Search results for: non-standard finite difference method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23324

Search results for: non-standard finite difference method

23294 Development of 3D Particle Method for Calculating Large Deformation of Soils

Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee

Abstract:

In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.

Keywords: particle method, large deformation, soil column, confined compressive stress

Procedia PDF Downloads 570
23293 Large Amplitude Vibration of Sandwich Beam

Authors: Youssef Abdelli, Rachid Nasri

Abstract:

The large amplitude free vibration analysis of three-layered symmetric sandwich beams is carried out using two different approaches. The governing nonlinear partial differential equations of motion in free natural vibration are derived using Hamilton's principle. The formulation leads to two nonlinear partial differential equations that are coupled both in axial and binding deformations. In the first approach, the method of multiple scales is applied directly to the governing equation that is a nonlinear partial differential equation. In the second approach, we discretize the governing equation by using Galerkin's procedure and then apply the shooting method to the obtained ordinary differential equations. In order to check the validity of the solutions obtained by the two approaches, they are compared with the solutions obtained by two approaches; they are compared with the solutions obtained numerically by the finite difference method.

Keywords: finite difference method, large amplitude vibration, multiple scales, nonlinear vibration

Procedia PDF Downloads 461
23292 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady

Abstract:

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.

Keywords: cable ampacity, finite element method, underground cable, thermal rating

Procedia PDF Downloads 376
23291 A Finite Element Method Simulation for Rocket Motor Material Selection

Authors: T. Kritsana, P. Sawitri, P. Teeratas

Abstract:

This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa. The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.

Keywords: rocket motor case, finite element method, principal stress, simulation

Procedia PDF Downloads 447
23290 Finite Volume Method in Loop Network in Hydraulic Transient

Authors: Hossain Samani, Mohammad Ehteram

Abstract:

In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.

Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation

Procedia PDF Downloads 348
23289 Finite Element Method as a Solution Procedure for Problems in Tissue Biomechanics

Authors: Momoh Omeiza Sheidu

Abstract:

Finite element method as a method of providing solutions to problems in computational bio mechanics provides a framework for modeling the function of tissues that integrates structurally from cell to organ system and functionally across the physiological processes that affect tissue mechanics or are regulated by mechanical forces. In this paper, we present an integrative finite element strategy for solution to problems in tissue bio mechanics as a case study.

Keywords: finite element, biomechanics, modeling, computational biomechanics

Procedia PDF Downloads 501
23288 Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes

Authors: Suchi Barua, Narottam Das, Sven Nordholm, Mohammad Razaghi

Abstract:

This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA.

Keywords: finite-difference beam propagation method, pulse shape, pulse propagation, semiconductor optical amplifier

Procedia PDF Downloads 605
23287 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: experimentation, forging, process modeling, strain distribution

Procedia PDF Downloads 198
23286 A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.

Keywords: curved stretching sheet, finite difference method, MHD, variable thermal conductivity

Procedia PDF Downloads 192
23285 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

Authors: H. Bensouilah, H. Boucherit, M. Lahmar

Abstract:

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Keywords: elasto-aerodynamic lubrication, air foil bearing, steady-state deformation, dynamic deformation, stiffness and damping coefficients, perturbation method, fluid-structure interaction, Galerk infinite element method, finite difference method

Procedia PDF Downloads 391
23284 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method

Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić

Abstract:

This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.

Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load

Procedia PDF Downloads 412
23283 Singular Stochastic Control Model with Carrying Capacity of Population Management Policy for Squirrels in Durian Orchards

Authors: Sasiwimol Auepong, Raywat Tanadkithirun

Abstract:

In this work, the problem that squirrels ruin durian, which is an economical fruit in Thailand, is considered. We seek the strategy for the durian farmers to eliminate the squirrels under the consideration that squirrels also provide ecosystem service. The population dynamics of squirrels are constructed to have carrying capacity since we consider the population in a confined area. A performance index indicating the total benefit of a given elimination strategy is provided. It comprises the cost of countermeasures, the loss of resources, and the ecosystem service provided by squirrels. The optimal performance index is numerically solved through the variational inequality using the finite difference method. The optimal strategy to control the squirrel population is also given numerically.

