Search results for: true-remanent polarization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 375

Search results for: true-remanent polarization

345 Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications

Authors: V. V. Reddy, N. V. Sarma

Abstract:

A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x-axis, y-axis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel poly fractal antenna are demonstrated.

Keywords: fractal, circular polarization, Minkowski, Koch

Procedia PDF Downloads 356
344 Electrical Properties of Polarization-Induced Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride Sapphire Template by Molecular Beam Epitaxy

Authors: Guanlin Wu, Jiajia Yao, Fang Liu, Junshuai Xue, Jincheng Zhang, Yue Hao

Abstract:

Owing to the excellent thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN)/Gallium nitride (GaN) is a highly promising material to achieve high breakdown voltage and output power devices among III-nitrides. In this study, we explore the growth and characterization of polarization-induced AlN/GaN heterostructures using plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and demonstrate the effectiveness of the PA-MBE approach, a thick AlN buffer of 180 nm was first grown on the AlN-on sapphire template. This buffer acts as a back-barrier to enhance the breakdown characteristic and isolate leakage paths that exist in the interface between the AlN epilayer and the AlN template. A root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 was measured by atomic force microscopy (AFM), and the full-width at half-maximum of (002) and (102) planes on the X-ray rocking curve was 101 and 206 arcsec, respectively, using by high-resolution X-ray diffraction (HR-XRD). The electron mobility of 443 cm2/Vs with a carrier concentration of 2.50×1013 cm-2 at room temperature was achieved in the AlN/GaN heterostructures by using a polarization-induced GaN channel. The low depletion capacitance of 15 pF is resolved by the capacitance-voltage. These results indicate that the polarization-induced AlN/GaN heterostructures have great potential for next-generation high-temperature, high-frequency, and high-power electronics.

Keywords: AlN, GaN, MBE, heterostructures

Procedia PDF Downloads 85
343 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment

Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby

Abstract:

Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.

Keywords: optical fiber, polarization mode dispersion, harsh environment, aging

Procedia PDF Downloads 385
342 Performance Evaluation of a Millimeter-Wave Phased Array Antenna Using Circularly Polarized Elements

Authors: Rawad Asfour, Salam Khamas, Edward A. Ball

Abstract:

This paper is focused on the design of an mm-wave phased array. To date, linear polarization is adapted in the reported designs of phased arrays. However, linear polarization faces several well-known challenges. As such, an advanced design for phased array antennas is required that offers circularly polarized (CP) radiation. A feasible solution for achieving CP phased array antennas is proposed using open-circular loop antennas. To this end, a 3-element circular loop phased array antenna is designed to operate at 28GHz. In addition, the array ability to control the direction of the main lobe is investigated. The results show that the highest achievable field of view (FOV) is 100°, i.e., 50° to the left and 50° to the right-hand side directions. The results are achieved with a CP bandwidth of 15%. Furthermore, the results demonstrate that a high broadside gain of circa 11 dBi can be achieved for the steered beam. Besides, a radiation efficiency of 97 % can also be achieved based on the proposed design.

Keywords: loop antenna, phased array, beam steering, wide bandwidth, circular polarization, CST

Procedia PDF Downloads 302
341 Effect of Defect Dipoles And Microstructure Engineering in Energy Storage Performance of Co-doped Barium Titanate Ceramics

Authors: Mahmoud Saleh Mohammed Alkathy

Abstract:

Electricity generated from renewable resources may help the transition to clean energy. A reliable energy storage system is required to use this energy properly. To do this, a high breakdown strength (Eb) and a significant difference between spontaneous polarization (Pmax) and remnant polarization (Pr) are required. To achieve this, the defect dipoles in lead free BaTiO3 ferroelectric ceramics are created using Mg2+ and Ni2+ ions as acceptor co-doping in the Ti site. According to the structural analyses, the co-dopant ions were effectively incorporated into the BTO unit cell. According to the ferroelectric study, the co-doped samples display a double hysteresis loop, stronger polarization, and high breakdown strength. The formation of oxygen vacancies and defect dipoles prevent domains' movement, resulting in hysteresis loop pinching. This results in increased energy storage density and efficiency. The defect dipoles mechanism effect can be considered a fascinating technology that can guide the researcher working on developing energy storage for next-generation applications.

