Search results for: volumetric mass density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6867

Search results for: volumetric mass density

6837 Estimating Future Solar Potential in Evolving High-Density Urban Areas for the Mid-Latitude City of Mendoza, Argentina

Authors: Mariela Edith Arboit

Abstract:

The main goal of the project is to explore the evolution possibilities of the morphological indicators of the built environment, including those resulting from progressive soil occupation, due to the relentless growth of the city’s population and subsequent increase in building density and solar access reduction per built unit. Two alternative normative proposals, Conventional Proposal (CP) and Alternative Proposal (AP), are compared. In addition, temporal scenarios of the city’s evolution process are analyzed, starting from the reference situation of existing, high-density built-up areas, and simulating their possible morphological outcomes on theoretical medium (30 yr.) and long (60 yr.) terms, as a result of the massive implementation of either regulation in the long run. The results obtained demonstrate that the Alternative Proposal (AP) presents higher mean values of predicted solar potential expressed by the Volumetric Insolation Factor total (VIFtot) for both time periods and services. Regarding environmental aspects, the different impacts of either alternative on the urban landscape quality seem to favor the AP proposal. Its deserved detailed assessment is also presently being developed through a quanti-qualitative methodology.

Keywords: building morphology, environmental quality, solar energy, urban sustainability

Procedia PDF Downloads 157
6836 Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast

Authors: Fernando M. Soto, Gaetano Di Mino

Abstract:

The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%.

Keywords: empirical approach, rubber-asphalt, sub-ballast, superpave mix-design

Procedia PDF Downloads 368
6835 Bone Mineral Density and Trabecular Bone Score in Ukrainian Women with Obesity

Authors: Vladyslav Povoroznyuk, Nataliia Dzerovych, Larysa Martynyuk, Tetiana Kovtun

Abstract:

Obesity and osteoporosis are the two diseases whose increasing prevalence and high impact on the global morbidity and mortality, during the two recent decades, have gained a status of major health threats worldwide. Obesity purports to affect the bone metabolism through complex mechanisms. Debated data on the connection between the bone mineral density and fracture prevalence in the obese patients are widely presented in literature. There is evidence that the correlation of weight and fracture risk is site-specific. The aim of this study was to evaluate the Bone Mineral Density (BMD) and Trabecular Bone Score (TBS) in the obese Ukrainian women. We examined 1025 40-89-year-old women, divided them into the groups according to their body mass index: Group a included 360 women with obesity whose BMI was ≥30 kg/m2, and Group B – 665 women with no obesity and BMI of < 30 kg/m2. The BMD of total body, lumbar spine at the site L1-L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1-L4 was assessed by means of TBS iNsight® software installed on our DXA machine (product of Med-Imaps, Pessac, France). In general, obese women had a significantly higher BMD of lumbar spine, femoral neck, proximal femur, total body, and ultradistal forearm (p<0.001) in comparison with women without obesity. The TBS of L1-L4 was significantly lower in obese women compared to non-obese women (p<0.001). The BMD of lumbar spine, femoral neck and total body differed to a significant extent in women of 40-49, 50-59, 60-69, and 70-79 years (p<0.05). At same time, in women aged 80-89 years the BMD of lumbar spine (p=0.09), femoral neck (p=0.22) and total body (p=0.06) barely differed. The BMD of ultradistal forearm was significantly higher in women of all age groups (p<0.05). The TBS of L1-L4 in all the age groups tended to reveal the lower parameters in obese women compared with the non-obese; however, those data were not statistically significant. By contrast, a significant positive correlation was observed between the fat mass and the BMD at different sites. The correlation between the fat mass and TBS of L1-L4 was also significant, although negative. Women with vertebral fractures had a significantly lower body weight, body mass index and total body fat mass in comparison with women without vertebral fractures in their anamnesis. In obese women the frequency of vertebral fractures was 27%, while in women without obesity – 57%.

Keywords: obesity, trabecular bone score, bone mineral density, women

Procedia PDF Downloads 443
6834 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes

Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje

Abstract:

The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.

Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR

Procedia PDF Downloads 158
6833 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures

Authors: S. Hachemi, A. Ounis, S. Chabi

Abstract:

This paper presents the results of an experimental study on the effects of elevated temperature on compressive and flexural strength of Normal Strength Concrete (NSC), High Strength Concrete (HSC) and High Performance Concrete (HPC). In addition, the specimen mass and volume were measured before and after heating in order to determine the loss of mass and volume during the test. In terms of non-destructive measurement, ultrasonic pulse velocity test was proposed as a promising initial inspection method for fire damaged concrete structure. 100 Cube specimens for three grades of concrete were prepared and heated at a rate of 3°C/min up to different temperatures (150, 250, 400, 600, and 900°C). The results show a loss of compressive and flexural strength for all the concretes heated to temperature exceeding 400°C. The results also revealed that mass and density of the specimen significantly reduced with an increase in temperature.

Keywords: high temperature, compressive strength, mass loss, ultrasonic pulse velocity

Procedia PDF Downloads 343
6832 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: electric propulsion, mass gauging, propellant, PVT, xenon

Procedia PDF Downloads 345
6831 Investigation of Some Sperm Quality Parameters of Farmed and Wild-Caught Meagre (Argyrosomus regius Asso, 1801)

Authors: Şefik Surhan Tabakoğlu, Hipolito Fernández-Palacios, Dominique Schuchardt, Mahmut Ali Gökçe, Celal Erbaş, Oğuz Taşbozan

Abstract:

This study aimed to clarify some sperm quality parameters such as volumetric sperm quantity, motility, motility duration, sperm density, total number of spermatozoa and pH of meagre (Argyrosomus regius ASSO, 1801) individuals kept in farming conditions and caught from wild (las palmas, gran canary). The sperm was collected in glass tubes graded in millimetres and sperm volume registered immediately following collection by abdominal massage. The sperm quality parameters including motility, total number of spermatozoa and spermatozoa density were determined with computer assisted sperm analysis (CASA) program. The duration of spermatozoa movement was assessed using a sensitive chronometer (1/100s) that was started simultaneously with the addition of activation solution into the sample. Sperm pH was measured with standard pH electrodes within five minutes of sampling. At the end of the study, while amount of sperm (5.20±0.33 ml), duration of motility (7.23±0.7 m) and total number of spermatozoa (131.40±12.22 x10^9) were different statistically (p < 0,05), motility (% 81.03±6.59), pH (7.30±0.08), sperm density (25.27±9.42 x10^9/ml) and morphologic parameters were not significantly different between the two groups. According to our results, amount of sperm, duration of motility and total number of spermatozoa were better in farmed group than that of the other group.

Keywords: Seriola rivoliana, meagre, sperm quality, motility, motility duration

Procedia PDF Downloads 375
6830 Experimental Study of Vibration Isolators Made of Expanded Cork Agglomerate

Authors: S. Dias, A. Tadeu, J. Antonio, F. Pedro, C. Serra

Abstract:

The goal of the present work is to experimentally evaluate the feasibility of using vibration isolators made of expanded cork agglomerate. Even though this material, also known as insulation cork board (ICB), has mainly been studied for thermal and acoustic insulation purposes, it has strong potential for use in vibration isolation. However, the adequate design of expanded cork blocks vibration isolators will depend on several factors, such as excitation frequency, static load conditions and intrinsic dynamic behavior of the material. In this study, transmissibility tests for different static and dynamic loading conditions were performed in order to characterize the material. Since the material’s physical properties can influence the vibro-isolation performance of the blocks (in terms of density and thickness), this study covered four mass density ranges and four block thicknesses. A total of 72 expanded cork agglomerate specimens were tested. The test apparatus comprises a vibration exciter connected to an excitation mass that holds the test specimen. The test specimens under characterization were loaded successively with steel plates in order to obtain results for different masses. An accelerometer was placed at the top of these masses and at the base of the excitation mass. The test was performed for a defined frequency range, and the amplitude registered by the accelerometers was recorded in time domain. For each of the signals (signal 1- vibration of the excitation mass, signal 2- vibration of the loading mass) a fast Fourier transform (FFT) was applied in order to obtain the frequency domain response. For each of the frequency domain signals, the maximum amplitude reached was registered. The ratio between the amplitude (acceleration) of signal 2 and the amplitude of signal 1, allows the calculation of the transmissibility for each frequency. Repeating this procedure allowed us to plot a transmissibility curve for a certain frequency range. A number of transmissibility experiments were performed to assess the influence of changing the mass density and thickness of the expanded cork blocks and the experimental conditions (static load and frequency of excitation). The experimental transmissibility tests performed in this study showed that expanded cork agglomerate blocks are a good option for mitigating vibrations. It was concluded that specimens with lower mass density and larger thickness lead to better performance, with higher vibration isolation and a larger range of isolated frequencies. In conclusion, the study of the performance of expanded cork agglomerate blocks presented herein will allow for a more efficient application of expanded cork vibration isolators. This is particularly relevant since this material is a more sustainable alternative to other commonly used non-environmentally friendly products, such as rubber.