Keywords: controlled stochastic differential equation, durian, finite difference method, performance index, singular stochastic control model, squirrel

Procedia PDF Downloads 87
23282 An Implicit High Order Difference Scheme for the Solution of 1D Pennes Bio-Heat Transfer Model

Authors: Swarn Singh, Suruchi Singh

Abstract:

In this paper, we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme. In this paper we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme.

Keywords: convergence, finite difference scheme, Pennes bio-heat equation, stability

Procedia PDF Downloads 469
23281 Mean-Field Type Modeling of Non-Local Congestion in Pedestrian Crowd Dynamics

Authors: Alexander Aurell

Abstract:

One of the latest trends in the modeling of human crowds is the mean-field game approach. In the mean-field game approach, the motion of a human crowd is described by a nonstandard stochastic optimal control problem. It is nonstandard since congestion is considered, introduced through a dependence in the performance functional on the distribution of the crowd. This study extends the class of mean-field pedestrian crowd models to allow for non-local congestion and arbitrary, but finitely, many interacting crowds. The new congestion feature grants pedestrians a 'personal space' where crowding is undesirable. The model is treated as a mean-field type game which is derived from a particle picture. This, in contrast to a mean-field game, better describes a situation where the crowd can be controlled by a central planner. The latter is suitable for decentralized situations. Solutions to the mean-field type game are characterized via a Pontryagin-type Maximum Principle.

Keywords: congestion, crowd dynamics, interacting populations, mean-field approximation, optimal control

Procedia PDF Downloads 443
23280 Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations

Authors: K. P. Mredula, D. C. Vakaskar

Abstract:

The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc.

Keywords: multi-resolution, Haar Wavelet, partial differential equation, numerical methods

Procedia PDF Downloads 297
23279 Finite Element Method for Calculating Temperature Field of Main Cable of Suspension Bridge

Authors: Heng Han, Zhilei Liang, Xiangong Zhou

Abstract:

In this paper, the finite element method is used to study the temperature field of the main cable of the suspension bridge, and the calculation method of the average temperature of the cross-section of the main cable suitable for the construction control of the cable system is proposed; By comparing and analyzing the temperature field of the main cable with five diameters, a reasonable diameter limit for calculating the average temperature of the cross section of the main cable by finite element method is proposed. The results show that the maximum error of this method is less than 1℃, which meets the requirements of construction control accuracy; For the main cable with a diameter greater than 400mm, the surface temperature measuring points combined with the finite element method shall be used to calculate the average cross-section temperature.

Keywords: suspension bridge, main cable, temperature field, finite element

Procedia PDF Downloads 156
23278 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations

Authors: K. Noah, F.-S. Lien

Abstract:

In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.

Keywords: compressible lattice Boltzmann method, multiple relaxation times, large eddy simulation, turbulent jet flows

Procedia PDF Downloads 273
23277 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation

Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration-free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results are in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes. Semi-Lagrangian method, iteration-free method, nonlinear advection-diffusion equation, second-order backward difference formula

Keywords: Semi-Lagrangian method, iteration free method, nonlinear advection-diffusion equation, second-order backward difference formula

Procedia PDF Downloads 319
23276 Coupling of Two Discretization Schemes for the Lattice Boltzmann Equation

Authors: Tobias Horstmann, Thomas Le Garrec, Daniel-Ciprian Mincu, Emmanuel Lévêque

Abstract:

Despite the efficiency and low dissipation of the stream-collide formulation of the Lattice Boltzmann (LB) algorithm, which is nowadays implemented in many commercial LBM solvers, there are certain situations, e.g. mesh transition, in which a classical finite-volume or finite-difference formulation of the LB algorithm still bear advantages. In this paper, we present an algorithm that combines the node-based streaming of the distribution functions with a second-order finite volume discretization of the advection term of the BGK-LB equation on a uniform D2Q9 lattice. It is shown that such a coupling is possible for a multi-domain approach as long as the overlap, or buffer zone, between two domains, is achieved on at least 2Δx. This also implies that a direct coupling (without buffer zone) of a stream-collide and finite-volume LB algorithm on a single grid is not stable. The critical parameter in the coupling is the CFL number equal to 1 that is imposed by the stream-collide algorithm. Nevertheless, an explicit filtering step on the finite-volume domain can stabilize the solution. In a further investigation, we demonstrate how such a coupling can be used for mesh transition, resulting in an intrinsic conservation of mass over the interface.

Keywords: algorithm coupling, finite volume formulation, grid refinement, Lattice Boltzmann method

Procedia PDF Downloads 376
23275 Experimental Approach for Determining Hemi-Anechoic Characteristics of Engineering Acoustical Test Chambers

Authors: Santiago Montoya-Ospina, Raúl E. Jiménez-Mejía, Rosa Elvira Correa Gutiérrez

Abstract:

An experimental methodology is proposed for determining hemi-anechoic characteristics of an engineering acoustic room built at the facilities of Universidad Nacional de Colombia to evaluate the free-field conditions inside the chamber. Experimental results were compared with theoretical ones in both, the source and the sound propagation inside the chamber. Acoustic source was modeled by using monopole radiation pattern from punctual sources and the image method was considered for dealing with the reflective plane of the room, that means, the floor without insulation. Finite-difference time-domain (FDTD) method was implemented to calculate the sound pressure value at every spatial point of the chamber. Comparison between theoretical and experimental data yields to minimum error, giving satisfactory results for the hemi-anechoic characterization of the chamber.

Keywords: acoustic impedance, finite-difference time-domain, hemi-anechoic characterization

Procedia PDF Downloads 161
23274 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes

Procedia PDF Downloads 311
23273 Elastohydrodynamic Lubrication Study Using Discontinuous Finite Volume Method

Authors: Prawal Sinha, Peeyush Singh, Pravir Dutt

Abstract:

Problems in elastohydrodynamic lubrication have attracted a lot of attention in the last few decades. Solving a two-dimensional problem has always been a big challenge. In this paper, a new discontinuous finite volume method (DVM) for two-dimensional point contact Elastohydrodynamic Lubrication (EHL) problem has been developed and analyzed. A complete algorithm has been presented for solving such a problem. The method presented is robust and easily parallelized in MPI architecture. GMRES technique is implemented to solve the matrix obtained after the formulation. A new approach is followed in which discontinuous piecewise polynomials are used for the trail functions. It is natural to assume that the advantages of using discontinuous functions in finite element methods should also apply to finite volume methods. The nature of the discontinuity of the trail function is such that the elements in the corresponding dual partition have the smallest support as compared with the Classical finite volume methods. Film thickness calculation is done using singular quadrature approach. Results obtained have been presented graphically and discussed. This method is well suited for solving EHL point contact problem and can probably be used as commercial software.

Keywords: elastohydrodynamic, lubrication, discontinuous finite volume method, GMRES technique

Procedia PDF Downloads 256
23272 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds

Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid

Abstract:

A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.

Keywords: dam-break flows, deformable beds, finite element method, finite volume method, hybrid techniques, linear elasticity, shallow water equations

Procedia PDF Downloads 178
23271 Analysis of Plates with Varying Rigidities Using Finite Element Method

Authors: Karan Modi, Rajesh Kumar, Jyoti Katiyar, Shreya Thusoo

Abstract:

This paper presents Finite Element Method (FEM) for analyzing the internal responses generated in thin rectangular plates with various edge conditions and rigidity conditions. Comparison has been made between the FEM (ANSYS software) results for displacement, stresses and moments generated with and without the consideration of hole in plate and different aspect ratios. In the end comparison for responses in plain and composite square plates has been studied.