Keywords: microstructure, defect, energy storage, effciency

Procedia PDF Downloads 96
340 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar

Authors: Chulsang Yoo, Gildo Kim

Abstract:

Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).

Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm

Procedia PDF Downloads 214
339 Improvement of GVPI Insulation System Characteristics by Curing Process Modification

Authors: M. Shadmand

Abstract:

The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time. 

Keywords: insulation system, GVPI, PDC, aging

Procedia PDF Downloads 268
338 Gravitational Wave Solutions in Modified Gravity Theories

Authors: Hafiza Rizwana Kausar

Abstract:

In this paper, we formulate the wave equation in modified theories, particularly in f(R) theory, scalar-tensor theory, and metric palatine f(X) theory. We solve the wave equation in each case and try to find maximum possible solutions in the form polarization modes. It is found that modified theories present at most six modes however the mentioned metric theories allow four polarization modes, two of which are tensor in nature and other two are scalars.

Keywords: gravitational waves, modified theories, polariozation modes, scalar tensor theories

Procedia PDF Downloads 363
337 Electrochemical Studies of Some Schiff Bases on the Corrosion of Steel in H2SO4 Solution

Authors: Ahmed A. Farag, M. A. Hgazy

Abstract:

The influence of three Schiff bases (SB-I, SB-II, and SB-III) on the corrosion of carbon steel in 0.5 M H2SO4 solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increases with the concentration of the Schiff bases and follow the trend: SB-III > SB-II > SB-I. Tafel polarization measurements revealed that the three tested inhibitors function as anodic inhibitors. The thermodynamic parameters Kads and ΔGºads are calculated and discussed. The Langmuir isotherm equation was found to provide an accurate description of the adsorption behaviour of the investigated Schiff bases. Depending on the results, the inhibitive mechanism was proposed.

Keywords: Schiff bases, corrosion inhibitors, EIS, adsorption

Procedia PDF Downloads 542
336 Aqueous Extract of Argemone Mexicana Roots for Effective Corrosion Inhibition of Mild Steel in HCl Environment

Authors: Gopal Ji, Priyanka Dwivedi, Shanthi Sundaram, Rajiv Prakash

Abstract:

Inhibition effect of aqueous Argemone Mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94% is acknowledged at the extract concentration of 400 mg L-1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at metal-acid interface. It is also confirmed by SEM micro graphs and FTIR studies. Furthermore, the effects of acid concentration (1-5 M), immersion time (120 hours) and temperature (30-60˚C) on inhibition potential of AMRE have been investigated by weight loss method and electrochemical techniques. Adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with Langmuir isotherm.

Keywords: mild steel, polarization, SEM, acid corrosion, EIS, green inhibition

Procedia PDF Downloads 491
335 Reconnaissance Geophysical Study on the Southeastern Part of Al-Qashah Aera, Kingdom of Saudi Arabia

Authors: Ali Al-Bakri, Mohammed Sazid

Abstract:

The investigated study area locates about 72 km from Jeddah city, Makkah district, Kingdom of Saudi Arabia. The study mainly aimed to define only in detail the most significant zones of possible mineralization and outline their subsurface parameters (location and strike) in the southeast part of Jabal Al-Qashah. Several geophysical methods have been conducted to carry out the goal. Among these methods are the ground magnetic method, self-potential (SP) method, and induced polarization (IP) method. Integrating these methods aims to help in delineating the possible mineralization in the study area. The magnetic survey was conducted along 17 profiles where these profiles were chosen to be perpendicular to the strike of the quartz shear zone. Self-potential was applied along with five profiles covering the study area. At the same time, induced polarization was used along with one profile located at the western side of the study area corresponding to some magnetic and SP profiles. The most interesting zones of mineralization were successfully determined by comparing the results of residual magnetic profile (3), SP profile (1), and IP profile, where geological structures control some mineralization.

