ikechi Gilbert

Abstract:

Oral communication is the transmission of ideas or messages through the speech process. Acquiring competence in this area which, by its volatile nature, is prone to errors and inaccuracies would require the adoption of a well-suited teaching methodology. Efficient oral communication facilitates exchange of ideas and easy accomplishment of day-to-day tasks, by means of a demonstrated mastery of oral expression and the making of fine presentations to audiences or individuals while recognizing verbal signals and body language of others and interpreting them correctly. In Anglophone states such as Nigeria, Ghana, etc., the French language, for instance, is studied as a foreign language, being used majorly in teaching learners who have their own mother tongue different from French. The same applies to Francophone states where English is studied as a foreign language by people whose official language or mother tongue is different from English. The ideal approach would be to teach these languages in these environments through a pedagogical approach that properly takes care of the oral perspective for effective understanding and application by the learners. In this article, we are examining the communicative approach as a methodology for teaching oral communication in a foreign language. This method is a direct response to the communicative needs of the learner involving the use of appropriate materials and teaching techniques that meet those needs. It is also a vivid improvement to the traditional grammatical and audio-visual adaptations. Our contribution will focus on the pedagogical component of oral communication improvement, highlighting its merits and also proposing diverse techniques including aspects of information and communication technology that would assist the second language learner communicate better orally.

Keywords: communication, competence, methodology, pedagogical component

Procedia PDF Downloads 266
5563 [Keynote Speech]: Facilitating Familial Support of Saudi Arabians Living with HIV/AIDS

Authors: Noor Attar

Abstract:

The paper provides an overview of the current situation of HIV/AIDS patients in the Kingdom of Saudi Arabia (KSA) and a literature review of the concepts of stigma communication, communication of social support. These concepts provide the basis for the proposed methods, which will include conducting a textual analysis of materials that are currently distributed to family members of persons living with HIV/AIDS (PLWHIV/A) in KSA and creating an educational brochure. The brochure will aim to help families of PLWHIV/A in KSA (1) understand how stigma shapes the experience of PLWHIV/A, (2) realize the role of positive communication as a helpful social support, and (3) develop the ability to provide positive social support for their loved ones.

Keywords:

Procedia PDF Downloads 312
5562 Efficient Single Relay Selection Scheme for Cooperative Communication

Authors: Sung-Bok Choi, Hyun-Jun Shin, Hyoung-Kyu Song

Abstract:

This paper proposes a single relay selection scheme in cooperative communication. Decode and forward scheme is considered when a source node wants to cooperate with a single relay for data transmission. To use the proposed single relay selection scheme, the source node make a little different pattern signal which is not complex pattern and broadcasts it. The proposed scheme does not require the channel state information between the source node and candidates of the relay during the relay selection. Therefore, it is able to be used in many fields.

Keywords: relay selection, cooperative communication, df, channel codes

Procedia PDF Downloads 671
5561 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.

Keywords: logistic regression, decisions tree, random forest, VAR model

Procedia PDF Downloads 447
5560 Impact of Natural and Artificial Disasters, Lackadaisical and Semantic Approach in Risk Management, and Mitigation Implication for Sustainable Goals in Nigeria, from 2009 to 2022

Authors: Wisdom Robert Duruji, Moses Kanayochukwu Ifoh, Efeoghene Edward Esiemunobo

Abstract:

This study examines the impact of natural and artificial disasters, lackadaisical and semantic approach in risk management, and mitigation implication for sustainable development goals in Nigeria, from 2009 to 2022. The study utilizes a range of research methods to achieve its objectives. These include literature review, website knowledge, Google search, news media information, academic journals, field-work and on-site observations. These diverse methods allow for a comprehensive analysis on the impact and the implications being study. The study finds that paradigm shift from remediating seismic, flooding, environmental pollution and degradation natural disasters by Nigeria Emergency Management Agency (NEMA), to political and charity organization; has plunged risk reduction strategies to embezzling opportunities. However, this lackadaisical and semantic approach in natural disaster mitigation, invariably replicates artificial disasters in Nigeria through: Boko Haram terrorist organization, Fulani herdsmen and farmers conflicts, political violence, kidnapping for ransom, ethnic conflicts, Religious dichotomy, insurgency, secession protagonists, unknown-gun-men, and banditry. This study also, finds that some Africans still engage in self-imposed slavery through human trafficking, by nefariously stow-away to Europe; through Libya, Sahara desert and Mediterranean sea; in search for job opportunities, due to ineptitude in governance by their leaders; a perilous journey that enhanced artificial disasters in Nigeria. That artificial disaster fatality in Nigeria increased from about 5,655 in 2009 to 114,318 in 2018; and to 157,643 in 2022. However, financial and material loss of about $9.29 billion was incurred in Nigeria due to natural disaster, while about $70.59 billion was accrued due to artificial disaster; from 2009 to 2018. Although disaster risk mitigation and politics can synergistically support sustainable development goals; however, they are different entities, and need for distinct separations in Nigeria, as in reality and perception. This study concluded that referendum should be conducted in Nigeria, to ascertain its current status as a nation. Therefore it is recommended that Nigerian governments should refine its naturally endowed crude oil locally; to end fuel subsidy scam, corruption and poverty in Nigeria!