Keywords: expanded cork agglomerate, insulation cork board, transmissibility tests, sustainable materials, vibration isolators

Procedia PDF Downloads 332
6829 Relationship Between Muscle Mass and Insulin Resistance in Cirrhotic Patients with Hepatitis B

Authors: Eyüp S. Akbas, Betul Ayaz, Beyza S. Haksever, Sema Basat

Abstract:

We aimed to evaluate the relationship between insulin resistance, muscle mass and muscle strength in patients with Hepatitis B virus-related cirrhosis. In our study, there were 65 patients with hepatitis B virus-related cirrhosis in Child A and B group and 65 healthy control individual. Control group was chosen between patients who admitted to the internal medicine clinic and had no pathological values in a routine examination. Muscle mass index was calculated with bioimpedance analysis for both groups to determine muscle strength and muscle mass. Handgrip strength, arm, and calf circumference were measured. In both groups, HOMA-IR was calculated to determine insulin resistance. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) value was detected 3,47±3,80 in the study group and 1,83±1,20 in control group. There were significant differences between the two groups in arm circumference, fasting insulin, fasting glucose, HOMA-IR, High-density lipoprotein (HDL) and total cholesterol parameters. The correlation coefficient between muscle mass and insulin resistance was statistically insignificant, especially in the study group. In healthy individuals group and all the groups, there wasn’t a correlation between muscle mass and insulin resistance. The upper limit for HOMA-IR was determined as 3,2. In control group, %78,9 of individuals were in HOMA-IR ( < 3.2) group and %21,1 of them were in ( ≥ 3,2) group. In study group, %68,3 of individuals were in HOMA-IR ( < 3,2) group and %31.7 were in HOMA-IR ( ≥ 3,2) group. In our study, we did not find a relationship between muscle mass and insulin resistance in patients with liver cirrhosis. In the study group, we detected a positive relationship between muscle mass, handgrip strength, and calf circumference. We did not find a relationship between insulin resistance and handgrip strength in our study.

Keywords: cirrhosis, hepatitis B, Insulin resistance, muscle mass

Procedia PDF Downloads 151
6828 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma

Authors: Jyoti Wadhwa, Arvinder Singh

Abstract:

This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.

Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.

Procedia PDF Downloads 177
6827 Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions

Authors: J. J. Peña, J. Morales, J. García-Ravelo, L. Arcos-Díaz

Abstract:

The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials.

Keywords: free particle, point canonical transformation method, position-dependent mass, staggered mass distribution

Procedia PDF Downloads 403
6826 Leveraging Multimodal Neuroimaging Techniques to in vivo Address Compensatory and Disintegration Patterns in Neurodegenerative Disorders: Evidence from Cortico-Cerebellar Connections in Multiple Sclerosis

Authors: Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Agapi Plousi, Kalliopi Platoni, Nikolaos Kelekis, Ioannis Evdokimidis, Efstathios Efstathopoulos

Abstract:

Introduction: Advanced structural and functional neuroimaging techniques contribute to the study of anatomical and functional brain connectivity and its role in the pathophysiology and symptoms’ heterogeneity in several neurodegenerative disorders, including multiple sclerosis (MS). Aim: In the present study, we applied multiparametric neuroimaging techniques to investigate the structural and functional cortico-cerebellar changes in MS patients. Material: We included 51 MS patients (28 with clinically isolated syndrome [CIS], 31 with relapsing-remitting MS [RRMS]) and 51 age- and gender-matched healthy controls (HC) who underwent MRI in a 3.0T MRI scanner. Methodology: The acquisition protocol included high-resolution 3D T1 weighted, diffusion-weighted imaging and echo planar imaging sequences for the analysis of volumetric, tractography and functional resting state data, respectively. We performed between-group comparisons (CIS, RRMS, HC) using CAT12 and CONN16 MATLAB toolboxes for the analysis of volumetric (cerebellar gray matter density) and functional (cortico-cerebellar resting-state functional connectivity) data, respectively. Brainance suite was used for the analysis of tractography data (cortico-cerebellar white matter integrity; fractional anisotropy [FA]; axial and radial diffusivity [AD; RD]) to reconstruct the cerebellum tracts. Results: Patients with CIS did not show significant gray matter (GM) density differences compared with HC. However, they showed decreased FA and increased diffusivity measures in cortico-cerebellar tracts, and increased cortico-cerebellar functional connectivity. Patients with RRMS showed decreased GM density in cerebellar regions, decreased FA and increased diffusivity measures in cortico-cerebellar WM tracts, as well as a pattern of increased and mostly decreased functional cortico-cerebellar connectivity compared to HC. The comparison between CIS and RRMS patients revealed significant GM density difference, reduced FA and increased diffusivity measures in WM cortico-cerebellar tracts and increased/decreased functional connectivity. The identification of decreased WM integrity and increased functional cortico-cerebellar connectivity without GM changes in CIS and the pattern of decreased GM density decreased WM integrity and mostly decreased functional connectivity in RRMS patients emphasizes the role of compensatory mechanisms in early disease stages and the disintegration of structural and functional networks with disease progression. Conclusions: In conclusion, our study highlights the added value of multimodal neuroimaging techniques for the in vivo investigation of cortico-cerebellar brain changes in neurodegenerative disorders. An extension and future opportunity to leverage multimodal neuroimaging data inevitably remain the integration of such data in the recently-applied mathematical approaches of machine learning algorithms to more accurately classify and predict patients’ disease course.

Keywords: advanced neuroimaging techniques, cerebellum, MRI, multiple sclerosis

Procedia PDF Downloads 140
6825 Electrochemical Synthesis of Copper Nanoparticles

Authors: Juan Patricio Ibáñez, Exequiel López

Abstract:

A method for synthesizing copper nanoparticles through an electrochemical approach is proposed, employing surfactants to stabilize the size of the newly formed nanoparticles. The electrolyte was made up of a matrix of H₂SO₄ (190 g/L) having Cu²⁺ (from 3.2 to 9.5 g/L), sodium dodecyl sulfate -SDS- (from 0.5 to 1.0 g/L) and Tween 80 (from 0 to 7.5 mL/L). Tween 80 was used in a molar relation of 1 to 1 with SDS. A glass cell was used, which was in a thermostatic water bath to keep the system temperature, and the electrodes were cathodic copper as an anode and stainless steel 316-L as a cathode. This process was influenced by the control exerted through the initial copper concentration in the electrolyte and the applied current density. Copper nanoparticles of electrolytic purity, exhibiting a spherical morphology of varying sizes with low dispersion, were successfully produced, contingent upon the chemical composition of the electrolyte and current density. The minimum size achieved was 3.0 nm ± 0.9 nm, with an average standard deviation of 2.2 nm throughout the entire process. The deposited copper mass ranged from 0.394 g to 1.848 g per hour (over an area of 25 cm²), accompanied by an average Faradaic efficiency of 30.8% and an average specific energy consumption of 4.4 kWh/kg. The chemical analysis of the product employed X-ray powder diffraction (XRD), while physical characteristics such as size and morphology were assessed using atomic force microscopy (AFM). It was identified that the initial concentration of copper and the current density are the variables defining the size and dispersion of the nanoparticles, as they serve as reactants in the cathodic half-reaction. The presence of surfactants stabilizes the nanoparticle size as their molecules adsorb onto the nanoparticle surface, forming a thick barrier that prevents mass transfer with the exterior and halts further growth.

Keywords: copper nanopowder, electrochemical synthesis, current density, surfactant stabilizer

Procedia PDF Downloads 63
6824 Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression

Authors: A. A. Okeola, T. I. Sijuade

Abstract:

Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days of water submerged curing were tested under compression loading. The result shows that the compressive strength of plastic fibre reinforced concrete increased with rise in curing age. The strength increases for all percentage dosage of fibre used for the concrete. The density of the Plastic Fibre Reinforced Concrete (PFRC) also increases with curing age, which implies that during curing, concrete absorbs water which aids its hydration. The least compressive strength obtained with the introduction of plastic fibre is more than the targeted 20 N/mm2 recommended for construction work showing that PFRC can be used where significant loading is expected.