Keywords: geophysical methods, magnetic method, self-potential, induced polarization, Jabal Al-Qashah

Procedia PDF Downloads 132
334 Offline High Voltage Diagnostic Test Findings on 15MVA Generator of Basochhu Hydropower Plant

Authors: Suprit Pradhan, Tshering Yangzom

Abstract:

Even with availability of the modern day online insulation diagnostic technologies like partial discharge monitoring, the measurements like Dissipation Factor (tanδ), DC High Voltage Insulation Currents, Polarization Index (PI) and Insulation Resistance Measurements are still widely used as a diagnostic tools to assess the condition of stator insulation in hydro power plants. To evaluate the condition of stator winding insulation in one of the generators that have been operated since 1999, diagnostic tests were performed on the stator bars of 15 MVA generators of Basochhu Hydropower Plant. This paper presents diagnostic study done on the data gathered from the measurements which were performed in 2015 and 2016 as part of regular maintenance as since its commissioning no proper aging data were maintained. Measurement results of Dissipation Factor, DC High Potential tests and Polarization Index are discussed with regard to their effectiveness in assessing the ageing condition of the stator insulation. After a brief review of the theoretical background, the strengths of each diagnostic method in detecting symptoms of insulation deterioration are identified. The interesting results observed from Basochhu Hydropower Plant is taken into consideration to conclude that Polarization Index and DC High Voltage Insulation current measurements are best suited for the detection of humidity and contamination problems and Dissipation Factor measurement is a robust indicator of long-term ageing caused by oxidative degradation.

Keywords: dissipation Factor (tanδ), polarization Index (PI), DC High Voltage Insulation Current, insulation resistance (IR), Tan Delta Tip-Up, dielectric absorption ratio

Procedia PDF Downloads 312
333 On Erosion-Corrosion Behavior of Carbon Steel in Oil Sands Slurry: Electrochemical Studies

Authors: M. Deyab, A. Al-Sabagh, S. Keera

Abstract:

The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of carbon steel in oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect.

Keywords: erosion-corrosion, steel, oil sands slurry, polarization

Procedia PDF Downloads 294
332 Synergistic Erosion–Corrosion Behavior of Petroleum Pipelines at Various Conditions

Authors: M. A. Deyab, A. Al-Sabagh, S. Keera

Abstract:

The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of petroleum pipelines (carbon steel) in the oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in the oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size, and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect.

Keywords: erosion-corrosion, oil sands slurry, polarization, steel

Procedia PDF Downloads 318
331 Modeling by Application of the Nernst-Planck Equation and Film Theory for Predicting of Chromium Salts through Nanofiltration Membrane

Authors: Aimad Oulebsir, Toufik Chaabane, Sivasankar Venkatramann, Andre Darchen, Rachida Maachi

Abstract:

The objective of this study is to propose a model for the prediction of the mechanism transfer of the trivalent ions through a nanofiltration membrane (NF) by introduction of the polarization concentration phenomenon and to study its influence on the retention of salts. This model is the combination of the Nernst-Planck equation and the equations of the film theory. This model is characterized by two transfer parameters: Reflection coefficient s and solute permeability Ps which are estimated numerically. The thickness of the boundary layer, δ, solute concentration at the membrane surface, Cm, and concentration profile in the polarization layer have also been estimated. The mathematical formulation suggested was established. The retentions of trivalent salts are estimated and compared with the experimental results. A comparison between the results with and without phenomena of polarization of concentration is made and the thickness of boundary layer alimentation side was given. Experimental and calculated results are shown to be in good agreement. The model is then success fully extended to experimental data reported in the literature.

Keywords: nanofiltration, concentration polarisation, chromium salts, mass transfer

Procedia PDF Downloads 282
330 Regulation on Macrophage and Insulin Resistance after Aerobic Exercise in High-Fat Diet Mice

Authors: Qiaofeng Guo

Abstract:

Aims: Obesity is often accompanied by insulin resistance (IR) and whole-body inflammation. Aerobic exercise is an effective treatment to improve insulin resistance and inflammation. However, the anti-inflammatory mechanisms of exercise on epididymal and subcutaneous adipose remain to be elucidated. Here, we compared the macrophage polarization between epididymal and subcutaneous adipose after aerobic exercise. Methods: Male C57BL/6 mice were fed a normal diet group or a high-fat diet group for 12 weeks and performed aerobic training on a treadmill at 55%~65% VO₂ max for eight weeks. Food intake, body weight, and fasting blood glucose levels were monitored weekly. The intraperitoneal glucose tolerance test was to evaluate the insulin resistance model. Fat mass, blood lipid profile, serum IL-1β, TNF-α levels, and CD31/CD206 rates were analysed after the intervention. Results: FBG (P<0.01), AUCIPGTT (P<0.01), and HOMA-IR (P<0.01) increased significantly for a high-fat diet and decreased significantly after the exercise. Eight weeks of aerobic exercise attenuated HFD-induced weight gain and glucose intolerance and improved insulin sensitivity. Serum IL-1β, TNF-α, CD11C/CD206 expression in subcutaneous adipose tissue were not changed before and after exercise, but not in epididymal adipose tissue (P<0.01). Conclusion: Insulin resistance is not accompanied by chronic inflammation and M1 polarization of subcutaneous adipose tissue macrophages in high-fat diet mice. Aerobic exercise effectively improved lipid metabolism and insulin sensitivity, which may be closely associated with reduced M1 polarization of epididymal adipose macrophages.

Keywords: aerobic exercise, insulin resistance, chronic inflammation, adipose, macrophage polarization

Procedia PDF Downloads 78
329 Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid

Authors: Roland Tolulope Loto, Cleophas Akintoye Loto, Abimbola Patricia Popoola

Abstract:

The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor.

Keywords: corrosion, 2-dimethylamine, inhibition, adsorption, hydrochloric acid, steel

Procedia PDF Downloads 319
328 A Low Profile Dual Polarized Slot Coupled Patch Antenna

Authors: Mingde Du, Dong Han

Abstract:

A low profile, dual polarized, slot coupled patch antenna is designed and developed in this paper. The antenna has a measured bandwidth of 17.2% for return loss > 15 dB and pair ports isolation >23 dB. The gain of the antenna is over 10 dBi and the half power beam widths (HPBW) of the antenna are 80±3o in the horizontal plane and 39±2o in the vertical plane. The cross polarization discrimination (XPD) is less than 20 dB in HPBW. Within the operating band, the performances of good impedance match, high ports isolation, low cross polarization, and stable radiation patterns are achieved.

Keywords: dual polarized, patch antenna, slot coupled, base station antenna

Procedia PDF Downloads 462
327 Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers

Authors: K. S. Ghosh, Sagnik Bose, Kapil Tripati

Abstract:

Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features.

Keywords: AA 2014 and AA 2024 Al-C-Mg alloy, artificial ageing, potentiodynamic polarization, TEM micrographs, stress corrosion cracking (SCC)

Procedia PDF Downloads 334
326 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model

Authors: Yew Mun Yip, Dawei Zhang

Abstract:

Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.

Keywords: hydrogen bond, polarization effect, protein folding, PSBC

Procedia PDF Downloads 270
325 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 142
324 The Protective Role of Decoy Receptor 3 Analogue on Rat Steatotic Liver against Ischemia-Reperfusion Injury by Blocking M1/Th1 Polarization and Multiple Upstream Pathogenic Cascades

Authors: Tzu-Hao Li, Shie-Liang Hsieh, Han-Chieh Lin, Ying-Ying Yang

Abstract:

TNF superfamily-stimulated pathogenic cascades and macrophage (M1)/kupffer cells (KC) polarization are important in the pathogenesis of ischemia-reperfusion (IR) liver injury in animals with hepatic steatosis (HS). Decoy receptor 3 (DcR3) is a common upstream inhibitor of the above-mentioned pathogenic cascades. The study evaluated whether modulation of these DcR3-related cascades was able to protect steatotic liver from IR injury. Serum and hepatic DcR3 levels were lower in patients and animals with HS. Accordingly, the effects of pharmacologic and genetic DcR3 replacement on the IR-related pathogenic changes were measured. Significantly, DcR3 replacement protected IR-Zucker(HS) rats and IR-DcR3-Tg(HS) mice from IR liver injury. The beneficial effects of DcR3 replacement were accompanied by decreased serum/hepatic TNF, soluble TNF-like cytokine 1A (TL1A), Fas ligand (Fas-L) and LIGHT, T-helper-cell-1 cytokine (INF) levels, neutrophil infiltration, M1 polarization, neutrophil-macrophage/KC-T-cell interaction, hepatocyte apoptosis and improved hepatic microcirculatory failure among animals with IR-injured steatotic livers. Additionally, TL1A, Fas-L, LIGHT and TLR4/NFB signals were found to mediate the DcR3-related protective effects of steatotic livers from IR injury. Using multimodal in vivo and in vitro approaches, we found that DcR3 was a potential agent to protect steatotic livers from IR injury by simultaneous blocking the multiple IR injury-related pathogenic changes.

Keywords: Decoy 3 receptor, ischemia-reperfusion injury, M1 polarization, TNF superfamily

Procedia PDF Downloads 208
323 Neuroprotective Effects of Gly-Pro-Glu-Thr-Ala-Phe-Leu-Arg, a Peptide Isolated from Lupinus angustifolius L. Protein Hydrolysate

Authors: Maria Del Carmen Millan-Linares, Ana Lemus Conejo, Rocio Toscano, Alvaro Villanueva, Francisco Millan, Justo Pedroche, Sergio Montserrat-De La Paz

Abstract:

GPETAFLR (Glycine-Proline-Glutamine-Threonine-Alanine-Phenylalanine-Leucine-Arginine) is a peptide isolated from Lupinus angustifolius L. protein hydrolysate (LPH). Herein, the effect of this peptide was investigated in two different models of neuroinflammation: in the immortalized murine microglia cell line BV-2 and in a high-fat-diet-induced obesity mouse model. Methods and Results: Effects of GPETAFLR on neuroinflammation were evaluated by RT-qPCR, flow cytometry, and ELISA techniques. In BV-2 microglial cells, Lipopolysaccharides (LPS) enhanced the release of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) whereas GPETAFLR decreased pro-inflammatory cytokine levels and increased the release of the anti-inflammatory cytokine IL-10 in BV2 microglial cells. M1 (CCR7 and iNOS) and M2 (Arg-1 and Ym-1) polarization markers results showed how the GPETAFLR octapeptide was able to decrease M1 polarization marker expression and increase the M2 polarization marker expression compared to LPS. Animal model results indicate that GPETAFLR has an immunomodulatory capacity, both decreasing pro-inflammatory cytokine IL-6 and increasing the anti-inflammatory cytokine IL-10 in brain tissue. Polarization markers in the brain tissue were also modulated by GPETAFLR that decreased the pro-inflammatory expression (M1) and increased the anti-inflammatory expression (M2). Conclusion: Our results suggest that GPETAFLR isolated from LPH has significant potential for management of neuroinflammatory conditions and offer benefits derived from the consumption of Lupinus angustifolius L. in the prevention of neuroinflammatory-related diseases.

Keywords: GPETAFLR peptide, BV-2 cell line, neuroinflammation, cytokines, high-fat-diet

Procedia PDF Downloads 149
322 Effect of Wind and Humidity on Microwave Links in West North Libya

Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri

Abstract:

The propagation of microwave is affected by rain and dust particles by way of signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents the effect of wind and humidity on wireless communication such as microwave links in the west north region of Libya (Al-Khoms), experimental procedure to study the effects mentioned above. The experimental procedure is done on three selected antennae towers (Nagaza stations, Al-Khoms center stations, Al-Khoms gateway stations) to determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change which coverage in the studied region, it is required to collect the dust particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The result showed that effect of the humidity and dust, the antenna height, the visibility, on the complex permittivity effects both attenuation and phase shift, there is some consideration that has to be taken into account in the communication power budget.