Keywords: corruption, crude oil, environmental risk analysis, Nigeria, referendum, terrorism

Procedia PDF Downloads 44
5559 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm

Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta

Abstract:

Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.

Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates

Procedia PDF Downloads 237
5558 Artificial Intelligence in Disease Diagnosis

Authors: Shalini Tripathi, Pardeep Kumar

Abstract:

The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.

Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications 

Procedia PDF Downloads 133
5557 Roughness Discrimination Using Bioinspired Tactile Sensors

Authors: Zhengkun Yi

Abstract:

Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.

Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination

Procedia PDF Downloads 313
5556 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners

Authors: Leila Najeh Bel'Kiry

Abstract:

Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.

Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners

Procedia PDF Downloads 65
5555 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems

Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang

Abstract:

The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.

Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes

Procedia PDF Downloads 612
5554 Information Communication Technology (ICT) Using Management in Nursing College under the Praboromarajchanok Institute

Authors: Suphaphon Udomluck, Pannathorn Chachvarat

Abstract:

Information Communication Technology (ICT) using management is essential for effective decision making in organization. The Concerns Based Adoption Model (CBAM) was employed as the conceptual framework. The purposes of the study were to assess the situation of Information Communication Technology (ICT) using management in College of Nursing under the Praboromarajchanok Institute. The samples were multi – stage sampling of 10 colleges of nursing that participated include directors, vice directors, head of learning groups, teachers, system administrator and responsible for ICT. The total participants were 280; the instrument used were questionnaires that include 4 parts, general information, Information Communication Technology (ICT) using management, the Stage of concern Questionnaires (SoC), and the Levels of Use (LoU) ICT Questionnaires respectively. Reliability coefficients were tested; alpha coefficients were 0.967for Information Communication Technology (ICT) using management, 0.884 for SoC and 0.945 for LoU. The data were analyzed by frequency, percentage, mean, standard deviation, Pearson Product Moment Correlation and Multiple Regression. They were founded as follows: The high level overall score of Information Communication Technology (ICT) using management and issue were administration, hardware, software, and people. The overall score of the Stage of concern (SoC)ICTis at high level and the overall score of the Levels of Use (LoU) ICTis at moderate. The Information Communication Technology (ICT) using management had the positive relationship with the Stage of concern (SoC)ICTand the Levels of Use (LoU) ICT(p < .01). The results of Multiple Regression revealed that administration hardwear, software and people ware could predict SoC of ICT (18.5%) and LoU of ICT (20.8%).The factors that were significantly influenced by SoCs were people ware. The factors that were significantly influenced by LoU of ICT were administration hardware and people ware.

Keywords: information communication technology (ICT), management, the concerns-based adoption model (CBAM), stage of concern(SoC), the levels of use(LoU)

Procedia PDF Downloads 318
5553 Molecular Communication Noise Effect Analysis of Diffusion-Based Channel for Considering Minimum-Shift Keying and Molecular Shift Keying Modulations

Authors: A. Azari, S. S. K. Seyyedi

Abstract:

One of the unaddressed and open challenges in the nano-networking is the characteristics of noise. The previous analysis, however, has concentrated on end-to-end communication model with no separate modelings for propagation channel and noise. By considering a separate signal propagation and noise model, the design and implementation of an optimum receiver will be much easier. In this paper, we justify consideration of a separate additive Gaussian noise model of a nano-communication system based on the molecular communication channel for which are applicable for MSK and MOSK modulation schemes. The presented noise analysis is based on the Brownian motion process, and advection molecular statistics, where the received random signal has a probability density function whose mean is equal to the mean number of the received molecules. Finally, the justification of received signal magnitude being uncorrelated with additive non-stationary white noise is provided.

Keywords: molecular, noise, diffusion, channel

Procedia PDF Downloads 280
5552 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural

Authors: Mohammad Heidari

Abstract:

In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network

Procedia PDF Downloads 417