Keywords: compressive strength, concrete, curing, density, plastic fibre

Procedia PDF Downloads 409
6823 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure

Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail

Abstract:

We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.

Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon

Procedia PDF Downloads 540
6822 Analysis of Radiation-Induced Liver Disease (RILD) and Evaluation of Relationship between Therapeutic Activity and Liver Clearance Rate with Tc-99m-Mebrofenin in Yttrium-90 Microspheres Treatment

Authors: H. Tanyildizi, M. Abuqebitah, I. Cavdar, M. Demir, L. Kabasakal

Abstract:

Aim: Whole liver radiation has the modest benefit in the treatment of unresectable hepatic metastases but the radiation doses must keep in control. Otherwise, RILD complications may arise. In this study, we aimed to calculate amount of maximum permissible activity (MPA) and critical organ absorbed doses with MIRD methodology, to evaluate tumour doses for treatment response and whole liver doses for RILD and to find optimal liver function test additionally. Materials and Methods: This study includes 29 patients who attended our nuclear medicine department suffering from Y-90 microspheres treatment. 10 mCi Tc-99m MAA was applied to the patients for dosimetry via IV. After the injection, whole body SPECT/CT images were taken in one hour. The minimum therapeutic tumour dose is on the point of being 120 Gy1, the amount of activities were calculated with MIRD methodology considering volumetric tumour/liver rate. A sub-working group was created with 11 patients randomly and liver clearance rate with Tc-99m-Mebrofenin was calculated according to Ekman formalism. Results: The volumetric tumour/liver rates were found between 33-66% (Maksimum Tolarable Dose (MTD) 48-52Gy3) for 4 patients, were found less than 33% (MTD 72Gy3) for 25 patients. According to these results the average amount of activity, mean liver dose and mean tumour dose were found 1793.9±1.46 MBq, 32.86±0.19 Gy, and 138.26±0.40 Gy. RILD was not observed in any patient. In sub-working group, the relationship between Bilirubin, Albumin, INR (which show presence of liver disease and its degree), liver clearance with Tc-99m-Mebrofenin and calculated activity amounts were found r=0.49, r=0.27, r=0.43, r=0.57, respectively. Discussions: The minimum tumour dose was found 120 Gy for positive dose-response relation. If volumetric tumour/liver rate was > 66%, dose 30 Gy; if volumetric tumour/liver rate 33-66%, dose escalation 48 Gy; if volumetric tumour/liver rate < 33%, dose 72 Gy. These dose limitations did not create RILD. Clearance measurement with Mebrofenin was concluded that the best method to determine the liver function. Therefore, liver clearance rate with Tc-99m-Mebrofenin should be considered in calculation of yttrium-90 microspheres dosimetry.

Keywords: clearance, dosimetry, liver, RILD

Procedia PDF Downloads 440
6821 Triangular Libration Points in the R3bp under Combined Effects of Oblateness, Radiation and Power-Law Profile

Authors: Babatunde James Falaye, Shi Hai Dong, Kayode John Oyewumi

Abstract:

We study the e ffects of oblateness up to J4 of the primaries and power-law density pro file (PDP) on the linear stability of libration location of an in nitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for 0 < μ < μc and unstable for μc ≤ μ ≤ 1/2, where c denotes the critical mass parameter. We find that, the oblateness up to J2 of the primaries and the radiation reduces the stability range while the oblateness up to J4 of the primaries increases the size of stability both in the context where PDP is considered and ignored. The PDP has an e ect of about ≈0:01 reduction on the application of c to Earth-Moon and Jupiter-Moons systems. We find that the comprehensive eff ects of the perturbations have a stabilizing proclivity. However, the oblateness up to J2 of the primaries and the radiation of the primaries have tendency for instability, while coecients up to J4 of the primaries have stability predisposition. In the limiting case c = 0, and also by setting appropriate parameter(s) to zero, our results are in excellent agreement with the ones obtained previously. Libration points play a very important role in space mission and as a consequence, our results have a practical application in space dynamics and related areas. The model may be applied to study the navigation and station-keeping operations of spacecraft (in nitesimal mass) around the Jupiter (more massive) -Callisto (less massive) system, where PDP accounts for the circumsolar ring of asteroidal dust, which has a cloud of dust permanently in its wake.