Keywords: attenuation, de-polarization, scattering, transmission loss

Procedia PDF Downloads 154
321 Multiband Multipolarized Planar Antenna for WLAN/WiMAX Applications

Authors: Sanjeeva Reddy, D. Vakula

Abstract:

A single layer, multi-band triangular patch antenna is proposed for WLAN/WiMAX applications with different polarization requirements. This probe feed patch is integrated with arc shaped slit to achieve circular polarized (CP) and linearly polarized (LP) radiation characteristics. The main contribution of antenna is to resonate the frequencies of 2.4 GHz with CP and 3.5 GHz, 5.28 GHz with LP. The design procedure of antenna is described and the performance is validated using measurements. Size of antenna is also reduced and provides stable gain at all resonant frequencies. Proposed structure also provides better enhancement in terms of 10-dB impedance bandwidth, achieved gain of 5.1, 5.6, and 2.9 dBi at respective bands.

Keywords: circular polarization, arc shaped slit, multi band antenna, triangular patch antenna, axial ratio

Procedia PDF Downloads 397
320 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based on Polarization-Holographic Grating

Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze

Abstract:

A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarization-holographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.

Keywords: birefringence, linear dichroism, graded oriented polymers, optical polymers, optical anisotropy, polarization-holographic grating

Procedia PDF Downloads 432
319 Effect of Control Lasers Polarization on Absorption Coefficient and Refractive Index of a W-Type 4- Level Cylindrical Quantum Dot in the Presence Of Electromagnetically Induced Transparency (ETI)

Authors: Marziehossadat Moezzi

Abstract:

In this paper, electromagnetically induced transparency (EIT) is investigated in a cylindrical quantum dot (QD) with a parabolic confinement potential. We study the effect of control lasers polarization on absorption coefficient, refractive index and also on the generation of the double transparency windows in this system. Considering an effective mass method, the time-independent Schrödinger equation is solved to obtain the energy structure of the QD. Also, we study the effect of structural characteristics of the QD on refraction and absorption of the QD in the presence of EIT.

Keywords: electromagnetically induced transparency, cylindrical quantum dot, absorption coefficient, refractive index

Procedia PDF Downloads 198
318 Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode

Authors: Simrjit Singh, Neeraj Khare

Abstract:

In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model.

Keywords: electrical tuning, H₂ generation, photoelectrochemical, NaNbO₃

Procedia PDF Downloads 171
317 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle

Procedia PDF Downloads 346
316 Modulating Plasmon Induced Transparency in Terahertz Metamaterials

Authors: Gagan Kumar, Koijam M. Devi, Amarendra K. Sarma, Dibakar Roy Chowdhury

Abstract:

Research in metamaterials has been gaining momentum over the past decade owing to its ability in controlling electromagnetic wave properties through careful design at the sub-wavelength scale. The metamaterials have led to several important phenomena which are useful in a variety of applications. One such phenomenon is the electromagnetically induced transparency (EIT) effect in which a narrow transparency region is created in an otherwise absorptive spectrum. In our work, we explore plasmon induced transparency (PIT) in terahertz metamaterials which is analogues to EIT effect. The PIT effect is achieved using the plasmonic metamaterials in which a unit cell is comprised of two C (2C) shaped resonators and a cut-wire (CW). When terahertz wave of a particular polarization is normally incident on the proposed metamaterials geometry, it strongly couples with the cut wire, resulting in the excitation of the bright mode. However due to the specific polarization of the incident beam, the fundamental modes of the C-shaped resonators are not excited by the incident terahertz, hence they are termed as the dark mode. The PIT effect occurs as a result of interference between the bright and the dark mode. In order to observe PIT effect, both the bright and dark modes should have similar resonant frequencies with a little deviation. We further have examined that the PIT window can be modulated by displacing the C-shaped resonators w.r.t. the cut-wire. The numerical observations for different coupling configurations can be explained through an equivalent lumped element circuit model. Moving ahead the PIT effect is further explored in a metamaterial comprising of a cross like structure and four C-shaped resonators. For such configuration, equally strong PIT effect is observed for two orthogonally polarized lights. Therefore, such metamaterials demonstrate a polarization independent PIT response w.r.t the incident terahertz radiation. The proposed study could be significant in the development of slow light devices and polarization independent sensing applications.

Keywords: terahertz, metamaterial, split ring resonator, plasmon

Procedia PDF Downloads 213