Search results for: temporal data
25659 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 13425658 Reconsidering Taylor’s Law with Chaotic Population Dynamical Systems
Authors: Yuzuru Mitsui, Takashi Ikegami
Abstract:
The exponents of Taylor’s law in deterministic chaotic systems are computed, and their meanings are intensively discussed. Taylor’s law is the scaling relationship between the mean and variance (in both space and time) of population abundance, and this law is known to hold in a variety of ecological time series. The exponents found in the temporal Taylor’s law are different from those of the spatial Taylor’s law. The temporal Taylor’s law is calculated on the time series from the same locations (or the same initial states) of different temporal phases. However, with the spatial Taylor’s law, the mean and variance are calculated from the same temporal phase sampled from different places. Most previous studies were done with stochastic models, but we computed the temporal and spatial Taylor’s law in deterministic systems. The temporal Taylor’s law evaluated using the same initial state, and the spatial Taylor’s law was evaluated using the ensemble average and variance. There were two main discoveries from this work. First, it is often stated that deterministic systems tend to have the value two for Taylor’s exponent. However, most of the calculated exponents here were not two. Second, we investigated the relationships between chaotic features measured by the Lyapunov exponent, the correlation dimension, and other indexes with Taylor’s exponents. No strong correlations were found; however, there is some relationship in the same model, but with different parameter values, and we will discuss the meaning of those results at the end of this paper.Keywords: chaos, density effect, population dynamics, Taylor’s law
Procedia PDF Downloads 17425657 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation
Authors: A. T. Kuda, J. J. Dayya, A. Jimoh
Abstract:
This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations
Procedia PDF Downloads 30225656 Spatial Scale of Clustering of Residential Burglary and Its Dependence on Temporal Scale
Authors: Mohammed A. Alazawi, Shiguo Jiang, Steven F. Messner
Abstract:
Research has long focused on two main spatial aspects of crime: spatial patterns and spatial processes. When analyzing these patterns and processes, a key issue has been to determine the proper spatial scale. In addition, it is important to consider the possibility that these patterns and processes might differ appreciably for different temporal scales and might vary across geographic units of analysis. We examine the spatial-temporal dependence of residential burglary. This dependence is tested at varying geographical scales and temporal aggregations. The analyses are based on recorded incidents of crime in Columbus, Ohio during the 1994-2002 period. We implement point pattern analysis on the crime points using Ripley’s K function. The results indicate that spatial point patterns of residential burglary reveal spatial scales of clustering relatively larger than the average size of census tracts of the study area. Also, spatial scale is independent of temporal scale. The results of our analyses concerning the geographic scale of spatial patterns and processes can inform the development of effective policies for crime control.Keywords: inhomogeneous K function, residential burglary, spatial point pattern, spatial scale, temporal scale
Procedia PDF Downloads 34525655 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 1425654 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices
Authors: Mst Ilme Faridatul, Bo Wu
Abstract:
Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.Keywords: land cover, mapping, multi-temporal, spectral indices
Procedia PDF Downloads 15325653 Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain
Authors: Kazım Kaba, Erdem Erdi, M. Akif Erdoğan, H. Mustafa Kandırmaz
Abstract:
Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly.Keywords: meteosat, radar, rainfall, rain-gauge, Turkey
Procedia PDF Downloads 32825652 Temporal Axis in Japanese: The Paradox of a Metaphorical Orientation in Time
Authors: Tomoko Usui
Abstract:
In the field of linguistics, it has been said that concepts associated with space and motion systematically contribute structure to the temporal concept. This is the conceptual metaphor theory. conceptual metaphors typically employ a more abstract concept (time) as their target and a more concrete or physical concept as their source (space). This paper will examine two major temporal conceptual metaphors: Ego-centered Moving Time Metaphor and Time-RP Metaphor. Moving time generally receives a front-back orientation, however, Japanese shows a different orientation given to time. By means of Ego perspective, this paper will illustrate the paradox of a metaphorical orientation in time.Keywords: Ego-centered Moving Time Metaphor, Japanese saki, temporal metaphors, Time RP Metaphor
Procedia PDF Downloads 49625651 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data
Authors: Saurav Kumar Suman, P. Karthigayani
Abstract:
In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.Keywords: RISAT-1, classification, forest, SAR data
Procedia PDF Downloads 40725650 Spatio-Temporal Analysis of Drought in Cholistan Region, Pakistan: An Application of Standardized Precipitation Index
Authors: Qurratulain Safdar
Abstract:
Drought is a temporary aberration in contrast to aridity, as it is a permanent feature of climate. Virtually, it takes place in all types of climatic regions that range from high to low rainfall areas. Due to the wide latitudinal extent of Pakistan, there is seasonal and annual variability in rainfall. The south-central part of the country is arid and hyper-arid. This study focuses on the spatio-temporal analysis of droughts in arid and hyperarid region of Cholistan using the standardized precipitation index (SPI) approach. This study has assessed the extent of recurrences of drought and its temporal vulnerability to drought in Cholistan region. Initially, the paper described the geographic setup of the study area along with a brief description of the drought conditions that prevail in Pakistan. The study also provides a scientific foundation for preparing literature and theoretical framework in-line with the selected parameters and indicators. Data were collected both from primary and secondary data sources. Rainfall and temperature data were obtained from Pakistan Meteorology Department. By applying geostatistical approach, a standardized precipitation index (SPI) was calculated for the study region, and the value of spatio-temporal variability of drought and its severity was explored. As a result, in-depth spatial analysis of drought conditions in Cholistan area was found. Parallel to this, drought-prone areas with seasonal variation were also identified using Kriging spatial interpolation techniques in a GIS environment. The study revealed that there is temporal variation in droughts' occurrences both in time series and SPI values. The paper is finally concluded, and strategic plan was suggested to minimize the impacts of drought.Keywords: Cholistan desert, climate anomalies, metrological droughts, standardized precipitation index
Procedia PDF Downloads 21325649 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory, synthetic data generation, traffic management
Procedia PDF Downloads 2625648 Language Processing of Seniors with Alzheimer’s Disease: From the Perspective of Temporal Parameters
Authors: Lai Yi-Hsiu
Abstract:
The present paper aims to examine the language processing of Chinese-speaking seniors with Alzheimer’s disease (AD) from the perspective of temporal cues. Twenty healthy adults, 17 healthy seniors, and 13 seniors with AD in Taiwan participated in this study to tell stories based on two sets of pictures. Nine temporal cues were fetched and analyzed. Oral productions in Mandarin Chinese were compared and discussed to examine to what extent and in what way these three groups of participants performed with significant differences. Results indicated that the age effects were significant in filled pauses. The dementia effects were significant in mean duration of pauses, empty pauses, filled pauses, lexical pauses, normalized mean duration of filled pauses and lexical pauses. The findings reported in the current paper help characterize the nature of language processing in seniors with or without AD, and contribute to the interactions between the AD neural mechanism and their temporal parameters.Keywords: language processing, Alzheimer’s disease, Mandarin Chinese, temporal cues
Procedia PDF Downloads 44625647 Dual-Network Memory Model for Temporal Sequences
Authors: Motonobu Hattori
Abstract:
In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.Keywords: catastrophic forgetting, dual-network, temporal sequences, hippocampal
Procedia PDF Downloads 27025646 Analyzing the Evolution of Adverse Events in Pharmacovigilance: A Data-Driven Approach
Authors: Kwaku Damoah
Abstract:
This study presents a comprehensive data-driven analysis to understand the evolution of adverse events (AEs) in pharmacovigilance. Utilizing data from the FDA Adverse Event Reporting System (FAERS), we employed three analytical methods: rank-based, frequency-based, and percentage change analyses. These methods assessed temporal trends and patterns in AE reporting, focusing on various drug-active ingredients and patient demographics. Our findings reveal significant trends in AE occurrences, with both increasing and decreasing patterns from 2000 to 2023. This research highlights the importance of continuous monitoring and advanced analysis in pharmacovigilance, offering valuable insights for healthcare professionals and policymakers to enhance drug safety.Keywords: event analysis, FDA adverse event reporting system, pharmacovigilance, temporal trend analysis
Procedia PDF Downloads 4825645 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013
Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran
Abstract:
Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka
Procedia PDF Downloads 47625644 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships
Authors: Jake Gonzalez, Tommy Dang
Abstract:
This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights
Procedia PDF Downloads 6125643 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation
Authors: Feng Yin
Abstract:
Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation
Procedia PDF Downloads 27825642 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues
Authors: Ali Ben Abbes, Imed Riadh Farah
Abstract:
Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban
Procedia PDF Downloads 35425641 Spatial and Temporal Analysis of Violent Crime in Washington, DC
Authors: Pallavi Roe
Abstract:
Violent crime is a significant public safety concern in urban areas across the United States, and Washington, DC, is no exception. This research discusses the prevalence and types of crime, particularly violent crime, in Washington, DC, along with the factors contributing to the high rate of violent crime in the city, including poverty, inequality, access to guns, and racial disparities. The organizations working towards ensuring safety in neighborhoods are also listed. The proposal to perform spatial and temporal analysis on violent crime and the use of guns in crime analysis is presented to identify patterns and trends to inform evidence-based interventions to reduce violent crime and improve public safety in Washington, DC. The stakeholders for crime analysis are also discussed, including law enforcement agencies, prosecutors, judges, policymakers, and the public. The anticipated result of the spatial and temporal analysis is to provide stakeholders with valuable information to make informed decisions about preventing and responding to violent crimes.Keywords: crime analysis, spatial analysis, temporal analysis, violent crime
Procedia PDF Downloads 32025640 Spatial Temporal Change of COVID-19 Vaccination Condition in the US: An Exploration Based on Space Time Cube
Authors: Yue Hao
Abstract:
COVID-19 vaccines not only protect individuals but society as a whole. In this case, having an understanding of the change and trend of vaccination conditions may shed some light on revising and making up-to-date policies regarding large-scale public health promotions and calls in order to lead and encourage the adoption of COVID-19 vaccines. However, vaccination status change over time and vary from place to place hidden patterns that were not fully explored in previous research. In our research, we took advantage of the spatial-temporal analytical methods in the domain of geographic information science and captured the spatial-temporal changes regarding COVID-19 vaccination status in the United States during 2020 and 2021. After conducting the emerging hot spots analysis on both the state level data of the US and county level data of California we found that: (1) at the macroscopic level, there is a continuously increasing trend of the vaccination rate in the US, but there is a variance on the spatial clusters at county level; (2) spatial hotspots and clusters with high vaccination amount over time were clustered around the west and east coast in regions like California and New York City where are densely populated with considerable economy conditions; (3) in terms of the growing trend of the daily vaccination among, Los Angeles County alone has very high statistics and dramatic increases over time. We hope that our findings can be valuable guidance for supporting future decision-making regarding vaccination policies as well as directing new research on relevant topics.Keywords: COVID-19 vaccine, GIS, space time cube, spatial-temporal analysis
Procedia PDF Downloads 7925639 Using Large Databases and Interviews to Explore the Temporal Phases of Technology-Based Entrepreneurial Ecosystems
Authors: Elsie L. Echeverri-Carroll
Abstract:
Entrepreneurial ecosystems have become an important concept to explain the birth and sustainability of technology-based entrepreneurship within regions. However, as a theoretical concept, the temporal evolution of entrepreneurship systems remain underdeveloped, making it difficult to understand their dynamic contributions to entrepreneurs. This paper argues that successful technology-based ecosystems go over three cumulative spawning stages: corporate spawning, entrepreneurial spawning, and community spawning. The importance of corporate incubation in vibrant entrepreneurial ecosystems is well documented in the entrepreneurial literature. Similarly, entrepreneurial spawning processes for venture capital-backed startups are well documented in the financial literature. In contrast, there is little understanding of both the third stage of entrepreneurial spawning (when a community of entrepreneurs become a source of firm spawning) and the temporal sequence in which spawning effects occur in a region. We test this three-stage model of entrepreneurial spawning using data from two large databases on firm births—the Secretary of State (160,000 observations) and the National Establishment Time Series (NEST with 150,000 observations)—and information collected from 60 1½-hour interviews with startup founders and representatives of key entrepreneurial organizations. This temporal model is illustrated with case study of Austin, Texas ranked by the Kauffman Foundation as the number one entrepreneurial city in the United States in 2015 and 2016. The 1½-year study founded by the Kauffman Foundation demonstrates the importance of taken into consideration the temporal contributions of both large and entrepreneurial firms in understanding the factors that contribute to the birth and growth of technology-based entrepreneurial regions. More important, these learnings could offer an important road map for regions that pursue to advance their entrepreneurial ecosystems.Keywords: entrepreneurial ecosystems, entrepreneurial industrial clusters, high-technology, temporal changes
