Search results for: gas phase collection efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12820

Search results for: gas phase collection efficiency

12790 The Coalescence Process of Droplet Pairs in Different Junctions

Authors: Xiang Wang, Yan Pang, Zhaomiao Liu

Abstract:

Droplet-based microfluidics have been studied extensively with the development of the Micro-Electro-Mechanical System (MEMS) which bears the advantages of high throughput, high efficiency, low cost and low polydispersity. Droplets, worked as versatile carriers, could provide isolated chambers as the internal dispersed phase is protected from the outside continuous phase. Droplets are used to add reagents to start or end bio-chemical reactions, to generate concentration gradients, to realize hydrate crystallization or protein analyses, while droplets coalescence acts as an important control technology. In this paper, deionized water is used as the dispersed phase, and several kinds of oil are used as the continuous phase to investigate the influence of the viscosity ratio of the two phases on the coalescence process. The microchannels are fabricated by coating a polydimethylsiloxane (PDMS) layer onto another PDMS flat plate after corona treatment. All newly made microchannels are rinsed with the continuous oil phase for hours before experiments to ensure the swelling fully developed. High-speed microscope system is used to document the serial videos with a maximum speed of 2000 frames per second. The critical capillary numbers (Ca*) of droplet pairs in various junctions are studied and compared. Ca* varies with different junctions or different liquids within the range of 0.002 to 0.01. However, droplets without extra control would have the problem of synchronism which reduces the coalescence efficiency.

Keywords: coalescence, concentration, critical capillary number, droplet pair, split

Procedia PDF Downloads 218
12789 Phase Shifter with Frequency Adaptive Control Circuit

Authors: Hussein Shaman

Abstract:

This study introduces an innovative design for an RF phase shifter that can maintain a consistent phase shift across a broad spectrum of frequencies. The proposed design integrates an adaptive control system into a reflective-type phase shifter, typically showing frequency-related variations. Adjusting the DC voltage according to the frequency ensures a more reliable phase shift across the frequency span of operation. In contrast, conventional frequency-dependent reflective-type phase shifters may exhibit significant fluctuations in phase shifts exceeding 60 degrees in the same bandwidth. The proposed phase shifter is configured to deliver a 90-degree operation with an expected deviation of around 15 degrees. The fabrication of the phase shifter and adaptive control circuit has been verified through experimentation, with the measured outcomes aligning with the simulation results.

Keywords: phase shifter, adaptive control, varactors, electronic circuits.

Procedia PDF Downloads 39
12788 Studies on Design of Cyclone Separator with Tri-Chambered Filter Unit for Dust Removal in Rice Mills

Authors: T. K. Chandrashekar, R. Harish Kumar, T. B. Prasad, C. R. Rajashekhar

Abstract:

Cyclone separators are normally used for dust collection in rice mills for a long time. However, their dust collection efficiency is lower and is influenced by factors like geometry, exit pipe dimensions and length, humidity, and temperature at dust generation place. The design of cyclone has been slightly altered, and the new design has proven to be successful in collecting the dust particles of size up to 10 microns, the major modification was to change the height of exit pipe of the cyclone chamber to have optimum dust collection. The cyclone is coupled with a tri-chambered filter unit with three geo text materials filters of different mesh size to capture the dust less than 10 micron.

Keywords: cyclone-separator, rice mill, tri chambered filter, dust removal

Procedia PDF Downloads 494
12787 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Keywords: thermal performance, phase change material, energy efficiency, PCM optimization

Procedia PDF Downloads 385
12786 Analysis of a CO₂ Two-Phase Ejector Performances with Taguchi and Anova Optimization

Authors: Karima Megdouli

Abstract:

The ejector, a central element within the CO₂ transcritical ejection refrigeration system, holds significant importance in enhancing refrigeration capacity and minimizing compressor power usage. This study's objective is to introduce a technique for enhancing the effectiveness of the CO₂ transcritical two-phase ejector, utilizing Taguchi and ANOVA analysis. The investigation delves into the impact of geometric parameters, secondary flow temperature, and primary flow pressure on the efficiency of the ejector. Results indicate that employing a combination of Taguchi and ANOVA offers increased reliability and superior performance when optimizing the design of the CO₂ two-phase ejector.

