Search results for: multiple instance learning
11834 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 4611833 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students
Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek
Abstract:
This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.Keywords: academic achievement, learning emotion, learning flow, major satisfaction
Procedia PDF Downloads 27211832 A Review of Machine Learning for Big Data
Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.
Abstract:
Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.Keywords: active learning, big data, deep learning, machine learning
Procedia PDF Downloads 44611831 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 11911830 Promoting Academic and Social-Emotional Growth of Students with Learning Differences Through Differentiated Instruction
Authors: Jolanta Jonak
Abstract:
Traditional classrooms are challenging for many students, but especially for students that learn differently due to cognitive makeup, learning preferences, or disability. These students often require different teaching approaches and learning opportunities to benefit from learning. Teachers frequently divert to using one teaching approach, the one that matches their own learning style. For instance, teachers that are auditory learners, likely default to providing auditory learning opportunities. However, if a student is a visual learner, he/she may not fully benefit from that teaching style. Based on research, students and their parents’ feedback, large numbers of students are not provided the type of education and types of supports they need in order to be successful in an academic environment. This eventually leads to not learning at an appropriate rate and ultimately leading to skill deficiencies and deficits. Providing varied learning approaches promote high academic and social-emotional growth of all students and it will prevent inaccurate Special Education referrals. Varied learning opportunities can be delivered for all students by providing Differentiated Instruction (DI). This type of instruction allows each student to learn in the most optimal way regardless of learning preferences and cognitive learning profiles. Using Differentiated Instruction will lead to a high level of student engagement and learning. In addition, experiencing success in the classroom, will contribute to increased social emotional wellbeing. Being cognizant of how teaching approaches impact student's learning, school staff can avoid inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability. This presentation will illustrate learning differences due to various factors, how to recognize them, and how to address them through Differentiated Instruction.Keywords: special education, disability, differences, differentiated instruction, social emotional wellbeing
Procedia PDF Downloads 4911829 Machine Learning Invariants to Detect Anomalies in Secure Water Treatment
Authors: Jonathan Heng, Yoong Cheah Huei
Abstract:
A strategic model that does not trigger any false alarms to detect anomalies in Secure Water Treatment (SWaT) test bed is presented. This model uses machine learning invariants formulated from streamlining the general form of Auto-Regressive models with eXogenous input. A creative generalized CUSUM algorithm to integrate the invariants and the detection strategy technique is successfully developed and tested in the SWaT Programmable Logic Controllers (PLCs). Three steps to fine-tune parameters, b and τ in the generalized algorithm are stated and an example used to demonstrate the tuning process is discussed. This approach can swiftly and effectively detect various scopes of cyber-attacks such as multiple points single stage and multiple points multiple stages in SWaT. This technique can be applied in water treatment plants and other cyber physical systems like power and gas plants too.Keywords: machine learning invariants, generalized CUSUM algorithm with invariants and detection strategy, scope of cyber attacks, strategic model, tuning parameters
Procedia PDF Downloads 18111828 Improved Accuracy of Ratio Multiple Valuation
Authors: Julianto Agung Saputro, Jogiyanto Hartono
Abstract:
Multiple valuation is widely used by investors and practitioners but its accuracy is questionable. Multiple valuation inaccuracies are due to the unreliability of information used in valuation, inaccuracies comparison group selection, and use of individual multiple values. This study investigated the accuracy of valuation to examine factors that can increase the accuracy of the valuation of multiple ratios, that are discretionary accruals, the comparison group, and the composite of multiple valuation. These results indicate that multiple value adjustment method with discretionary accruals provides better accuracy, the industry comparator group method combined with the size and growth of companies also provide better accuracy. Composite of individual multiple valuation gives the best accuracy. If all of these factors combined, the accuracy of valuation of multiple ratios will give the best results.Keywords: multiple, valuation, composite, accuracy
Procedia PDF Downloads 28211827 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 25311826 Integrating Service Learning into a Business Analytics Course: A Comparative Investigation
Authors: Gokhan Egilmez, Erika Hatfield, Julie Turner
Abstract:
In this study, we investigated the impacts of service-learning integration on an undergraduate level business analytics course from multiple perspectives, including academic proficiency, community awareness, engagement, social responsibility, and reflection. We assessed the impact of the service-learning experience by using a survey developed primarily based on the literature review and secondarily on an ad hoc group of researchers. Then, we implemented the survey in two sections, where one of the sections was a control group. We compared the results of the empirical survey visually and statistically.Keywords: business analytics, service learning, experiential education, statistical analysis, survey research
Procedia PDF Downloads 11111825 Computation of Induction Currents in a Set of Dendrites
Authors: R. B. Mishra, Sudhakar Tripathi
Abstract:
In this paper, the cable model of dendrites have been considered. The dendrites are cylindrical cables of various segments having variable length and reducing radius from start point at synapse and end points. For a particular event signal being received by a neuron in response only some dendrite are active at a particular instance. Initial current signals with different current flows in dendrite are assumed. Due to overlapping and coupling of active dendrite, they induce currents in the dendrite segments of each other at a particular instance. But how these currents are induced in the various segments of active dendrites due to coupling between these dendrites, It is not presented in the literature. Here the paper presents a model for induced currents in active dendrite segments due to mutual coupling at the starting instance of an activity in dendrite. The model is as discussed further.Keywords: currents, dendrites, induction, simulation
Procedia PDF Downloads 39411824 myITLab as an Implementation Instance of Distance Education Technologies
Authors: Leila Goosen
Abstract:
The research problem reported on in this paper relates to improving success in Computer Science and Information Technology subjects where students are learning applications, especially when teaching occurs in a distance education context. An investigation was launched in order to address students’ struggles with applications, and improve their assessment in such subjects. Some of the main arguments presented centre on formulating and situating significant concepts within an appropriate conceptual framework. The paper explores the experiences and perceptions of computing instructors, teaching assistants, students and higher education institutions on how they are empowered by using technologies such as myITLab. They also share how they are working with the available features to successfully teach applications to their students. The data collection methodology used is then described. The paper includes discussions on how myITLab empowers instructors, teaching assistants, students and higher education institutions. Conclusions are presented on the way in which this paper could make an original and significant contribution to the promotion and development of knowledge in fields related to successfully teaching applications for student learning, including in a distance education context. The paper thus provides a forum for practitioners to highlight and discuss insights and successes, as well as identify new technical and organisational challenges, lessons and concerns regarding practical activities related to myITLab as an implementation instance of distance education technologies.Keywords: distance, education, myITLab, technologies
Procedia PDF Downloads 35911823 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.Keywords: classification, machine learning, time representation, stock prediction
Procedia PDF Downloads 14711822 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions
Procedia PDF Downloads 47911821 Analyzing Log File of Community Question Answering for Online Learning
Authors: Long Chen
Abstract:
With the proliferation of E-Learning, collaborative learning becomes more and more popular in various teaching and learning occasions. Studies over the years have proved that actively participating in classroom discussion can enhance student's learning experience, consolidating their knowledge and understanding of the class content. Collaborative learning can also allow students to share their resources and knowledge by exchanging, absorbing, and observing one another's opinions and ideas. Community Question Answering (CQA) services are particularly suitable paradigms for collaborative learning, since it is essentially an online collaborative learning platform where one can get information from multiple sources for he/her to choose from. However, current CQA services have only achieved limited success in collaborative learning due to the uncertainty of answers' quality. In this paper, we predict the quality of answers in a CQA service, i.e. Yahoo! Answers, for the use of online education and distance learning, which would enable a student to find relevant answers and potential answerers more effectively and efficiently, and thus greatly increase students' user experience in CQA services. Our experiment reveals that the quality of answers is influenced by a series of factors such as asking time, relations between users, and his/her experience in the past. We also show that by modelling user's profile with our proposed personalized features, student's satisfaction towards the provided answers could be accurately estimated.Keywords: Community Question Answering, Collaborative Learning, Log File, Co-Training
Procedia PDF Downloads 44111820 Applying Multiple Intelligences to Teach Buddhist Doctrines in a Classroom
Authors: Phalaunnnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not the cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen- year- old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.Keywords: multiple intelligences, role play, performance assessment, formative assessment
Procedia PDF Downloads 27511819 Effective Learning and Testing Methods in School-Aged Children
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi
Abstract:
When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning
Procedia PDF Downloads 20211818 Learning Preference in Nursing Students at Boromarajonani College of Nursing Chon Buri
Authors: B. Wattanakul, G. Ngamwongwan, S. Ngamkham
Abstract:
Exposure to different learning experiences contributes to changing in learning style. Addressing students’ learning preference could help teachers provide different learning activities that encourage the student to learn effectively. Purpose: The purpose of this descriptive study was to describe learning styles of nursing students at Boromarajonani College of Nursing Chon Buri. Sample: The purposive sample was 463 nursing students who were enrolled in a nursing program at different academic levels. The 16-item VARK questionnaire with 4 multiple choices was administered at one time data collection. Choices have consisted with modalities of Visual, Aural, Read/write, and Kinesthetic measured by VARK. Results: Majority of learning preference of students at different levels was visual and read/write learning preference. Almost 67% of students have a multimodal preference, which is visual learning preference associated with read/write or kinesthetic preference. At different academic