Search results for: molecular docking.
2144 Computational Analysis of Potential Inhibitors Selected Based on Structural Similarity for the Src SH2 Domain
Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai
Abstract:
The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.Keywords: nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation
Procedia PDF Downloads 2692143 Molecular Basis for Amyloid Inhibition by L-Dopa: Implication towards Systemic Amyloidosis
Authors: Rizwan H. Khan, Saima Nusrat
Abstract:
Despite the fact that amyloid associated neurodegenerative diseases and non-neuropathic systemic amyloidosis have allured the research endeavors, as no curative drugs have been proclaimed up till now except for symptomatic cure. Therapeutic compounds which can diminish or disaggregate such toxic oligomers and fibrillar species have been examined and more are on its way. In the present study, we had reported an extensive biophysical, microscopic and computational study, revealing that L-3, 4-dihydroxyphenylalanine (L-Dopa) possess undeniable potency to inhibit heat induced human lysozyme (HL) amyloid fibrillation and also retain the fibril disaggregating potential. L-Dopa interferes in the amyloid fibrillogenesis process by interacting hydrophobically and also by forming hydrogen bonds with the amino acid residues found in amyloid fibril forming prone region of HL as elucidated by molecular docking results. L-Dopa also disaggregates the mature amyloid fibrils into some unorganised species. Thus, L-Dopa and related compounds can work as a promising inhibitor for the therapeutic advancement prospective against systemic amyloidosis.Keywords: amyloids, disaggregation, human lysozyme, molecular docking
Procedia PDF Downloads 3272142 Docking, Pharmacophore Modeling and 3d QSAR Studies on Some Novel HDAC Inhibitors with Heterocyclic Linker
Authors: Harish Rajak, Preeti Patel
Abstract:
The application of histone deacetylase inhibitors is a well-known strategy in prevention of cancer which shows acceptable preclinical antitumor activity due to its ability of growth inhibition and apoptosis induction of cancer cell. Molecular docking were performed using Histone Deacetylase protein (PDB ID:1t69) and prepared series of hydroxamic acid based HDACIs. On the basis of docking study, it was predicted that compound 1 has significant binding interaction with HDAC protein and three hydrogen bond interactions takes place, which are essential for antitumor activity. On docking, most of the compounds exhibited better glide score values between -8 to -10 which is close to the glide score value of suberoylanilide hydroxamic acid. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. The 3D-QSAR models provided a good correlation between predicted and actual anticancer activity. Best QSAR model showed Q2 (0.7974), R2 (0.9200) and standard deviation (0.2308). QSAR visualization maps suggest that hydrogen bond acceptor groups at carbonyl group of cap region and hydrophobic groups at ortho, meta, para position of R9 were favorable for HDAC inhibitory activity. We established structure activity correlation using docking, pharmacophore modeling and atom based 3D QSAR model for hydroxamic acid based HDACIs.Keywords: HDACIs, QSAR, e-pharmacophore, docking, suberoylanilide hydroxamic acid
Procedia PDF Downloads 3022141 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder
Authors: Bhuvanesh Baniya
Abstract:
Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation
Procedia PDF Downloads 1012140 Quantitative Structure Activity Relationship and Insilco Docking of Substituted 1,3,4-Oxadiazole Derivatives as Potential Glucosamine-6-Phosphate Synthase Inhibitors
Authors: Suman Bala, Sunil Kamboj, Vipin Saini
Abstract:
Quantitative Structure Activity Relationship (QSAR) analysis has been developed to relate antifungal activity of novel substituted 1,3,4-oxadiazole against Candida albicans and Aspergillus niger using computer assisted multiple regression analysis. The study has shown the better relationship between antifungal activities with respect to various descriptors established by multiple regression analysis. The analysis has shown statistically significant correlation with R2 values 0.932 and 0.782 against Candida albicans and Aspergillus niger respectively. These derivatives were further subjected to molecular docking studies to investigate the interactions between the target compounds and amino acid residues present in the active site of glucosamine-6-phosphate synthase. All the synthesized compounds have better docking score as compared to standard fluconazole. Our results could be used for the further design as well as development of optimal and potential antifungal agents.Keywords: 1, 3, 4-oxadiazole, QSAR, multiple linear regression, docking, glucosamine-6-phosphate synthase
Procedia PDF Downloads 3412139 The Rational Design of Original Anticancer Agents Using Computational Approach
Authors: Majid Farsadrooh, Mehran Feizi-Dehnayebi
Abstract:
Serum albumin is the most abundant protein that is present in the circulatory system of a wide variety of organisms. Although it is a significant macromolecule, it can contribute to osmotic blood pressure and also, plays a superior role in drug disposition and efficiency. Molecular docking simulation can improve in silico drug design and discovery procedures to propound a lead compound and develop it from the discovery step to the clinic. In this study, the molecular docking simulation was applied to select a lead molecule through an investigation of the interaction of the two anticancer drugs (Alitretinoin and Abemaciclib) with Human Serum Albumin (HSA). Then, a series of new compounds (a-e) were suggested using lead molecule modification. Density functional theory (DFT) including MEP map and HOMO-LUMO analysis were used for the newly proposed compounds to predict the reactivity zones on the molecules, stability, and chemical reactivity. DFT calculation illustrated that these new compounds were stable. The estimated binding free energy (ΔG) values for a-e compounds were obtained as -5.78, -5.81, -5.95, -5,98, and -6.11 kcal/mol, respectively. Finally, the pharmaceutical properties and toxicity of these new compounds were estimated through OSIRIS DataWarrior software. The results indicated no risk of tumorigenic, irritant, or reproductive effects and mutagenicity for compounds d and e. As a result, compounds d and e, could be selected for further study as potential therapeutic candidates. Moreover, employing molecular docking simulation with the prediction of pharmaceutical properties helps to discover new potential drug compounds.Keywords: drug design, anticancer, computational studies, DFT analysis