Keywords: ejector, supersonic, Taguchi, ANOVA, optimization

Procedia PDF Downloads 54
12785 SAR and B₁ Considerations for Multi-Nuclear RF Body Coils

Authors: Ria Forner

Abstract:

Introduction: Due to increases in the SNR at 7T and above, it becomes more favourable to make use of X-nuclear imaging. Integrated body coils tuned to 120MHz for 31P, 79MHz for 23Na, and 75 MHz for 13C at 7T were simulated with a human male, female, or child body model to assess strategies of use for metabolic MR imaging in the body. Methods: B1 and SAR efficiencies in the heart, liver, spleen, and kidneys were assessed using numerical simulations over the three frequencies with phase shimming. Results: B1+ efficiency is highly variable over the different organs, particularly for the highest frequency; however, local SAR efficiency remains relatively constant over the frequencies in all subjects. Although the optimal phase settings vary, one generic phase setting can be identified for each frequency at which the penalty in B1+ is at a max of 10%. Discussion: The simulations provide practical strategies for power optimization, B1 management, and maintaining safety. As expected, the B1 field is similar at 75MHz and 79MHz, but reduced at 120MHz. However, the B1 remains relatively constant when normalised by the square root of the peak local SAR. This is in contradiction to generalized SAR considerations of 1H MRI at different field strengths, which is defined by global SAR instead. Conclusion: Although the B1 decreases with frequency, SAR efficiency remains constant throughout the investigated frequency range. It is possible to shim the body coil to obtain a maximum of 10% extra B1+ in a specific organ in a body when compared to a generic setting.

Keywords: birdcage, multi-nuclear, B1 shimming, 7 Tesla MRI, liver, kidneys, heart, spleen

Procedia PDF Downloads 37
12784 Improving Egg Production by Using Split-Phase Lighting Program

Authors: Hanan Al-Khalaifah, Afaf Al-Nasser

Abstract:

The egg shell quality and oviposition in laying hens are influenced by a range of factors including strain of birds, age, nutrition, water quality, general stress, heat stress, disease, and lighting program inside houses. A layer experiment was conducted to investigate the effect of split-phase lighting program on egg production efficiency. Four different feeds and average phosphorus (av. P) levels were tested. Diet A was a ration with an av. P level of 0.471%; Diet B was a ration with an av. P level of 0.510%; Diet C contained an av. P level of 0.293%; and Diet D contained an av. P level of 0.327%. The split-phase lighting program tested was one that inserted a 7-hour dark period from 9 am to 4 pm to reduce the heat produced by the feeding increment and physical activity of the hens. Diet B produced significantly more eggs than Diet C, or Diet D. Diet A was not significantly different from any of the other diets. Diet B also had the best feed efficiency with the other three diets in the same order and significance as for egg production. Diet D produced eggshells significantly thicker than either Diet A, or Diet B. Diet C produced thicker eggshells than Diet B, whose shells were significantly thinner than the other three diets. There were no differences in egg size. From these data, it is apparent that the minimal av. P level for the Lohmann strain of layer in Kuwait is above 0.327%. There was no difference in egg production or eggshell thickness between the split-phase light treatment and the standard light program. There was no difference in oviposition frequency. The split-phase light used 3.66% less feed, however, which was significant. The standard light produced eggs that were significantly heavier (66.30g vs. 65.73g). These results indicate that considerable savings in feed costs could be attained by using split-phase lighting, especially when cooling is not very efficient.

Keywords: egg, laying, nutrition, oviposition

Procedia PDF Downloads 201
12783 Separate Collection System of Recyclables and Biowaste Treatment and Utilization in Metropolitan Area Finland

Authors: Petri Kouvo, Aino Kainulainen, Kimmo Koivunen

Abstract:

Separate collection system for recyclable wastes in the Helsinki region was ranked second best of European capitals. The collection system includes paper, cardboard, glass, metals and biowaste. Residual waste is collected and used in energy production. The collection system excluding paper is managed by the Helsinki Region Environmental Services HSY, a public organization owned by four municipalities (Helsinki, Espoo, Kauniainen and Vantaa). Paper collection is handled by the producer responsibility scheme. The efficiency of the collection system in the Helsinki region relies on a good coverage of door-to-door-collection. All properties with 10 or more dwelling units are required to source separate biowaste and cardboard. This covers about 75% of the population of the area. The obligation is extended to glass and metal in properties with 20 or more dwelling units. Other success factors include public awareness campaigns and a fee system that encourages recycling. As a result of waste management regulations for source separation of recyclables and biowaste, nearly 50 percent of recycling rate of household waste has been reached. For households and small and medium size enterprises, there is a sorting station fleet of five stations available. More than 50 percent of wastes received at sorting stations is utilized as material. The separate collection of plastic packaging in Finland will begin in 2016 within the producer responsibility scheme. HSY started supplementing the national bring point system with door-to-door-collection and pilot operations will begin in spring 2016. The result of plastic packages pilot project has been encouraging. Until the end of 2016, over 3500 apartment buildings have been joined the piloting, and more than 1800 tons of plastic packages have been collected separately. In the summer 2015 a novel partial flow digestion process combining digestion and tunnel composting was adopted for source separated household and commercial biowaste management. The product gas form digestion process is converted in to heat and electricity in piston engine and organic Rankine cycle process with very high overall efficiency. This paper describes the efficient collection system and discusses key success factors as well as main obstacles and lessons learned as well as the partial flow process for biowaste management.

Keywords: biowaste, HSY, MSW, plastic packages, recycling, separate collection

Procedia PDF Downloads 194
12782 Comprehensive Assessment of Energy Efficiency within the Production Process

Authors: S. Kreitlein, N. Eder, J. Franke

Abstract:

The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.

Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production

Procedia PDF Downloads 708
12781 Quality Improvement Template for Undergraduate Nursing Education Curriculum Review and Analysis

Authors: Jennifer Stephens, Nichole Parker, Kristin Petrovic

Abstract:

To gain a better understanding of how students enrolled in a Bachelor of Nursing (BN) program are educated, faculty members in the BN program at Athabasca University (AU) in Alberta, Canada, developed a 3-phase comprehensive curriculum review project. Phase one of this review centered around hiring an external curriculum expert to examine and analyze the current curriculum and to propose recommendations focused on identifying gaps as well as building on strengths towards meeting changing health care trends. Phase two incorporated extensive institutional document analysis as well as qualitative and quantitative data collection in reciprocated critical reflection and has yielded insights into valuable processes, challenges, and solutions inherent to the complexities of undertaking curriculum review and analysis. Results of our phase one and two analysis generated a quality improvement (QI) template that could benefit other nursing education programs engaged in curriculum review and analysis. The key processes, lessons, and insights, as well as future project phase three plans, will be presented for iterative discussion and role modelling for other institutions undergoing, or planning, content-based curriculum review and evaluation.

Keywords: curriculum, education, nursing, nursing faculty practice, quality improvement

Procedia PDF Downloads 124
12780 Design and Characterization of Aromatase Inhibitor Loaded Nanoparticles for the Treatment of Breast Cancer

Authors: Harish K. Chandrawanshi, Mithun S. Rajput, Neelima Choure, Purnima Dey Sarkar, Shailesh Jain

Abstract:

The present research study aimed to fabricate and evaluate biodegradable nanoparticles of aromatase inhibitor letrozole, intended for breast cancer therapy. Letrozole loaded poly(D,L-lactide-co-glycolide acid) nanoparticles were prepared by solvent evaporation method using dichlorometane as solvent (oil phase) and polyvinyl alcohol (PVA) as aqueous phase. Prepared nanoparticles were characterized by particle size, infrared spectra, drug loading efficiency, drug entrapment efficiency and in vitro release and also evaluated for in vivo anticancer activity. The high speed homogenizer was used to produce stable nanoparticles of mean size range 198.35 ± 0.04 nm with high entrapment efficiency (69.86 ± 2.78%). Percentage of drug and homogenization speed significantly influenced the particle size, entrapment efficiency and release (p<0.05). The nanoparticles show significant in vivo anticancer activity against Ehrlich ascites carcinoma in mice. The significant system sustained the release of letrozole drug effectively and further investigation could exhibit its potential usefulness in breast cancer therapy.

Keywords: breast cancer/therapy, letrozole, nanoparticles, PLGA

Procedia PDF Downloads 557
12779 Conceptual Model of a Residential Waste Collection System Using ARENA Software

Authors: Bruce G. Wilson

Abstract:

The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.

Keywords: modeling, queues, residential waste collection, Monte Carlo simulation

Procedia PDF Downloads 385
12778 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels

Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract:

Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.