levels, multimodalities are greater than single preference. Over 30% of students have one dominant learning preference, including visual preference, read/write preference and kinesthetic preference. Analysis of Variance (ANOVA) with Bonferroni adjustment revealed a significant difference between students based on their academic level (p < 0.001). Learning style of the first-grade nursing students differed from the second-grade nursing students (p < 0.001). While learning style of nursing students in the second-grade has significantly varied from the 1st, 3rd, and 4th grade (p < 0.001), learning preference of the 3rd grade has significantly differed from the 4th grade of nursing students (p > 0.05). Conclusions: Nursing students have varied learning styles based on their different academic levels. Learning preference is not fixed attributes. This should help nursing teachers assess the types of changes in students’ learning preferences while developing teaching plans to optimize students’ learning environment and achieve the needs of the courses and help students develop learning preference to meet the need of the course.Keywords: learning preference, VARK, learning style, nursing
Procedia PDF Downloads 35911817 Multiple Intelligence Theory with a View to Designing a Classroom for the Future
Authors: Phalaunnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever-changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not a cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pinpoint an exact number, it is clear that in this case, more does not mean better. By looking into the success and pitfalls of classroom size, the true advantages of smaller classes becomes clear. Previously, one class was comprised of 50 students. Since they were seventeen- and eighteen-year-old students, it was sometimes quite difficult for them to stay focused. To help students understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.Keywords: multiple intelligences, role play, performance assessment, formative assessment
Procedia PDF Downloads 28311816 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning
Procedia PDF Downloads 26311815 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies
Authors: Kanika Sood, Sijie Shang
Abstract:
A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.Keywords: bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, natural language processing, online learning, sentiment analysis, teaching pedagogy
Procedia PDF Downloads 7711814 New Knowledge Co-Creation in Mobile Learning: A Classroom Action Research with Multiple Case Studies Using Mobile Instant Messaging
Authors: Genevieve Lim, Arthur Shelley, Dongcheol Heo
Abstract:
Abstract—Mobile technologies can enhance the learning process as it enables social engagement around concepts beyond the classroom and the curriculum. Early results in this ongoing research is showing that when learning interventions are designed specifically to generate new insights, mobile devices support regulated learning and encourage learners to collaborate, socialize and co-create new knowledge. As students navigate across the space and time boundaries, the fundamental social nature of learning transforms into mobile computer supported collaborative learning (mCSCL). The metacognitive interaction in mCSCL via mobile applications reflects the regulation of learning among the students. These metacognitive experiences whether self-, co- or shared-regulated are significant to the learning outcomes. Despite some insightful empirical studies, there has not yet been significant research that investigates the actual practice and processes of the new knowledge co-creation. This leads to question as to whether mobile learning provides a new channel to leverage learning? Alternatively, does mobile interaction create new types of learning experiences and how do these experiences co-create new knowledge. The purpose of this research is to explore these questions and seek evidence to support one or the other. This paper addresses these questions from the students’ perspective to understand how students interact when constructing knowledge in mCSCL and how students’ self-regulated learning (SRL) strategies support the co-creation of new knowledge in mCSCL. A pilot study has been conducted among international undergraduates to understand students’ perspective of mobile learning and concurrently develops a definition in an appropriate context. Using classroom action research (CAR) with multiple case studies, this study is being carried out in a private university in Thailand to narrow the research gaps in mCSCL and SRL. The findings will allow teachers to see the importance of social interaction for meaningful student engagement and envisage learning outcomes from a knowledge management perspective and what role mobile devices can play in these. The findings will signify important indicators for academics to rethink what is to be learned and how it should be learned. Ultimately, the study will bring new light into the co-creation of new knowledge in a social interactive learning environment and challenges teachers to embrace the 21st century of learning with mobile technologies to deepen and extend learning opportunities.Keywords: mobile computer supported collaborative learning, mobile instant messaging, mobile learning, new knowledge co-creation, self-regulated learning
Procedia PDF Downloads 23211813 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics
Procedia PDF Downloads 5611812 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 20311811 Comparative Study of Learning Achievement via Jigsaw I and IV Techniques
Authors: Phongkon Weerpiput
Abstract:
This research study aimed to compare learning achievement between Jigsaw I and jigsaw IV techniques. The target group was 70 Thai major sophomores enrolled in a course entitled Foreign Language in Thai at the Faculty of Education, Suan Sunandha Rajabhat University. The research methodology was quasi-experimental design. A control group was given the Jigsaw I technique while an experimental group experienced the Jigsaw IV technique. The treatment content focused on Khmer loanwords in Thai language executed for a period of 3 hours per week for total of 3 weeks. The instruments included learning management plans and multiple-choice test items. The result yields no significant difference at level .05 between learning achievement of both techniques.Keywords: Jigsaw I technique, Jigsaw IV technique, learning achievement, major sophomores