Procedia PDF Downloads 772138 Molecular Design and Synthesis of Heterocycles Based Anticancer Agents
Authors: Amna J. Ghith, Khaled Abu Zid, Khairia Youssef, Nasser Saad
Abstract:
Backgrounds: The multikinase and vascular endothelial growth factor (VEGF) receptor inhibitors interrupt the pathway by which angiogenesis becomes established and promulgated, resulting in the inadequate nourishment of metastatic disease. VEGFR-2 has been the principal target of anti-angiogenic therapies. We disclose the new thieno pyrimidines as inhibitors of VEGFR-2 designed by a molecular modeling approach with increased synergistic activity and decreased side effects. Purpose: 2-substituted thieno pyrimidines are designed and synthesized with anticipated anticancer activity based on its in silico molecular docking study that supports the initial pharmacophoric hypothesis with a same binding mode of interaction at the ATP-binding site of VEGFR-2 (PDB 2QU5) with high docking score. Methods: A series of compounds were designed using discovery studio 4.1/CDOCKER with a rational that mimic the pharmacophoric features present in the reported active compounds that targeted VEGFR-2. An in silico ADMET study was also performed to validate the bioavailability of the newly designed compounds. Results: The Compounds to be synthesized showed interaction energy comparable to or within the range of the benzimidazole inhibitor ligand when docked with VEGFR-2. ADMET study showed comparable results most of the compounds showed absorption within (95-99) zone varying according to different substitutions attached to thieno pyrimidine ring system. Conclusions: A series of 2-subsituted thienopyrimidines are to be synthesized with anticipated anticancer activity and according to docking study structure requirement for the design of VEGFR-2 inhibitors which can act as powerful anticancer agents.Keywords: docking, discovery studio 4.1/CDOCKER, heterocycles based anticancer agents, 2-subsituted thienopyrimidines
Procedia PDF Downloads 2462137 Exploring the Design of Prospective Human Immunodeficiency Virus Type 1 Reverse Transcriptase Inhibitors through a Comprehensive Approach of Quantitative Structure Activity Relationship Study, Molecular Docking, and Molecular Dynamics Simulations
Authors: Mouna Baassi, Mohamed Moussaoui, Sanchaita Rajkhowa, Hatim Soufi, Said Belaaouad
Abstract:
The objective of this paper is to address the challenging task of targeting Human Immunodeficiency Virus type 1 Reverse Transcriptase (HIV-1 RT) in the treatment of AIDS. Reverse Transcriptase inhibitors (RTIs) have limitations due to the development of Reverse Transcriptase mutations that lead to treatment resistance. In this study, a combination of statistical analysis and bioinformatics tools was adopted to develop a mathematical model that relates the structure of compounds to their inhibitory activities against HIV-1 Reverse Transcriptase. Our approach was based on a series of compounds recognized for their HIV-1 RT enzymatic inhibitory activities. These compounds were designed via software, with their descriptors computed using multiple tools. The most statistically promising model was chosen, and its domain of application was ascertained. Furthermore, compounds exhibiting comparable biological activity to existing drugs were identified as potential inhibitors of HIV-1 RT. The compounds underwent evaluation based on their chemical absorption, distribution, metabolism, excretion, toxicity properties, and adherence to Lipinski's rule. Molecular docking techniques were employed to examine the interaction between the Reverse Transcriptase (Wild Type and Mutant Type) and the ligands, including a known drug available in the market. Molecular dynamics simulations were also conducted to assess the stability of the RT-ligand complexes. Our results reveal some of the new compounds as promising candidates for effectively inhibiting HIV-1 Reverse Transcriptase, matching the potency of the established drug. This necessitates further experimental validation. This study, beyond its immediate results, provides a methodological foundation for future endeavors aiming to discover and design new inhibitors targeting HIV-1 Reverse Transcriptase.Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation, reverse transcriptase inhibitors, HIV type 1
Procedia PDF Downloads 922136 Molecular Insights into the 5α-Reductase Inhibitors: Quantitative Structure Activity Relationship, Pre-Absorption, Distribution, Metabolism, and Excretion and Docking Studies
Authors: Richa Dhingra, Monika, Manav Malhotra, Tilak Raj Bhardwaj, Neelima Dhingra
Abstract:
5-Alpha-reductases (5AR), a membrane bound, NADPH dependent enzyme and convert male hormone testosterone (T) into more potent androgen dihydrotestosterone (DHT). DHT is the required for the development and function of male sex organs, but its overproduction has been found to be associated with physiological conditions like Benign Prostatic Hyperplasia (BPH). Thus the inhibition of 5ARs could be a key target for the treatment of BPH. In present study, 2D and 3D Quantitative Structure Activity Relationship (QSAR) pharmacophore models have been generated for 5AR based on known inhibitory concentration (IC₅₀) values with extensive validations. The four featured 2D pharmacophore based PLS model correlated the topological interactions (–OH group connected with one single bond) (SsOHE-index); semi-empirical (Quadrupole2) and physicochemical descriptors (Mol. wt, Bromines Count, Chlorines Count) with 5AR inhibitory activity, and has the highest correlation coefficient (r² = 0.98, q² =0.84; F = 57.87, pred r² = 0.88). Internal and external validation was carried