Keywords: CFD, coupling, discrete phase, parcel

Procedia PDF Downloads 244
12777 Iron Influx, Its Root-Shoot Relations and Utilization Efficiency in Wheat

Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani

Abstract:

Plant cultivars of the same species differ in their Fe efficiency. This paper studied the Fe influx and root-shoot relations of Fe at different growth stages in wheat. The four wheat cultivars (HD 2967, PDW 233, PBW 550 and PDW 291) were grown in pots in Badam Bagh agricultural researching farm, Kabul under two Fe treatments: (i) 0 mg Fe kg⁻¹ soil (soil with 2.7 mg kg⁻¹ of DTPA-extractable Fe) and (ii) 50 mg Fe kg⁻¹ soil. Root length (RL), shoot dry matter (SDM), Fe uptake, and soil parameters were measured at tillering and anthesis. Application of Fe significantly increased RL, root surface area, SDM, and Fe uptake in all wheat cultivars. Under Fe deficiency, wheat cv. HD 2967 produced 90% of its maximum RL and 75% of its maximum SDM. However, PDW 233 produced only 69% and 60%, respectively. Wheat cultivars HD 2967, and PDW 233 exhibited the highest and lowest value of root surface area and Fe uptake, respectively. The concentration difference in soil solution Fe between bulk soil and root surface (ΔCL) was maximum in wheat cultivar HD 2967, followed by PBW 550, PDW 291, and PDW 233. More depletion at the root surface causes steeper concentration gradients, which result in a high influx and transport of Fe towards root. Fe influx in all the wheat cultivars increased with the Fe application, but the increase was maximum, i.e., 4 times in HD 2967 and minimum, i.e., 2.8 times in PDW 233. It can be concluded that wheat cultivars HD 2967 and PBW 550 efficiently utilized Fe as compared to other cultivars. Additionally, iron efficiency of wheat cultivars depends upon uptake of each root segment, i.e., the influx, which in turn depends on depletion of Fe in the rhizosphere during vegetative phase and higher utilization efficiency of acquired Fe during reproductive phase that governs the ultimate grain yield.

Keywords: Fe efficiency, Fe influx, Fe uptake, Rhizosphere

Procedia PDF Downloads 106
12776 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions

Authors: Jian Li

Abstract:

The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.

Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase

Procedia PDF Downloads 63
12775 Public Economic Efficiency and Case-Based Reasoning: A Theoretical Framework to Police Performance

Authors: Javier Parra-Domínguez, Juan Manuel Corchado

Abstract:

At present, public efficiency is a concept that intends to maximize return on public investment focus on minimizing the use of resources and maximizing the outputs. The concept takes into account statistical criteria drawn up according to techniques such as DEA (Data Envelopment Analysis). The purpose of the current work is to consider, more precisely, the theoretical application of CBR (Case-Based Reasoning) from economics and computer science, as a preliminary step to improving the efficiency of law enforcement agencies (public sector). With the aim of increasing the efficiency of the public sector, we have entered into a phase whose main objective is the implementation of new technologies. Our main conclusion is that the application of computer techniques, such as CBR, has become key to the efficiency of the public sector, which continues to require economic valuation based on methodologies such as DEA. As a theoretical result and conclusion, the incorporation of CBR systems will reduce the number of inputs and increase, theoretically, the number of outputs generated based on previous computer knowledge.

Keywords: case-based reasoning, knowledge, police, public efficiency

Procedia PDF Downloads 103
12774 Investigation of Droplet Size Produced in Two-Phase Gravity Separators

Authors: Kul Pun, F. A. Hamad, T. Ahmed, J. O. Ugwu, J. Eyers, G. Lawson, P. A. Russell

Abstract:

Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size.

Keywords: two-phase separator, average bubble droplet, bubble size distribution, liquid-liquid phase

Procedia PDF Downloads 159
12773 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.

Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium

Procedia PDF Downloads 403
12772 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: distribution network, machine learning, network topology, phase identification, smart grid

Procedia PDF Downloads 279
12771 Rainwater Management: A Case Study of Residential Reconstruction of Cultural Heritage Buildings in Russia

Authors: V. Vsevolozhskaia

Abstract:

Since 1990, energy-efficient development concepts have constituted both a turning point in civil engineering and a challenge for an environmentally friendly future. Energy and water currently play an essential role in the sustainable economic growth of the world in general and Russia in particular: the efficiency of the water supply system is the second most important parameter for energy consumption according to the British assessment method, while the water-energy nexus has been identified as a focus for accelerating sustainable growth and developing effective, innovative solutions. The activities considered in this study were aimed at organizing and executing the renovation of the property in residential buildings located in St. Petersburg, specifically buildings with local or federal historical heritage status under the control of the St. Petersburg Committee for the State Inspection and Protection of Historic and Cultural Monuments (KGIOP) and UNESCO. Even after reconstruction, these buildings still fall into energy efficiency class D. Russian Government Resolution No. 87 on the structure and required content of project documentation contains a section entitled ‘Measures to ensure compliance with energy efficiency and equipment requirements for buildings, structures, and constructions with energy metering devices’. Mention is made of the need to install collectors and meters, which only calculate energy, neglecting the main purpose: to make buildings more energy-efficient, potentially even energy efficiency class A. The least-explored aspects of energy-efficient technology in the Russian Federation remain the water balance and the possibility of implementing rain and meltwater collection systems. These modern technologies are used exclusively for new buildings due to a lack of government directive to create project documentation during the planning of major renovations and reconstruction that would include the collection and reuse of rainwater. Energy-efficient technology for rain and meltwater collection is currently applied only to new buildings, even though research has proved that using rainwater is safe and offers a huge step forward in terms of eco-efficiency analysis and water innovation. Where conservation is mandatory, making changes to protected sites is prohibited. In most cases, the protected site is the cultural heritage building itself, including the main walls and roof. However, the installation of a second water supply system and collection of rainwater would not affect the protected building itself. Water efficiency in St. Petersburg is currently considered only from the point of view of the installation that regulates the flow of the pipeline shutoff valves. The development of technical guidelines for the use of grey- and/or rainwater to meet the needs of residential buildings during reconstruction or renovation is not yet complete. The ideas for water treatment, collection and distribution systems presented in this study should be taken into consideration during the reconstruction or renovation of residential cultural heritage buildings under the protection of KGIOP and UNESCO. The methodology applied also has the potential to be extended to other cultural heritage sites in northern countries and lands with an average annual rainfall of over 600 mm to cover average toilet-flush needs.

Keywords: cultural heritage, energy efficiency, renovation, rainwater collection, reconstruction, water management, water supply

Procedia PDF Downloads 77
12770 High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold

Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos

Abstract:

Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.

Keywords: ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO₂ / In₂O₃ bilayer

Procedia PDF Downloads 245
12769 Optimization of Three Phase Squirrel Cage Induction Motor

Authors: Tunahan Sapmaz, Harun Etçi, İbrahim Şenol, Yasemin Öner

Abstract:

Rotor bar dimensions have a great influence on the air-gap magnetic flux density. Therefore, poor selection of this parameter during the machine design phase causes the air-gap magnetic flux density to be distorted. Thus, it causes noise, torque fluctuation, and losses in the induction motor. On the other hand, the change in rotor bar dimensions will change the resistance of the conductor, so the current will be affected. Therefore, the increase and decrease of rotor bar current affect operation, starting torque, and efficiency. The aim of this study is to examine the effect of rotor bar dimensions on the electromagnetic performance criteria of the induction motor. Modeling of the induction motor is done by the finite element method (FEM), which is a very powerful tool. In FEM, the results generally focus on performance criteria such as torque, torque fluctuation, efficiency, and current.

Keywords: induction motor, finite element method, optimization, rotor bar

Procedia PDF Downloads 106
12768 Heat Transfer Enhancement Due to the Optimal Porosity in Plate Heat Exchangers with Sinusoidal Plates

Authors: Hossein Shokouhmand, Seyyed Mostafa Saadat

Abstract:

In this paper, the effect of thermal dispersion on the performance of plate heat exchangers (PHEs) with sinusoidal plates is investigated. In this regard, the PHE is considered as a porous medium. The important property of a porous medium is porosity that is defined as the total fluid volume divided by the total volume occupied by the solid and fluid. A 2D array of parallel sinusoidal plates with laminar periodically developed forced convection and single-phase constant property flows and conduction in a homogenous solid phase in two directions is considered. The array of flows is counter and the flows heat capacities are equal. Numerical study of conjugate heat transfer and axial conduction in the solid phase with different plate thicknesses showed that there is an optimal porosity in which the efficiency of heat transfer is up to 4% more than the time when the porosity is near one. It is shown that the optimal porosity at zero angle of inclination depends both on Reynolds number and the aspect ratio. The optimal porosity increased while either the Reynolds number or waviness of plates increased.