Procedia PDF Downloads 28711810 OSEME: A Smart Learning Environment for Music Education
Authors: Konstantinos Sofianos, Michael Stefanidakis
Abstract:
Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web
Procedia PDF Downloads 31111809 Effectiveness of Online Language Learning
Authors: Shazi Shah Jabeen, Ajay Jesse Thomas
Abstract:
The study is aimed at understanding the learning trends of students who opt for online language courses and to assess the effectiveness of the same. Multiple factors including use of the latest available technology and the skills that are trained by these online methods have been assessed. An attempt has been made to answer how each of the various language skills is trained online and how effective the online methods are compared to the classroom methods when students interact with peers and instructor. A mixed method research design was followed for collecting information for the study where a survey by means of a questionnaire and in-depth interviews with a number of respondents were undertaken across the various institutes and study centers located in the United Arab Emirates. The questionnaire contained 19 questions which included 7 sub-questions. The study revealed that the students find learning with an instructor to be a lot more effective than learning alone in an online environment. They prefer classroom environment more than the online setting for language learning.Keywords: effectiveness, language, online learning, skills
Procedia PDF Downloads 58911808 ILearn, a Pathway to Progress
Authors: Reni Francis
Abstract:
Learning has transcended the classroom boundaries to create a learner centric, interactive, and integrative teaching learning environment. This study analysed the impact of iLearn on the teaching, learning, and evaluation among 100 teacher trainees. The objectives were to cater to the different learning styles of the teacher trainees, to incorporate innovative teaching learning activities, to assist in peer tutoring, to implement different evaluation processes. i: Identifying the learning styles among the teacher trainees through VARK Learning style checklist was followed by planning the teaching-learning process to meet the learning styles of the teacher trainees. L: Leveraging innovations in teaching- learning by planning and creating modules incorporating innovative teaching learning and hence the concept based year plan was prepared. E: Engage learning through constructivism using different teaching methodology to engage the teacher trainees in the learning process through Workshop, Round Robin, Gallery walk, Co-Operative learning, Think-Pair-Share, EDMODO, Course Networking, Concept Map, Brainstorming Sessions, Video Clippings. A: Assessing the learning through an Open Book assignment, Closed book assignment, and Multiple Choice Questions and Seminar presentation. R: Remediation through peer tutoring through Mentor-mentee approach in the tutorial groups, Group work, Library Hours. N: Norming new standards. This was done in the form of extended remediation and tutorials to understand the need of the teacher trainee and support them for further achievements in learning through Face to face interaction, Supervised Study Circle, Mobile (Device) learning. The findings of the study revealed the positive impact of iLearn towards student achievement and enhanced social skills.Keywords: academic achievement, innovative strategy, learning styles, social skills
Procedia PDF Downloads 35611807 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 46411806 The Development of Integrated Real-Life Video and Animation with Addie Based on Constructive for Improving Students’ Mastery Concept in Rotational Dynamics
Authors: Silka Abyadati, Dadi Rusdiana, Enjang Akhmad Juanda
Abstract:
This study aims to investigate the students’ mastery concepts enhancement between students who are studying by using Integrated Real-Life Video and Animation (IRVA) and students who are studying without using IRVA. The development of IRVA is conducted by five stages: Analyze, Design, Development, Implementation and Evaluation (ADDIE) based on constructivist for Rotational Dynamics material in Physics learning. A constructivist model-based learning used is Interpretation Construction (ICON), which has the following phases: 1) Observation, 2) Construction interpretation, 3) Contextualization prior knowledge, 4) Conflict cognitive, 5) Learning cognitive, 6) Collaboration, 7) Multiple interpretation, 8) Multiple manifestation. The IRVA is developed for the stages of observation, cognitive conflict and cognitive learning. The sample of this study consisted of 32 students experimental group and a control group of 32 students in class XI of the school year 2015/2016 in one of Senior High Schools Bandung. The study was conducted by giving the pretest and posttest in the form of 20 items of multiple choice questions to determine the enhancement of mastery concept of Rotational Dynamics. Hypothesis testing is done by using T-test on the value of N-gain average of mastery concepts. The results showed that there is a significant difference in an enhancement of students’ mastery concepts between students who are studying by using IRVA and students who are studying without IRVA. Students in the experimental group increased by 0.468 while students in the control group increased by 0.207.Keywords: ADDIE, constructivist learning, Integrated Real-Life Video and Animation, mastery concepts, rotational dynamics
Procedia PDF Downloads 23111805 How to Guide Students from Surface to Deep Learning: Applied Philosophy in Management Education
Authors: Lihong Wu, Raymond Young
Abstract:
The ability to learn is one of the most critical skills in the information age. However, many students do not have a clear understanding of what learning is, what they are learning, and why they are learning. Many students study simply to pass rather than to learn something useful for their career and their life. They have a misconception about learning and a wrong attitude towards learning. This research explores student attitudes to study in management education and explores how to intercede to lead students from shallow to deeper modes of learning.Keywords: knowledge, surface learning, deep learning, education
Procedia PDF Downloads 501