out using test and proposed set of compounds. The contribution plot of electrostatic field effects and steric interactions generated by 3D-QSAR showed interesting results in terms of internal and external predictability. The well validated 2D Partial Least Squares (PLS) and 3D k-nearest neighbour (kNN) models were used to search novel 5AR inhibitors with different chemical scaffold. To gain more insights into the molecular mechanism of action of these steroidal derivatives, molecular docking and in silico absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Studies have revealed the hydrophobic and hydrogen bonding of the ligand with residues Alanine (ALA) 63A, Threonine (THR) 60A, and Arginine (ARG) 456A of 4AT0 protein at the hinge region. The results of QSAR, molecular docking, in silico ADME studies provide guideline and mechanistic scope for the identification of more potent 5-Alpha-reductase inhibitors (5ARI).Keywords: 5α-reductase inhibitor, benign prostatic hyperplasia, ligands, molecular docking, QSAR
Procedia PDF Downloads 1632135 Computer-Aided Drug Repurposing for Mycobacterium Tuberculosis by Targeting Tryptophanyl-tRNA Synthetase
Authors: Neslihan Demirci, Serdar Durdağı
Abstract:
Mycobacterium tuberculosis is still a worldwide disease-causing agent that, according to WHO, led to the death of 1.5 million people from tuberculosis (TB) in 2020. The bacteria reside in macrophages located specifically in the lung. There is a known quadruple drug therapy regimen for TB consisting of isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Over the past 60 years, there have been great contributions to treatment options, such as recently approved delamanid (OPC67683) and bedaquiline (TMC207/R207910), targeting mycolic acid and ATP synthesis, respectively. Also, there are natural compounds that can block the tryptophanyl-tRNA synthetase (TrpRS) enzyme, chuangxinmycin, and indolmycin. Yet, already the drug resistance is reported for those agents. In this study, the newly released TrpRS enzyme structure is investigated for potential inhibitor drugs from already synthesized molecules to help the treatment of resistant cases and to propose an alternative drug for the quadruple drug therapy of tuberculosis. Maestro, Schrodinger is used for docking and molecular dynamic simulations. In-house library containing ~8000 compounds among FDA-approved indole-containing compounds, a total of 57 obtained from the ChemBL were used for both ATP and tryptophan binding pocket docking. Best of indole-containing 57 compounds were subjected to hit expansion and compared later with virtual screening workflow (VSW) results. After docking, VSW was done. Glide-XP docking algorithm was chosen. When compared, VSW alone performed better than the hit expansion module. Best scored compounds were kept for ten ns molecular dynamic simulations by Desmond. Further, 100 ns molecular dynamic simulation was performed for elected molecules according to Z-score. The top three MMGBSA-scored compounds were subjected to steered molecular dynamic (SMD) simulations by Gromacs. While SMD simulations are still being conducted, ponesimod (for multiple sclerosis), vilanterol (β₂ adrenoreceptor agonist), and silodosin (for benign prostatic hyperplasia) were found to have a significant affinity for tuberculosis TrpRS, which is the propulsive force for the urge to expand the research with in vitro studies. Interestingly, top-scored ponesimod has been reported to have a side effect that makes the patient prone to upper respiratory tract infections.Keywords: drug repurposing, molecular dynamics, tryptophanyl-tRNA synthetase, tuberculosis
Procedia PDF Downloads 1232134 Computational Approach to Cyclin-Dependent Kinase 2 Inhibitors Design and Analysis: Merging Quantitative Structure-Activity Relationship, Absorption, Distribution, Metabolism, Excretion, and Toxicity, Molecular Docking, and Molecular Dynamics Simulations
Authors: Mohamed Moussaoui, Mouna Baassi, Soukayna Baammi, Hatim Soufi, Mohammed Salah, Rachid Daoud, Achraf EL Allali, Mohammed Elalaoui Belghiti, Said Belaaouad
Abstract:
The present study aims to investigate the quantitative structure-activity relationship (QSAR) of a series of Thiazole derivatives reported as anticancer agents (hepatocellular carcinoma), using principally the electronic descriptors calculated by the density functional theory (DFT) method and by applying the multiple linear regression method. The developed model showed good statistical parameters (R²= 0.725, R²ₐ𝒹ⱼ= 0.653, MSE = 0.060, R²ₜₑₛₜ= 0.827, Q²𝒸ᵥ = 0.536). The energy of the highest occupied molecular orbital (EHOMO) orbital, electronic energy (TE), shape coefficient (I), number of rotatable bonds (NROT), and index of refraction (n) were revealed to be the main descriptors influencing the anti-cancer activity. Additional Thiazole derivatives were then designed and their activities and pharmacokinetic properties were predicted using the validated QSAR model. These designed molecules underwent evaluation through molecular docking (MD) and molecular dynamic (MD) simulations, with binding affinity calculated using the MMPBSA script according to a 100 ns simulation trajectory. This process aimed to study both their affinity and stability towards Cyclin-Dependent Kinase 2 (CDK2), a target protein for cancer disease treatment. The research concluded by identifying four CDK2 inhibitors - A1, A3, A5, and A6 - displaying satisfactory pharmacokinetic properties. MDs results indicated that the designed compound A5 remained stable in the active center of the CDK2 protein, suggesting its potential as an effective inhibitor for the treatment of hepatocellular carcinoma. The findings of this study could contribute significantly to the development of effective CDK2 inhibitors.Keywords: QSAR, ADMET, Thiazole, anticancer, molecular docking, molecular dynamic simulations, MMPBSA calculation
Procedia PDF Downloads 1072133 Preventing Neurodegenerative Diseases by Stabilization of Superoxide Dismutase by Natural Polyphenolic Compounds
Authors: Danish Idrees, Vijay Kumar, Samudrala Gourinath
Abstract:
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1). The use of small molecules has been shown to stabilize the SOD1 dimer and preventing its dissociation and aggregation. In this study, we employed molecular docking, molecular dynamics simulation and surface plasmon resonance (SPR) to study the interactions between SOD1 and natural polyphenolic compounds. In order to explore the noncovalent interaction between SOD1 and natural polyphenolic compounds, molecular docking and molecular dynamic (MD) simulations were employed to gain insights into the binding modes and free energies of SOD1-polyphenolic compounds. MM/PBSA methods were used to calculate free energies from obtained MD trajectories. The compounds, Hesperidin, Ergosterol, and Rutin showed the excellent binding affinity in micromolar range with SOD1. Ergosterol and Hesperidin have the strongest binding affinity to SOD1 and was subjected to further characterization. Biophysical experiments using Circular Dichroism and Thioflavin T fluorescence spectroscopy results show that the binding of these two compounds can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results also suggest that these compounds reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This study will be helpful to develop other drug-like molecules which may have the effect to reduce the aggregation of SOD1.Keywords: amyotrophic lateral sclerosis, molecular dynamics simulation, surface plasmon resonance, superoxide dismutase
Procedia PDF Downloads 1392132 Schiff Bases of Isatin and Admantane-1-Carbohydrazide: Synthesis, Characterization, and Anticonvulsant Activity
Authors: Hind O. Osman, Tilal Elsaman, Bashir A. Yousef, Esraa Elhadi, Aimun A. E. Ahmed, Eyman Mohamed Eltayib, Malik Suliman Mohamed, Magdi Awadalla Mohamed
Abstract:
Epilepsy is the most common neurological condition and cause of substantial morbidity and mortality. In the present study, the molecular hybridization tool was adopted to obtain six Schiff bases of isatin and adamantane-1-carbohydrazide (18–23). Then, their anticonvulsant activity was evaluated using a pentylenetetrazole- (PTZ-) induced seizure model using phenobarbitone as a positive control. Our findings showed that compounds 18–23 provided significant protection against PTZ-induced seizure, and maximum activities were associated with compound 23. Moreover, all investigated compounds increased the latency of induced convulsion and reduced the duration of epilepsy, with compound 23 being the best. Interestingly, most of the synthesized molecules showed a reduction in neurological symptoms and severity of the seizure. Molecular docking studies suggest GABA-A receptor as a potential target, and in silico ADME screening revealed that the pharmaceutical properties of compound 23 are within the specified limit. Thus, compound 23 was identified as a promising candidate that warrants further drug discovery processes.Keywords: isatin and adamantane, anticonvulsant activity, PTZ-induced seizure, molecular docking
Procedia PDF Downloads 2072131 Searching for Novel Scaffolds of Triazole Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase
Authors: Tomasz Frączek, Agata Paneth, Rafał Kamiński, Agnieszka Krakowiak, Piotr Paneth
Abstract:
Azoles are a promising class of the new generation of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). From thousands of reported compounds, many possess the same basic structure of an aryl substituted azole ring linked by a thioglycolamide chain with another aromatic ring. To find novel extensions for this primary scaffold, we explored the 5-position substitution of triazole NNRTIs using molecular docking followed by synthesis of selected compounds. We discovered that heterocyclic substituents in 5-position of the triazole ring are detrimental to the inhibitory activity of compounds with 4-membered thioglycolamide linker. This substitution seems to be viable only for compounds with a shorter 2-membered linker such as in derivatives of 4‐benzyl‐3‐(benzyl-sulfanyl)‐5‐(thiophen‐2‐yl)‐4H‐1,2,4‐triazole reported earlier. A new scaffold of 2‐[(4‐benzyl‐5‐methyl‐4H‐1,2,4‐triazol‐3‐yl)sulfanyl]‐N‐phenylacetamide has been identified in this study.Keywords: docking, molecular modeling, drug design, novel scaffolds
Procedia PDF Downloads 5422130 Role of Estrogen Receptor-alpha in Mammary Carcinoma by Single Nucleotide Polymorphisms and Molecular Docking: An In-silico Analysis
Authors: Asif Bilal, Fouzia Tanvir, Sibtain Ahmad
Abstract:
Estrogen receptor alpha, also known as estrogen receptor-1, is highly involved in risk of mammary carcinoma. The objectives of this study were to identify non-synonymous SNPs of estrogen receptor and their association with breast cancer and to identify the chemotherapeutic responses of phytochemicals against it via in-silico study design. For this purpose, different online tools. to identify pathogenic SNPs the tools were SIFT, Polyphen, Polyphen-2, fuNTRp, SNAP2, for finding disease associated SNPs the tools SNP&GO, PhD-SNP, PredictSNP, MAPP, SNAP, MetaSNP, PANTHER, and to check protein stability Mu-Pro, I-Mutant, and CONSURF were used. Post-translational modifications (PTMs) were detected by Musitedeep, Protein secondary structure by SOPMA, protein to protein interaction by STRING, molecular docking by PyRx. Seven SNPs having rsIDs (rs760766066, rs779180038, rs956399300, rs773683317, rs397509428, rs755020320, and rs1131692059) showing mutations on I229T, R243C, Y246H, P336R, Q375H, R394S, and R394H, respectively found to be completely deleterious. The PTMs found were 96 times Glycosylation; 30 times Ubiquitination, a single time Acetylation; and no Hydroxylation and Phosphorylation were found. The protein secondary structure consisted of Alpha helix (Hh) is (28%), Extended strand (Ee) is (21%), Beta turn (Tt) is 7.89% and Random coil (Cc) is (44.11%). Protein-protein interaction analysis revealed that it has strong interaction with Myeloperoxidase, Xanthine dehydrogenase, carboxylesterase 1, Glutathione S-transferase Mu 1, and with estrogen receptors. For molecular docking we used Asiaticoside, Ilekudinuside, Robustoflavone, Irinoticane, Withanolides, and 9-amin0-5 as ligands that extract from phytochemicals and docked with this protein. We found that there was great interaction (from -8.6 to -9.7) of these ligands of phytochemicals at ESR1 wild and two mutants (I229T and R394S). It is concluded that these SNPs found in ESR1 are involved in breast cancer and given phytochemicals are highly helpful against breast cancer as chemotherapeutic agents. Further in vitro and in vivo analysis should be performed to conduct these interactions.Keywords: breast cancer, ESR1, phytochemicals, molecular docking