Procedia PDF Downloads 27225638 Explanation and Temporality in International Relations
Authors: Alasdair Stanton
Abstract:
What makes for a good explanation? Twenty years after Wendt’s important treatment of constitution and causation, non-causal explanations (sometimes referred to as ‘understanding’, or ‘descriptive inference’) have become, if not mainstream, at least accepted within International Relations. This article proceeds in two parts: firstly, it examines closely Wendt’s constitutional claims, and while it agrees there is a difference between causal and constitutional, rejects the view that constitutional explanations lack temporality. In fact, this author concludes that a constitutional argument is only possible if it relies upon a more foundational, causal argument. Secondly, through theoretical analysis of the constitutional argument, this research seeks to delineate temporal and non-temporal ways of explaining within International Relations. This article concludes that while the constitutional explanation, like other logical arguments, including comparative, and counter-factual, are not truly non-causal explanations, they are not bound as tightly to the ‘real world’ as temporal arguments such as cause-effect, process tracing, or even interpretivist accounts. However, like mathematical models, non-temporal arguments should aim for empirical testability as well as internal consistency. This work aims to give clear theoretical grounding to those authors using non-temporal arguments, but also to encourage them, and their positivist critics, to engage in thoroughgoing empirical tests.Keywords: causal explanation, constitutional understanding, empirical, temporality
Procedia PDF Downloads 19525637 Localization of Frontal and Temporal Speech Areas in Brain Tumor Patients by Their Structural Connections with Probabilistic Tractography
Authors: B.Shukir, H.Woo, P.Barzo, D.Kis
Abstract:
Preoperative brain mapping in tumors involving the speech areas has an important role to reduce surgical risks. Functional magnetic resonance imaging (fMRI) is the gold standard method to localize cortical speech areas preoperatively, but its availability in clinical routine is difficult. Diffusion MRI based probabilistic tractography is available in head MRI. It’s used to segment cortical subregions by their structural connectivity. In our study, we used probabilistic tractography to localize the frontal and temporal cortical speech areas. 15 patients with left frontal tumor were enrolled to our study. Speech fMRI and diffusion MRI acquired preoperatively. The standard automated anatomical labelling atlas 3 (AAL3) cortical atlas used to define 76 left frontal and 118 left temporal potential speech areas. 4 types of tractography were run according to the structural connection of these regions to the left arcuate fascicle (FA) to localize those cortical areas which have speech functions: 1, frontal through FA; 2, frontal with FA; 3, temporal to FA; 4, temporal with FA connections were determined. Thresholds of 1%, 5%, 10% and 15% applied. At each level, the number of affected frontal and temporal regions by fMRI and tractography were defined, the sensitivity and specificity were calculated. At the level of 1% threshold showed the best results. Sensitivity was 61,631,4% and 67,1523,12%, specificity was 87,210,4% and 75,611,37% for frontal and temporal regions, respectively. From our study, we conclude that probabilistic tractography is a reliable preoperative technique to localize cortical speech areas. However, its results are not feasible that the neurosurgeon rely on during the operation.Keywords: brain mapping, brain tumor, fMRI, probabilistic tractography
Procedia PDF Downloads 16625636 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion
Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao
Abstract:
Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.Keywords: image classification, decision fusion, multi-temporal, remote sensing
Procedia PDF Downloads 12425635 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation
Authors: Bubai Maji, Monorama Swain
Abstract:
Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition
Procedia PDF Downloads 11325634 Temporal and Spatial Distribution Prediction of Patinopecten yessoensis Larvae in Northern China Yellow Sea
Authors: RuiJin Zhang, HengJiang Cai, JinSong Gui
Abstract:
It takes Patinopecten yessoensis larvae more than 20 days from spawning to settlement. Due to the natural environmental factors such as current, Patinopecten yessoensis larvae are transported to a distance more than hundreds of kilometers, leading to a high instability of their spatial and temporal distribution and great difficulties in the natural spat collection. Therefore predicting the distribution is of great significance to improve the operating efficiency of the collecting. Hydrodynamic model of Northern China Yellow Sea was established and the motions equations of physical oceanography and verified by the tidal harmonic constants and the measured data velocities of Dalian Bay. According to the passivity drift characteristics of the larvae, combined with the hydrodynamic model and the particle tracking model, the spatial and temporal distribution prediction model was established and the spatial and temporal distribution of the larvae under the influence of flow and wind were simulated. It can be concluded from the model results: ocean currents have greatest impacts on the passive drift path and diffusion of Patinopecten yessoensis larvae; the impact of wind is also important, which changed the direction and speed of the drift. Patinopecten yessoensis larvae were generated in the sea along Zhangzi Island and Guanglu-Dachangshan Island, but after two months, with the impact of wind and currents, the larvae appeared in the west of Dalian and the southern of Lvshun, and even in Bohai Bay. The model results are consistent with the relevant literature on qualitative analysis, and this conclusion explains where the larvae come from in the perspective of numerical simulation.Keywords: numerical simulation, Patinopecten yessoensis larvae, predicting model, spatial and temporal distribution
Procedia PDF Downloads 30425633 Temporal Variation of Reference Evapotranspiration in Central Anatolia Region, Turkey and Meteorological Drought Analysis via Standardized Precipitation Evapotranspiration Index Method
Authors: Alper Serdar Anli
Abstract:
Analysis of temporal variation of reference evapotranspiration (ET0) is important in arid and semi-arid regions where water resources are limited. In this study, temporal variation of reference evapotranspiration (ET0) and meteorological drought analysis through SPEI (Standardized Precipitation Evapotranspiration Index) method have been carried out in provinces of Central Anatolia Region, Turkey. Reference evapotranspiration of concerning provinces in the region has been estimated using Penman-Monteith method and one calendar year has been split up four periods as r1, r2, r3 and r4. Temporal variation of reference evapotranspiration according to four periods has been analyzed through parametric Dickey-Fuller test and non-parametric Mann-Whitney U test. As a result, significant increasing trends for reference evapotranspiration have been detected and according to SPEI method used for estimating meteorological drought in provinces, mild drought has been experienced in general, and however there have been also a significant amount of events where moderate and severely droughts occurred.Keywords: central Anatolia region, drought index, Penman-Monteith, reference evapotranspiration, temporal variation
Procedia PDF Downloads 31225632 Effect of Noise Reduction Algorithms on Temporal Splitting of Speech Signal to Improve Speech Perception for Binaural Hearing Aids
Authors: Rajani S. Pujar, Pandurangarao N. Kulkarni
Abstract:
Increased temporal masking affects the speech perception in persons with sensorineural hearing impairment especially under adverse listening conditions. This paper presents a cascaded scheme, which employs a noise reduction algorithm as well as temporal splitting of the speech signal. Earlier investigations have shown that by splitting the speech temporally and presenting alternate segments to the two ears help in reducing the effect of temporal masking. In this technique, the speech signal is processed by two fading functions, complementary to each other, and presented to left and right ears for binaural dichotic presentation. In the present study, half cosine signal is used as a fading function with crossover gain of 6 dB for the perceptual balance of loudness. Temporal splitting is combined with noise reduction algorithm to improve speech perception in the background noise. Two noise reduction schemes, namely spectral subtraction and Wiener filter are used. Listening tests were conducted on six normal-hearing subjects, with sensorineural loss simulated by adding broadband noise to the speech signal at different signal-to-noise ratios (∞, 3, 0, and -3 dB). Objective evaluation using PESQ was also carried out. The MOS score for VCV syllable /asha/ for SNR values of ∞, 3, 0, and -3 dB were 5, 4.46, 4.4 and 4.05 respectively, while the corresponding MOS scores for unprocessed speech were 5, 1.2, 0.9 and 0.65, indicating significant improvement in the perceived speech quality for the proposed scheme compared to the unprocessed speech.Keywords: MOS, PESQ, spectral subtraction, temporal splitting, wiener filter
Procedia PDF Downloads 32725631 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 4725630 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 210