Keywords: plate heat exchanger, optimal porosity, efficiency, aspect ratio

Procedia PDF Downloads 387
12767 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic

Procedia PDF Downloads 292
12766 Frequency-Dependent and Full Range Tunable Phase Shifter

Authors: Yufu Yin, Tao Lin, Shanghong Zhao, Zihang Zhu, Xuan Li, Wei Jiang, Qiurong Zheng, Hui Wang

Abstract:

In this paper, a frequency-dependent and tunable phase shifter is proposed and numerically analyzed. The key devices are the dual-polarization binary phase shift keying modulator (DP-BPSK) and the fiber Bragg grating (FBG). The phase-frequency response of the FBG is employed to determine the frequency-dependent phase shift. The simulation results show that a linear phase shift of the recovered output microwave signal which depends on the frequency of the input RF signal is achieved. In addition, by adjusting the power of the RF signal, the full range phase shift from 0° to 360° can be realized. This structure shows the spurious free dynamic range (SFDR) of 70.90 dB·Hz2/3 and 72.11 dB·Hz2/3 under different RF powers.

Keywords: microwave photonics, phase shifter, spurious free dynamic range, frequency-dependent

Procedia PDF Downloads 263
12765 Self‑reported Auditory Problems Are Associated with Adverse Mental Health Outcomes and Alcohol Misuse in the UK Armed Forces

Authors: Fred N. H. Parker, Nicola T. Fear, S. A. M. Stevelink, L. Rafferty

Abstract:

Purpose Auditory problems, such as hearing loss and tinnitus, have been associated with mental health problems and alcohol misuse in the UK general population and in the US Armed Forces; however, few studies have examined these associations within the UK Armed Forces. The present study examined the association between auditory problems and probable common mental disorders, post-traumatic stress disorder and alcohol misuse. Methods 5474 serving and ex-service personnel from the UK Armed Forces were examined, selected from those who responded to phase two (data collection 2007–09) and phase three (2014–16) of a military cohort study. Multivariable logistic regression was used to examine the association between auditory problems at phase two and mental health problems at phase three. Results 9.7% of participants reported ever experiencing hearing problems alone, 7.9% reported tinnitus within the last month alone, and 7.8% reported hearing problems with tinnitus. After adjustment, hearing problems with tinnitus at phase two was associated with increased odds of probable common mental disorders (AOR = 1.50, 95% CI 1.09–2.08), post-traumatic stress disorder (AOR = 2.30, 95% CI 1.41–3.76), and alcohol misuse (AOR = 1.94, 95% CI 1.28–2.96) at phase three. Tinnitus alone was associated with probable post-traumatic stress disorder (AOR = 1.80, 95% CI 1.03–3.15); however, hearing problems alone were not associated with any outcomes of interest. Conclusions The association between auditory problems and mental health problems emphasizes the importance of the prevention of auditory problems in the Armed Forces: through enhanced audiometric screening, improved hearing protection equipment, and greater levels of utilization of such equipment.

Keywords: armed forces, hearing problems, tinnitus, mental health, alcohol misuse

Procedia PDF Downloads 140
12764 Experimental Study on Flooding Phenomena in a Three-Phase Direct Contact Heat Exchanger for the Utilisation in Solar Pond Applications

Authors: Hameed B. Mahood, Ali Sh. Baqir, Alasdair N. Campbell

Abstract:

Experiments to study the limitation of flooding inception of three-phase direct contact condenser have been carried out in a counter-current small diameter vertical condenser. The total column height was 70 cm and 4 cm diameter. Only 48 cm has been used as an active three-phase direct contact condenser height. Vapour pentane with three different initial temperatures (40, 43.5 and 47.5 °C) and water with a constant temperature (19 °C) have been used as a dispersed phase and a continuous phase respectively. Five different continuous phase mass flow rate and four different dispersed phase mass flow rate have been tested throughout the experiments. Dimensionless correlation based on the previous common flooding correlation is proposed to calculate the up flow flooding inception of the three-phase direct contact condenser.