Procedia PDF Downloads 692129 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors
Authors: Gajanan M. Sonwane
Abstract:
The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking
Procedia PDF Downloads 1402128 Development of selective human matrix metalloproteinases-9 (hMMP-9) inhibitors as potent diabetic wound healing agents
Authors: Geetakshi Arora, Danish Malhotra
Abstract:
Diabetic wounds are serious health issues and often fail to heal, leading to limb amputation that makes the life of the patient miserable. Delayed wound healing has been characterized by an increase in matrix metalloproteinase-9 (MMP-9). Thus research throughout the world has been going on to develop selective MMP-9 inhibitors for aiding diabetic wound healing. Bioactive constituents from natural sources always served as potential leads in drug development with high rates of success. Considering the need for novel selective MMP-9 inhibitors and the importance of natural bioactive compounds in drug development, we have screened a library of bioactive constituents from plant sources that were effective in diabetic wound healing on human MMP-9 (hMMP-9) using molecular docking studies. Screened constituents are ranked according to their dock score, ∆G value (binding affinity), and Ligand efficiency evaluated from FleXX docking and Hyde scoring modules available with drug designing platform LeadIT. Rhamnocitrin showed the highest correlation between dock score, ∆G value (binding affinity), and Ligand efficiency was further explored for binding interactions with hMMP-9. The overall study suggest that Rhamnocitrin is sufficiently decorated with both hydrophilic and hydrophobic substitutions that perfectly block hMMP-9 and act as a potential lead in the design and development of selective hMMP-9 inhibitors.Keywords: MMP-9, diabetic wound, molecular docking, phytoconstituents
Procedia PDF Downloads 1262127 Antitrypanosomal Activity of Stigmasterol: An in silico Approach
Authors: Mohammed Auwal Ibrahim, Aminu Mohammed
Abstract:
Stigmasterol has previously been reported to possess antitrypanosomal activity using in vitro and in vivo models. However, the mechanism of antitrypanosomal activity is yet to be elucidated. In the present study, molecular docking was used to decipher the mode of interaction and binding affinity of stigmasterol to three known antitrypanosomal drug targets viz; adenosine kinase, ornithine decarboxylase and triose phosphate isomerase. Stigmasterol was found to bind to the selected trypanosomal enzymes with minimum binding energy of -4.2, -6.5 and -6.6 kcal/mol for adenosine kinase, ornithine decarboxylase, and triose phosphate isomerase respectively. However, hydrogen bond was not involved in the interaction of stigmasterol with all the three enzymes, but hydrophobic interaction seemed to play a vital role in the binding phenomenon which was predicted to be non-competitive like type of inhibition. It was concluded that binding to the three selected enzymes, especially triose phosphate isomerase, might be involved in the antitrypanosomal activity of stigmasterol but not mediated via a hydrogen bond interaction.Keywords: antitrypanosomal, in silico, molecular docking, stigmasterol
Procedia PDF Downloads 2782126 Scheduling of Cross-Docking Center: An Auction-Based Algorithm
Authors: Eldho Paul, Brijesh Paul
Abstract:
This work proposes an auction mechanism based solution methodology for the optimum scheduling of trucks in a cross-docking centre. The cross-docking centre is an important element of lean supply chain. It reduces the amount of storage and transportation costs in the distribution system compared to an ordinary warehouse. Better scheduling of trucks in a cross-docking center is the best way to reduce storage and transportation costs. Auction mechanism is commonly used for allocation of limited resources in different real-life applications. Here, we try to schedule inbound trucks by integrating auction mechanism with the functioning of a cross-docking centre. A mathematical model is developed for the optimal scheduling of inbound trucks based on the auction methodology. The determination of exact solution for problems involving large number of trucks was found to be computationally difficult, and hence a genetic algorithm based heuristic methodology is proposed in this work. A comparative study of exact and heuristic solutions is done using five classes of data sets. It is observed from the study that the auction-based mechanism is capable of providing good solutions to scheduling problem in cross-docking centres.Keywords: auction mechanism, cross-docking centre, genetic algorithm, scheduling of trucks
Procedia PDF Downloads 4122125 Investigating Anti-Tumourigenic and Anti-Angiogenic Effects of Resveratrol in Breast Carcinogenesis Using in-Silico Algorithms
Authors: Asma Zaib, Saeed Khan, Ayaz Ahmed Noonari, Sehrish Bint-e-Mohsin
Abstract:
Breast cancer is the most common cancer among females worldwide and is estimated that more than 450,000 deaths are reported each year. It accounts for about 14% of all female cancer deaths. Angiogenesis plays an essential role in Breast cancer development, invasion, and metastasis. Breast cancer predominantly begins in luminal epithelial cells lining the normal breast ducts. Breast carcinoma likely requires coordinated efforts of both increased proliferation and increased motility to progress to metastatic stages.Resveratrol: a natural stilbenoid, has anti-inflammatory and anticancer effects that inhibits proliferation of variety of human cancer cell lines, including breast, prostate, stomach, colon, pancreatic, and thyroid cancers.The objective of this study is:To investigate anti-neoangiogenesis effects of Resveratrol in breast cancer and to analyze inhibitory effects of resveratrol on aromatase, Erα, HER2/neu, and VEGFR.Docking is the computational determination of binding affinity between molecule (protein structure and ligand).We performed molecular docking using Swiss-Dock and to determine docking effects of (1) Resveratrol with Aromatase, (2) Resveratrol with ERα (3) Resveratrol with HER2/neu and (4) Resveratrol with VEGFR2.Docking results of resveratrol determined inhibitory effects on aromatase with binding energy of -7.28 kcal/mol which shows anticancerous effects on estrogen dependent breast tumors. Resveratrol also show inhibitory effects on ERα and HER2/new with binging energy -8.02, and -6.74 respectively; which revealed anti-cytoproliferative effects upon breast cancer. On the other hand resveratrol v/s VEGFR showed potential inhibitory effects on neo-angiogenesis with binding energy -7.68 kcal/mol, angiogenesis is the important phenomenon that promote tumor development and metastasis. Resveratrol is an anti-breast cancer agent conformed by in silico studies, it has been identified that resveratrol can inhibit breast cancer cells proliferation by acting as competitive inhibitor of aromatase, ERα and HER2 neo, while neo-angiogemesis is restricted by binding to VEGFR which authenticates the anti-carcinogenic effects of resveratrol against breast cancer.Keywords: angiogenesis, anti-cytoproliferative, molecular docking, resveratrol
Procedia PDF Downloads 3262124 Biflavonoids from Selaginellaceae as Epidermal Growth Factor Receptor Inhibitors and Their Anticancer Properties
Authors: Adebisi Adunola Demehin, Wanlaya Thamnarak, Jaruwan Chatwichien, Chatchakorn Eurtivong, Kiattawee Choowongkomon, Somsak Ruchirawat, Nopporn Thasana
Abstract:
The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein involved in cellular signalling processes and, its aberrant activity is crucial in the development of many cancers such as lung cancer. Selaginellaceae are fern allies that have long been used in Chinese traditional medicine to treat various cancer types, especially lung cancer. Biflavonoids, the major secondary metabolites in Selaginellaceae, have numerous pharmacological activities, including anti-cancer and anti-inflammatory. For instance, amentoflavone induces a cytotoxic effect in the human NSCLC cell line via the inhibition of PARP-1. However, to the best of our knowledge, there are no studies on biflavonoids as EGFR inhibitors. Thus, this study aims to investigate the EGFR inhibitory activities of biflavonoids isolated from Selaginella siamensis and Selaginella bryopteris. Amentoflavone, tetrahydroamentoflavone, sciadopitysin, robustaflavone, robustaflavone-4-methylether, delicaflavone, and chrysocauloflavone were isolated from the ethyl-acetate extract of the whole plants. The structures were determined using NMR spectroscopy and mass spectrometry. In vitro study was conducted to evaluate their cytotoxicity against A549, HEPG2, and T47D human cancer cell lines using the MTT assay. In addition, a target-based assay was performed to investigate their EGFR inhibitory activity using the kinase inhibition assay. Finally, a molecular docking study was conducted to predict the binding modes of the compounds. Robustaflavone-4-methylether and delicaflavone showed the best cytotoxic activity on all the cell lines with IC50 (µM) values of 18.9 ± 2.1 and 22.7 ± 3.3 on A549, respectively. Of these biflavonoids, delicaflavone showed the most potent EGFR inhibitory activity with an 84% relative inhibition at 0.02 nM using erlotinib as a positive control. Robustaflavone-4-methylether showed a 78% inhibition at 0.15 nM. The docking scores obtained from the molecular docking study correlated with the kinase inhibition assay. Robustaflavone-4-methylether and delicaflavone had a docking score of 72.0 and 86.5, respectively. The inhibitory activity of delicaflavone seemed to be linked with the C2”=C3” and 3-O-4”’ linkage pattern. Thus, this study suggests that the structural features of these compounds could serve as a basis for developing new EGFR-TK inhibitors.Keywords: anticancer, biflavonoids, EGFR, molecular docking, Selaginellaceae
Procedia PDF Downloads 1982123 Antiplasmodial Activity of Drimane Sesquiterpene Isolated from Warburgia salutaris
Authors: Mthokozisi Simelane
Abstract:
Background: Malaria remains a life-threatening disease in tropical regions despite the advances in the treatment of this disease, it still remains a significant burden as some parasites have become resistant to the currently available drugs. This has created a necessity for the development of alternative, more efficient antimalarial drugs. Warburgia salutaris is a traditional medicinal plant used in malaria treatment by Zulu traditional healers. Materials and methods: The W. salutaris stem-bark was extracted with dichloromethane and the compound was isolated through column chromatography. The compound was identified and characterized by spectroscopic analysis (1H NMR, 13C NMR, IR and MS) and the structure was also confirmed by x-ray crystallography. The anti-plasmodial activity (in vitro) was studied on NF54 Plasmodium falciparum strain (CQS). Cytotoxicity was measured using the MTT assay on HEK239 and HEPG2 cell lines. Docking of Mukaadial acetate was conducted in AutoDock Vina. Structural modifications were conducted in UCSF Chimera and molecular interactions examined in LigPlot. Results: The compound, Mukaadial Acetate showed appreciable inhibition (IC50 0.44±0.10 µg/ml) of the parasite growth and cytotoxicity activity of 0.124±0.109 and 0.199±0.083 (µg/ml) on HEK293 and HEPG2 cells respectively. Molecular docking revealed that Mukaadial Acetate binds to the purine, pyrophosphate and ribose binding sites of the PfHGXPRT with an optimum binding conformation and forms hydrogen bond, steric and hydrophobic interactions with the residues inhabiting the respective binding sites. Conclusion: It is apparent that W. salutaris contains components (including Mukaadial Acetate) that exhibit antimalarial activity. This study scientifically validates the use of this plant in folk medicine.Keywords: plasmodium falciparum, molecular docking, antimalarial activity, PfHGXPRT, Warburgia salutaris, mukaadial acetate