Keywords: libration points, oblateness, power-law density profile, restricted three-body problem

Procedia PDF Downloads 326
6820 Reclaiming Properties of Bituminous Concrete Using Cold Mix Design Technology

Authors: Pradeep Kumar, Shalinee Shukla

Abstract:

Pavement plays a vital role in the socio-economic development of a country. Bituminous roads construction with conventional paving grade bitumen obtained from hot mix plant creates pollution and involves emission of greenhouse gases, also the construction of pavements at very high temperature is not feasible or desirable for high rainfall and snowfall areas. This problem of overheating can be eliminated by the construction of pavements with the usage of emulsified cold mixes which will eliminate emissions and help in the reduction of fuel requirement at mixing plant, which leads to energy conservation. Cold mix is a mixture of unheated aggregate and emulsion or cutback and filler. The primary objective of this research is to assess the volumetric mix design parameters of recycled aggregates with cold mixing technology and also to assess the impact of additives on volumetric mix characteristics. In this present study, bituminous pavement materials are reclaimed using cold mix technology, and Marshall specimens are prepared with the help of slow setting type 2 (SS-2) cationic bitumen emulsion as a binder for recycled aggregates. This technique of road construction is more environmentally friendly and can be done in adverse weather conditions.

Keywords: cold mixes, bitumen emulsion, recycled aggregates, volumetric properties

Procedia PDF Downloads 137
6819 A Generalisation of Pearson's Curve System and Explicit Representation of the Associated Density Function

Authors: S. B. Provost, Hossein Zareamoghaddam

Abstract:

A univariate density approximation technique whereby the derivative of the logarithm of a density function is assumed to be expressible as a rational function is introduced. This approach which extends Pearson’s curve system is solely based on the moments of a distribution up to a determinable order. Upon solving a system of linear equations, the coefficients of the polynomial ratio can readily be identified. An explicit solution to the integral representation of the resulting density approximant is then obtained. It will be explained that when utilised in conjunction with sample moments, this methodology lends itself to the modelling of ‘big data’. Applications to sets of univariate and bivariate observations will be presented.

Keywords: density estimation, log-density, moments, Pearson's curve system

Procedia PDF Downloads 280
6818 Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle

Authors: Nilay K. Doshi

Abstract:

A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance.

Keywords: electron density, energy, electromagnetic, DFT, TDDFT, plasmon, resonance

Procedia PDF Downloads 330
6817 Investigating Constructions and Operation of Internal Combustion Engine Water Pumps

Authors: Michał Gęca, Konrad Pietrykowski, Grzegorz Barański

Abstract:

The water pump in the compression-ignition internal combustion engine transports a hot coolant along a system of ducts from the engine block to the radiator where coolant temperature is lowered. This part needs to maintain a constant volumetric flow rate. Its power should be regulated to avoid a significant drop in pressure if a coolant flow decreases. The internal combustion engine cooling system uses centrifugal pumps for suction. The paper investigates 4 constructions of engine pumps. The pumps are from diesel engine of a maximum power of 75 kW. Each of them has a different rotor shape, diameter and width. The test stand was created and the geometry inside the all 4 engine blocks was mapped. For a given pump speed on the inverter of the electric engine motor, the valve position was changed and volumetric flow rate, pressure, and power were recorded. Pump speed was regulated from 1200 RPM to 7000 RPM every 300 RPM. The volumetric flow rates and pressure drops for the pump speeds and efficiencies were specified. Accordingly, the operations of each pump were mapped. Our research was to select a pump for the aircraft compression-ignition engine. There was calculated a pressure drop at a given flow on the block and radiator of the designed aircraft engine. The water pump should be lightweight and have a low power demand. This fact shall affect the shape of a rotor and bearings. The pump volumetric flow rate was assumed as 3 kg/s (previous AVL BOOST research model) where the temperature difference was 5°C between the inlet (90°C) and outlet (95°C). Increasing pump speed above the boundary flow power defined by pressure and volumetric flow rate does not increase it but pump efficiency decreases. The maximum total pump efficiency (PCC) is 45-50%. When the pump is driven by low speeds with a 90% closed valve, its overall efficiency drops to 15-20%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft engine, diesel engine, flow, water pump

Procedia PDF Downloads 252
6816 Experimental Study of Different Types of Concrete in Uniaxial Compression Test

Authors: Khashayar Jafari, Mostafa Jafarian Abyaneh, Vahab Toufigh

Abstract:

Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.