Keywords: Three-phase heat exchanger, condenser, solar energy, flooding phenomena

Procedia PDF Downloads 310
12763 A New Spell-Out Mechanism

Authors: Yusra Yahya

Abstract:

In this paper, a new spell-out mechanism is developed and defended. This mechanism builds on the role of phase heads as both the loci of spell-out features and the transfer triggers via either Phase Impenetrability Condition 1 (PIC1) and/or Phase Impenetrability Condition 2 (PIC2). The assumption here is that phase heads, mainly v*, can regulate the spell-out process by deciding both the type of spell-out applying and the timing of spell-out relevant. This paper also proposes a new form of the constraint Wrap call it Wrap-XP’ and it is assumed to apply to IP as a functional maximal projection. This extension is shown to fall as a natural result once we assume the new theory of phases and multiple spell-out. Moreover, it is proposed in this work that some forms of XP movement are not motivated by an EPP feature of a strong phase head mainly v*, but they are rather motivated by a last resort strategy to accomplish the spell-out instruction of this phase head.

Keywords: linguistics, syntax, phonology, phase theory, optimality theory

Procedia PDF Downloads 491
12762 The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions

Authors: Ramin Dabirian, Yi Zhang, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation.

Keywords: oil-water dispersion, separation mechanism, phase inversion, emulsion formation

Procedia PDF Downloads 164
12761 Integrated Management System of Plant Genetic Resources: Collection, Conservation, Regeneration and Characterization of Cucurbitaceae and Solanaceae of DOA Genebank, Thailand

Authors: Kunyaporn Pipithsangchan, Alongkorn Korntong, Assanee Songserm, Phatchara Piriyavinit, Saowanee Dechakampoo

Abstract:

The Kingdom of Thailand is one of the South East Asian countries. From its area of 514,000 square kilometers (51 million ha), at least 18,000 plant species (8% of the world total) have been estimated to be found in the country. As a result, the conservation of plant genetic diversity, particularly food crops, is becoming important and is an assurance for the national food security. Department of Agriculture Genebank or DOA Genebank, Thailand is responsible for the conservation of plant germplasm by participating and accomplishing several collaborative projects both at national and international levels. Integrated Management System of Plant Genetic Resources or IMPGR is one of the most outstandingly successful cooperation. It is a multilateral project under the Asian Food and Agriculture Cooperation Initiative (AFACI) supported by the Rural Development Administration (RDA) of South Korea. The member countries under the project consist of 11 nations namely Bangladesh, Cambodia, Indonesia, Laos PDR, Mongolia, Nepal, Philippines, Sri Lanka, Thailand, Vietnam and South Korea. The project enabled the members to jointly address the global issues in plant genetic resource (PGR) conservation and strengthen their network in this aspect. The 1st phase of IMPGR project, entitled 'Collection, Conservation, Regeneration and Characterization of Cucurbitaceae and Solanaceae 2012-2014', comprises three main objectives that are: 1) To improve management in storage facilities, collection, and regeneration, 2) To improve linkage between Genebank and material sources (for regeneration), and 3) To improve linkage between Genebank and other field crop or/and horticultural research centers. The project was done for three years from 2012 to 2014. The activities of the project can be described as following details: In the 1st year, there were 9 target provinces for completing plant genetic resource survey and collection. 108 accessions of PGR were collected. In the 2nd year, PGR were continuously surveyed and collected from 9 provinces. The total number of collection was 140 accessions. In addition, the process of regeneration of 237 accessions collected from 1st and 2nd year was started at several sites namely Biotechnology Research and Development Office, Sukothai Horticultural Research Center, Tak Research, and Development Center and Nakhon Ratchasima Research and Development Center. In the 3rd year, besides survey and collection of 115 accessions from 9 target provinces, PGR characterization and evaluation were done for 206 accessions. Moreover, safety duplication of 253 PGR at the World Seed Vault, RDA, was also done according to Standard Agreement on Germplasm Safety Duplication between Department of Agriculture, Ministry of Agriculture and Cooperatives, the Kingdom of Thailand and the National Agrobiodiversity Center, Rural Development Administration of the Republic of Korea. The success of the 1st phase project led to the second phase which entitled 'Collection and Characterization for Effective Conservation of Local Capsicum spp., Solanum spp. and Lycopersicon spp. in Thailand 2015-2017'.

Keywords: characterization, conservation, DOA genebank, plant genetic resources

Procedia PDF Downloads 159