Procedia PDF Downloads 1972122 Revealing Potential Drug Targets against Proto-Oncogene Wnt10B by Comparative Molecular Docking
Authors: Shazia Mannan, Zunera Khalid, Hammad-Ul-Mubeen
Abstract:
Wingless type Mouse mammary tumor virus (MMTV) Integration site-10B (Wnt10B) is an important member of the Wnt protein family that functions as cellular messenger in paracrine manner. Aberrant Wnt10B activity is the cause of several abnormalities including cancers of breast, cervix, liver, gastric tract, esophagus, pancreas as well as physiological problems like obesity, and osteoporosis. The objective of this study was to determine the possible inhibitors against aberrant expression of Wnt10B in order to prevent and treat the physiological disorders associated with it. Wnt10B3D structure was predicted by using comparative modeling and then analyzed by PROCHECK, Verify3D, and Errat. The model having 84.54% quality value was selected and acylated to satisfy the hydrophobic nature of Wnt10B. For search of inhibitors, virtual screening was performed on Natural Products (NP) database. The compounds were filtered and ligand-based screening was performed using the antagonist for mouse Wnt-3A. This resulted in a library of 272 unique compounds having most potent drug like activities for Wnt-4. Out of the 271 molecules analyzed three small molecules ZINC35442871, ZINC85876388, and ZINC00754234 having activity against Wnt4 abbarent expression were found common through docking experiment of Wnt10B. It is concluded that the three molecules ZINC35442871, ZINC85876388, and ZINC00754234 can be considered as lead compounds for performing further drug designing experiments against aberrant Wnt expressions.Keywords: Wnt10B inhibitors, comparative computational studies, proto-oncogene, molecular docking
Procedia PDF Downloads 1562121 Curcumin Derivatives as Potent Inhibitors of Inducible Nitric Oxide Synthase in Osteoarthritis: A Molecular Docking Study
Authors: F. Ambreen, A.Naheed
Abstract:
Osteoarthritis (OA) is a degenerative disorder affecting millions of people worldwide. Nitric oxide (NO) was found to play a catabolic role in the development of osteoarthritis. It is a toxic free radical gas generated during the metabolism of L-arginine by the enzyme Nitric oxide synthase (NOS). Inducible Nitric Oxide Synthase (iNOS) is one of the isoform of NOS, and its overexpression leads to the excessive formation of NO that results in pathophysiological joint conditions. Several synthetic anti-inflammatory drugs and inhibitors are present to date, but all showed side effects and complications. Therefore, the pursuit of natural disease-modifying drugs remains a top priority. Curcumin is an active component of turmeric, and the past few decades have witnessed intense research devoted to the antioxidant and anti-inflammatory properties of curcumin. The present study focused on curcumin and its derivatives in the search for new iNOS inhibitors for the treatment of osteoarthritis. We conducted a molecular docking study on curcumin and its four derivatives; cyclocurcumin, tetrahydrocurcumin, demethoxycurcumin and curcumin monoglucoside with iNOS using CLC Drug discovery work bench 3.02. We selected two co-crystallized ligands for this study; tetrahydrobiopterin and N-omega-propyl-L-arginine present in complex with the enzyme iNOS. Results showed the best binding affinity of N-omega-propyl-L-arginine with cyclocurcumin and curcumin monoglucoside that exhibit binding energies of -65.2 kcal/mol and -68 kcal/mol respectively. Whereas with tetrahydrobiopterin, best binding scores of -64.7 kcal/mol and -62.2 kcal/mol were found with tetrahydrocurcumin and demethoxycurcumin respectively. This information could open doors of research for the designing of novel drugs using herbs such as curcumin for the treatment of inflammatory joint diseases.Keywords: curcumin, iNOS, molecular docking, osteoarthritis
Procedia PDF Downloads 1292120 In silico Designing and Insight into Antimalarial Potential of Chalcone-Quinolinylpyrazole Hybrids by Preclinical Study in Mice
Authors: Deepika Saini, Sandeep Jain, Ajay Kumar
Abstract:
The quinoline scaffold is one of the most widely studied in the discovery of derivatives with various heterocyclic moieties due to its potential antimalarial activities. In the present study, a chalcone series of quinoline derivatives clubbed with pyrazole were synthesized to evaluate their antimalarial property by in vitro schizont maturation inhibition assay against both chloroquine sensitive, 3D7 and chloroquine resistant, RKL9 strain of Plasmodium falciparum. Further, top five compounds were studied for in vivo preclinical study for antimalarial potential against P. berghei in Swiss albino mice. To understand the mechanism of synthesized analogues, they were screened computationally by molecular docking techniques. Compounds were docked into the active site of a protein receptor, Plasmodium falciparum Cysteine Protease Falcipain-2. The compounds were successfully synthesized, and structural confirmation was performed by FTIR, 1H-NMR, mass spectrometry and elemental analysis. In vitro study suggested that the compounds 5b, 5g, 5l, 5s and 5u possessed best antimalarial activity and further tested for in vivo screening. Compound 5u (CH₃ on both rings) with EC₅₀ 0.313 & 0.801 µg/ml against CQ-S & CQ-R strains of P. falciparum respectively and 78.01% suppression of parasitemia. The molecular docking studies of the compounds helped in understanding the mechanism of action against falcipain-2. The present study reveals the binding signatures of the synthesized ligands within the active site of the protein, and it explains the results from in vitro study in their EC₅₀ values and percentage parasitemia.Keywords: antimalarial activity, chalcone, docking, quinoline
Procedia PDF Downloads 4092119 In Silico Screening, Identification and Validation of Cryptosporidium hominis Hypothetical Protein and Virtual Screening of Inhibitors as Therapeutics
Authors: Arpit Kumar Shrivastava, Subrat Kumar, Rajani Kanta Mohapatra, Priyadarshi Soumyaranjan Sahu
Abstract:
Computational approaches to predict structure, function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are not effective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical epitopic protein in C. hominis genome through BLASTP analysis. A 3D model of the hypothetical protein was generated using I-Tasser server through threading methodology. The quality of the model was validated through Ramachandran plot by PROCHECK server. The functional annotation of the hypothetical protein through DALI server revealed structural similarity with human Transportin 3. Phylogenetic analysis for this hypothetical protein also showed C. hominis hypothetical protein (CUV04613) was the closely related to human transportin 3 protein. The 3D protein model is further subjected to virtual screening study with inhibitors from the Zinc Database by using Dock Blaster software. Docking study reported N-(3-chlorobenzyl) ethane-1,2-diamine as the best inhibitor in terms of docking score. Docking analysis elucidated that Leu 525, Ile 526, Glu 528, Glu 529 are critical residues for ligand–receptor interactions. The molecular dynamic simulation was done to access the reliability of the binding pose of inhibitor and protein complex using GROMACS software at 10ns time point. Trajectories were analyzed at each 2.5 ns time interval, among which, H-bond with LEU-525 and GLY- 530 are significantly present in MD trajectories. Furthermore, antigenic determinants of the protein were determined with the help of DNA Star software. Our study findings showed a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for control as well as prevention of cryptosporidiosis among humans and animals.Keywords: cryptosporidium hominis, hypothetical protein, molecular docking, molecular dynamics simulation
Procedia PDF Downloads 3652118 Evaluation of Ficus racemosa (Moraceae) as a Potential Source for Drug Formulation Against Coccidiosis
Authors: Naveeda Akhtar Qureshi, Wajiha
Abstract:
Coccidiosis is a protozoan parasitic disease of genus Eimeria. It is an avian infection causing a great economic loss of 3 billion USD per year globally. A number of anticoccidial drugs are in use however many of them have side effects and cost effective. With increase in poultry demand throughout the world there is a need of more drugs and vaccines against coccidiosis. The present study is based upon the use of F. racemosa a medicinal plant to be a potential source of anticoccidial agents. The methanolic leaves extract was fractionated by column and thin layer chromatography and got nineteen fractions. Each fraction different concentrations was evaluated for its anticoccidial properties in an invitro experiment against E. tenella, E. necatrix and E. mitis. The anticoccidial active fractions were further characterized by spectroscopy (UV-Vis, FTIR) and GC-MS analysis. The in silico molecular docking of active fractions identified compounds were carried out. Among all fractions significantly maximum sporulation inhibition efficacy was shown by F-19 (67.11±2.18) followed by F-15 (65.21±1.34) at concentration of 30mg/ml against E. tenella. The significantly highest sporozoites viability inhibition was shown by F-19 (69.23±2.11) followed by F-15 (67.14±1.52) against E. necatrix at concentration 30mg/ml. Anticoccidial active fractions 15 and 19 showed peak spectrum at 207 and 202nm respectively by UV analysis. Their FTIR analysis confirmed the presence of carboxylic acid, amines, phenols, etc. Anticoccidial active compounds like Cyclododecane methanol, oleic acid, Octadecanoic acid, etc were identified by GC-MS analysis. Identified compounds in silico molecular docking study showed that cyclododecane methanol of F-19 and oleic acid of F-15 showed highest binding affinity with target S-Adenosylmethionine synthase. Hence for further authentication in vivo anticoccidial studies are recommended.Keywords: ficus racemosa, cluster fig, column chromatography, anticoccidial fractions, GC-MS, molecular docking., s-adenosylmethionine synthase
Procedia PDF Downloads 852117 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling
Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana
Abstract:
Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin
Procedia PDF Downloads 3212116 N₂O₂ Salphen-Like Ligand and Its Pd(II), Ag(I) and Cu(II) Complexes as Potentially Anticancer Agents: Design, Synthesis, Antimicrobial, CT-DNA Binding and Molecular Docking
Authors: Laila H. Abdel-Rahman, Mohamed Shaker S. Adam, Ahmed M. Abu-Dief, Hanan El-Sayed Ahmed
Abstract:
In this investigation, Cu(II), Pd(II) and Ag(I) complexes with the tetra-dentate DSPH Schiff base ligand were synthesized. The DSPH Schiff base and its complexes were characterized by using different physicochemical and spectral analysis. The results revealed that the metal ions coordinated with DSPH ligand through azomethine nitrogen and phenolic oxygen. Cu(II), Pd(II) and Ag(I) complexes are present in a 1:1 molar ratio. Pd(II) and Ag(I) complexes have square planar geometries while, Cu(II) has a distorted octahedral (Oh) geometry. All investigated complexes are nonelectrolytes. The investigated compounds were tested against different strains of bacteria and fungi. Both prepared compounds showed good results of inhibition against the selected pathogenic microorganism. Moreover, the interaction of investigated complexes with CT-DNA was studied via various techniques and the binding modes are mainly intercalative and grooving modes. Operating Environment MOE package was used to do docking studies for the investigated complexes to explore the potential binding mode and energy. Furthermore, the growth inhibitory effect of the investigated compounds was examined on some cancer cells lines.Keywords: tetradentate, antimicrobial, CT-DNA interaction, docking, anticancer
Procedia PDF Downloads 2442115 Calycosin Ameliorates Osteoarthritis by Regulating the Imbalance Between Chondrocyte Synthesis and Catabolism
Authors: Hong Su, Qiuju Yan, Wei Du, En Hu, Zhaoyu Yang, Wei Zhang, Yusheng Li, Tao Tang, Wang yang, Shushan Zhao
Abstract:
Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ATDC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.Keywords: calycosin, osteoarthritis, network pharmacology, molecular docking, inflammatory, cyclooxygenase 2
Procedia PDF Downloads 102