Keywords: ANSYS, finite element method, plates, static analysis

Procedia PDF Downloads 450
23270 Study of Electron Cyclotron Resonance Acceleration by Cylindrical TE₀₁₁ Mode

Authors: Oswaldo Otero, Eduardo A. Orozco, Ana M. Herrera

Abstract:

In this work, we present results from analytical and numerical studies of the electron acceleration by a TE₀₁₁ cylindrical microwave mode in a static homogeneous magnetic field under electron cyclotron resonance (ECR) condition. The stability of the orbits is analyzed using the particle orbit theory. In order to get a better understanding of the interaction wave-particle, we decompose the azimuthally electric field component as the superposition of right and left-hand circular polarization standing waves. The trajectory, energy and phase-shift of the electron are found through a numerical solution of the relativistic Newton-Lorentz equation in a finite difference method by the Boris method. It is shown that an electron longitudinally injected with an energy of 7 keV in a radial position r=Rc/2, being Rc the cavity radius, is accelerated up to energy of 90 keV by an electric field strength of 14 kV/cm and frequency of 2.45 GHz. This energy can be used to produce X-ray for medical imaging. These results can be used as a starting point for study the acceleration of electrons in a magnetic field changing slowly in time (GYRAC), which has some important applications as the electron cyclotron resonance ion proton accelerator (ECR-IPAC) for cancer therapy and to control plasma bunches with relativistic electrons.

Keywords: Boris method, electron cyclotron resonance, finite difference method, particle orbit theory, X-ray

Procedia PDF Downloads 157
23269 A Proof of the Fact that a Finite Morphism is Proper

Authors: Ying Yi Wu

Abstract:

In this paper, we present a proof of the fact that a finite morphism is proper. We show that a finite morphism is universally closed and of finite type, which are the conditions for properness. Our proof is based on the theory of schemes and involves the use of the projection formula and the base change theorem. We first show that a finite morphism is of finite type and then proceed to show that it is universally closed. We use the fact that a finite morphism is also an affine morphism, which allows us to use the theory of coherent sheaves and their modules. We then show that the map induced by a finite morphism is flat and that the module it induces is of finite type. We use these facts to show that a finite morphism is universally closed. Our proof is constructive, and we provide details for each step of the argument.

Keywords: finite, morphism, schemes, projection.

Procedia PDF Downloads 106
23268 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method

Authors: A. Ashok, K.Satapathy, B. Prerana Nashine

Abstract:

The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.

Keywords: participating media, finite volume method, radiation coupled with conduction, transient radiative heat transfer

Procedia PDF Downloads 387
23267 Development of a New Method for T-Joint Specimens Testing under Shear Loading

Authors: Radek Doubrava, Roman Ruzek

Abstract:

Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing is. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fiber reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.

Keywords: T-joint, shear, composite, mechanical testing, finite element analysis, methodology

Procedia PDF Downloads 441
23266 Dynamic Analysis of Transmission Line Towers

Authors: L. Srikanth, D. Neelima Satyam

Abstract:

The transmission line towers are one of the important life line structures in the distribution of power from the source to the various places for several purposes. The predominant external loads which act on these towers are wind and earthquake loads. In this present study tower is analyzed using Indian Standards IS: 875:1987 (Wind Load), IS: 802:1995 (Structural Steel), IS:1893:2002 (Earthquake) and dynamic analysis of tower has been performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis has been performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters includes acceleration, frequency, velocity which are important in designing the tower. The tower is analyzed using response spectrum analysis.

Keywords: response spectra, dynamic analysis, central difference method, transmission tower

Procedia PDF Downloads 396
23265 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model

Authors: Sidrah Ahmed

Abstract:

The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.

Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients

Procedia PDF Downloads 203