Keywords: polymer concrete, ordinary cement concrete, lightweight concrete, uniaxial compression test, volumetric strain

Procedia PDF Downloads 394
6815 Bone Mineral Density in Long-Living Patients with Coronary Artery Disease

Authors: Svetlana V. Topolyanskaya, Tatyana A. Eliseeva, Olga N. Vakulenko, Leonid I. Dvoretski

Abstract:

Introduction: Limited data are available on osteoporosis in centenarians. Therefore, we evaluated bone mineral density in long-living patients with coronary artery disease (CAD). Methods: 202 patients hospitalized with CAD were enrolled in this cross-sectional study. The patients' age ranged from 90 to 101 years. The majority of study participants (64.4%) were women. The main exclusion criteria were any disease or medication that can lead to secondary osteoporosis. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Results: Normal lumbar spine BMD was observed in 40.9%, osteoporosis – in 26.9%, osteopenia – in 32.2% of patients. Normal proximal femur BMD values were observed in 21.3%, osteoporosis – in 39.9%, and osteopenia – in 38.8% of patients. Normal femoral neck BMD was registered only in 10.4% of patients, osteoporosis was observed in 60.4%, osteopenia in 29.2%. Significant positive correlation was found between all BMD values and body mass index of patients (p < 0.001). Positive correlation was registered between BMD values and serum uric acid (p=0.0005). The likelihood of normal BMD values with hyperuricemia increased 3.8 times, compared to patients with normal uric acid, who often have osteoporosis (Odds Ratio=3.84; p = 0.009). Positive correlation was registered between all BMD values and body mass index (p < 0.001). Positive correlation between triglycerides levels and T-score (p=0.02), but negative correlation between BMD and HDL-cholesterol (p=0.02) were revealed. Negative correlation between frailty severity and BMD values (p=0.01) was found. Positive correlation between BMD values and functional abilities of patients assessed using Barthel index (r=0,44; p=0,000002) and IADL scale (r=0,36; p=0,00008) was registered. Fractures in history were observed in 27.6% of patients. Conclusions: The study results indicate some features of BMD in long-livers. In the study group, significant relationships were found between bone mineral density on the one hand, and patients' functional abilities on the other. It is advisable to further study the state of bone tissue in long-livers involving a large sample of patients.

Keywords: osteoporosis, bone mineral density, centenarians, coronary artery disease

Procedia PDF Downloads 144
6814 Durability Properties of Foamed Concrete with Fiber Inclusion

Authors: Hanizam Awang, Muhammad Hafiz Ahmad

Abstract:

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glass, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000 kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4 %. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

Keywords: foamed concrete, fibres, durability, construction, geological engineering

Procedia PDF Downloads 447
6813 Correlation of Building Density toward Land Surface Temperature 2018 in Medan City

Authors: Andi Syahputra, R. H. Jatmiko, D. R. Hizbaron

Abstract:

Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853.

Keywords: land surface temperature, Landsat, imagery, building density, vegetation, density

Procedia PDF Downloads 152
6812 External Sulphate Attack: Advanced Testing and Performance Specifications

Authors: G. Massaad, E. Roziere, A. Loukili, L. Izoret

Abstract:

Based on the monitoring of mass, hydrostatic weighing, and the amount of leached OH- we deduced the nature of leached and precipitated minerals, the amount of lost aggregates and the evolution of porosity and cracking during the sulphate attack. Using these information, we are able to draw the volume / mass changes brought by mineralogical variations and cracking of the cement matrix. Then we defined a new performance indicator, the averaged density, capable to resume along the test of sulphate attack the occurred physicochemical variation occurred in the cementitious matrix and then highlight.

Keywords: monitoring strategy, performance indicator, sulphate attack, mechanism of degradation

Procedia PDF Downloads 321
6811 Calculation of the Added Mass of a Submerged Object with Variable Sizes at Different Distances from the Wall via Lattice Boltzmann Simulations

Authors: Nastaran Ahmadpour Samani, Shahram Talebi

Abstract:

Added mass is an important quantity in analysis of the motion of a submerged object ,which can be calculated by solving the equation of potential flow around the object . Here, we consider systems in which a square object is submerged in a channel of fluid and moves parallel to the wall. The corresponding added mass at a given distance from the wall d and for the object size s (which is the side of square object) is calculated via lattice Blotzmann simulation . By changing d and s separately, their effect on the added mass is studied systematically. The simulation results reveal that for the systems in which d > 4s, the distance does not influence the added mass any more. The added mass increases when the object approaches the wall and reaches its maximum value as it moves on the wall (d -- > 0). In this case, the added mass is about 73% larger than which of the case d=4s. In addition, it is observed that the added mass increases by increasing of the object size s and vice versa.

Keywords: Lattice Boltzmann simulation , added mass, square, variable size

Procedia PDF Downloads 476
6810 Analyzing Boson Star as a Candidate for Dark Galaxy Using ADM Formulation of General Relativity

Authors: Aria Ratmandanu

Abstract:

Boson stars can be viewed as zero temperature ground state, Bose-Einstein condensates, characterized by enormous occupation numbers. Time-dependent spherically symmetric spacetime can be a model of Boson Star. We use (3+1) split of Einstein equation (ADM formulation of general relativity) to solve Einstein field equation coupled to a complex scalar field (Einstein-Klein-Gordon Equation) on time-dependent spherically symmetric spacetime, We get the result that Boson stars are pulsating stars with the frequency of oscillation equal to its density. We search for interior solution of Boson stars and get the T.O.V. (Tollman-Oppenheimer-Volkoff) equation for Boson stars. Using T.O.V. equation, we get the equation of state and the relation between pressure and density, its total mass and along with its gravitational Mass. We found that the hypothetical particle Axion could form a Boson star with the size of a milky way galaxy and make it a candidate for a dark galaxy, (a galaxy that consists almost entirely of dark matter).

Keywords: axion, boson star, dark galaxy, time-dependent spherically symmetric spacetime

Procedia PDF Downloads 243
6809 Treatment of Isopropyl Alcohol in Aqueous Solutions by VUV-Based AOPs within a Laminar-Falling-Film-Slurry Type Photoreactor

Authors: Y. S. Shen, B. H. Liao

Abstract:

This study aimed to develop the design equation of a laminar-falling-film-slurry (LFFS) type photoreactor for the treatment of organic wastewaters containing isopropyl alcohol (IPA) by VUV-based advanced oxidation processes (AOPs). The photoreactor design equations were established by combining with the chemical kinetics of the photocatalytic system, light absorption model within the photoreactor, and was used to predict the decomposition of IPA in aqueous solutions in the photoreactors of different geometries at various operating conditions (volumetric flow rate, oxidants, catalysts, solution pH values, UV light intensities, and initial concentration of pollutants) to verify its rationality and feasibility. By the treatment of the LFFS-VUV only process, it was found that the decomposition rates of IPA in aqueous solutions increased with the increase of volumetric flow rate, VUV light intensity, dosages of TiO2 and H2O2. The removal efficiencies of IPA by photooxidation processes were in the order: VUV/H2O2>VUV/TiO2/H2O2>VUV/TiO2>VUV only. In VUV, VUV/H2O2, VUV/TiO2/H2O2 processes, integrating with the reaction kinetic equations of IPA, the mass conservation equation and the linear light source model, the photoreactor design equation can reasonably to predict reaction behaviors of IPA at various operating conditions and to describe the concentration distribution profiles of IPA within photoreactors.The results of this research can be useful basis for the future application of the homogeneous and heterogeneous VUV-based advanced oxidation processes.

Keywords: isopropyl alcohol, photoreactor design, VUV, AOPs

Procedia PDF Downloads 377
6808 Electromagnetic Tuned Mass Damper Approach for Regenerative Suspension

Authors: S. Kopylov, C. Z. Bo

Abstract:

This study is aimed at exploring the possibility of energy recovery through the suppression of vibrations. The article describes design of electromagnetic dynamic damper. The magnetic part of the device performs the function of a tuned mass damper, thereby providing both energy regeneration and damping properties to the protected mass. According to the theory of tuned mass damper, equations of mathematical models were obtained. Then, under given properties of current system, amplitude frequency response was investigated. Therefore, main ideas and methods for further research were defined.

Keywords: electromagnetic damper, oscillations with two degrees of freedom, regeneration systems, tuned mass damper

Procedia PDF Downloads 207