Search results for: fractal technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6669

Search results for: fractal technique

6639 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models

Authors: Reza Bazargan lari, Mohammad H. Fattahi

Abstract:

Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.

Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN

Procedia PDF Downloads 368
6638 Multiband Fractal Patch Antenna for Small Spacecraft of Earth Remote Sensing

Authors: Beibit Karibayev, Akmaral Imanbayeva, Timur Namazbayev

Abstract:

Currently, the small spacecraft (SSC) industry is experiencing a big boom in popularity. This is primarily due to ease of use, low cost and mobility. In addition, these programs can be implemented not only at the state level but also at the level of companies, universities and other organizations. For remote sensing of the Earth (ERS), small spacecraft with an orientation system is used. It is important to take into account here that a remote sensing device, for example, a camera for photographing the Earth's surface, must be directed at the Earth's surface. But this, at first glance, the limitation can be turned into an advantage using a patch antenna. This work proposed to use a patch antenna based on a unidirectional fractal in the SSC. The CST Microwave Studio software package was used for simulation and research. Copper (ε = 1.0) was chosen as the emitting element and reflector. The height of the substrate was 1.6 mm, the type of substrate material was FR-4 (ε = 4.3). The simulation was performed in the frequency range of 0 – 6 GHz. As a result of the research, a patch antenna based on fractal geometry was developed for ERS nanosatellites. The capabilities of these antennas are modeled and investigated. A method for calculating and modeling fractal geometry for patch antennas has been developed.

Keywords: antenna, earth remote sensing, fractal, small spacecraft

Procedia PDF Downloads 260
6637 Labyrinth Fractal on a Convex Quadrilateral

Authors: Harsha Gopalakrishnan, Srijanani Anurag Prasad

Abstract:

Quadrilateral labyrinth fractals are a new type of fractals that are introduced in this paper. They belong to a unique class of fractals on any plane quadrilateral. The previously researched labyrinth fractals on the unit square and triangle inspire this form of fractal. This work describes how to construct a quadrilateral labyrinth fractal and looks at the circumstances in which it can be understood as the attractor of an iterated function system. Furthermore, some of its topological properties and the Hausdorff and box-counting dimensions of the quadrilateral labyrinth fractals are studied.

Keywords: fractals, labyrinth fractals, dendrites, iterated function system, Haus-Dorff dimension, box-counting dimension, non-self similar, non-self affine, connected, path connected

Procedia PDF Downloads 76
6636 Parametric Analysis of Water Lily Shaped Split Ring Resonator Loaded Fractal Monopole Antenna for Multiband Applications

Authors: C. Elavarasi, T. Shanmuganantham

Abstract:

A coplanar waveguide (CPW) feed is presented, and comprising a split ring resonator (SRR) loaded fractal with water lily shape is used for multi band applications. The impedance matching of the antenna is determined by the number of Koch curve fractal unit cells. The antenna is designed on a FR4 substrate with a permittivity of εr = 4.4 and size of 14 x 16 x 1.6 mm3 to generate multi resonant mode at 3.8 GHz covering S band, 8.68 GHz at X band, 13.96 GHz at Ku band, and 19.74 GHz at K band with reflection coefficient better than -10 dB. Simulation results show that the antenna exhibits the desired voltage standing wave ratio (VSWR) level and radiation patterns across the wide frequency range. The fundamental parameters of the antenna such as return loss, VSWR, good radiation pattern with reasonable gain across the operating bands are obtained.

Keywords: fractal, metamaterial, split ring resonator, waterlily shape

Procedia PDF Downloads 273
6635 Optimizing the Window Geometry Using Fractals

Authors: K. Geetha Ramesh, A. Ramachandraiah

Abstract:

In an internal building space, daylight becomes a powerful source of illumination. The challenge therefore, is to develop means of utilizing both direct and diffuse natural light in buildings while maintaining and improving occupant's visual comfort, particularly at greater distances from the windows throwing daylight. The geometrical features of windows in a building have significant effect in providing daylight. The main goal of this research is to develop an innovative window geometry, which will effectively provide the daylight component adequately together with internal reflected component(IRC) and also the external reflected component(ERC), if any. This involves exploration of a light redirecting system using fractal geometry for windows, in order to penetrate and distribute daylight more uniformly to greater depths, minimizing heat gain and glare, and also to reduce building energy use substantially. Of late the creation of fractal geometrical window and the occurrence of daylight illuminance due to such windows is becoming an interesting study. The amount of daylight can change significantly based on the window geometry and sky conditions. This leads to the (i) exploration of various fractal patterns suitable for window designs, and (ii) quantification of the effect of chosen fractal window based on the relationship between the fractal pattern, size, orientation and glazing properties for optimizing daylighting. There are a lot of natural lighting applications able to predict the behaviour of a light in a room through a traditional opening - a regular window. The conventional prediction methodology involves the evaluation of the daylight factor, the internal reflected component and the external reflected component. Having evaluated the daylight illuminance level for a conventional window, the technical performance of a fractal window for an optimal daylighting is to be studied and compared with that of a regular window. The methodologies involved are highlighted in this paper.

Keywords: daylighting, fractal geometry, fractal window, optimization

Procedia PDF Downloads 301
6634 Fractal Nature of Granular Mixtures of Different Concretes Formulated with Different Methods of Formulation

Authors: Fatima Achouri, Kaddour Chouicha, Abdelwahab Khatir

Abstract:

It is clear that concrete of quality must be made with selected materials chosen in optimum proportions that remain after implementation, a minimum of voids in the material produced. The different methods of formulations what we use, are based for the most part on a granular curve which describes an ‘optimal granularity’. Many authors have engaged in fundamental research on granular arrangements. A comparison of mathematical models reproducing these granular arrangements with experimental measurements of compactness have to verify that the minimum porosity P according to the following extent granular exactly a power law. So the best compactness in the finite medium are obtained with power laws, such as Furnas, Fuller or Talbot, each preferring a particular setting between 0.20 and 0.50. These considerations converge on the assumption that the optimal granularity Caquot approximates by a power law. By analogy, it can then be analyzed as a granular structure of fractal-type since the properties that characterize the internal similarity fractal objects are reflected also by a power law. Optimized mixtures may be described as a series of installments falling granular stuff to better the tank on a regular hierarchical distribution which would give at different scales, by cascading effects, the same structure to the mix. Likely this model may be appropriate for the entire extent of the size distribution of the components, since the cement particles (and silica fume) correctly deflocculated, micrometric dimensions, to chippings sometimes several tens of millimeters. As part of this research, the aim is to give an illustration of the application of fractal analysis to characterize the granular concrete mixtures optimized for a so-called fractal dimension where different concretes were studying that we proved a fractal structure of their granular mixtures regardless of the method of formulation or the type of concrete.

Keywords: concrete formulation, fractal character, granular packing, method of formulation

Procedia PDF Downloads 259
6633 Numerical Implementation and Testing of Fractioning Estimator Method for the Box-Counting Dimension of Fractal Objects

Authors: Abraham Terán Salcedo, Didier Samayoa Ochoa

Abstract:

This work presents a numerical implementation of a method for estimating the box-counting dimension of self-avoiding curves on a planar space, fractal objects captured on digital images; this method is named fractioning estimator. Classical methods of digital image processing, such as noise filtering, contrast manipulation, and thresholding, among others, are used in order to obtain binary images that are suitable for performing the necessary computations of the fractioning estimator. A user interface is developed for performing the image processing operations and testing the fractioning estimator on different captured images of real-life fractal objects. To analyze the results, the estimations obtained through the fractioning estimator are compared to the results obtained through other methods that are already implemented on different available software for computing and estimating the box-counting dimension.

Keywords: box-counting, digital image processing, fractal dimension, numerical method

Procedia PDF Downloads 83
6632 Multiband Prefractal Microstrip Antenna for Wireless Applications

Authors: Yadwinder Kumar, Priyanka Rani Amandeep Singh

Abstract:

In this paper the design of a multiband pre-fractal micro strip antenna with proximity coupling feed is presented. The proposed antenna resonates on seven different frequencies that are 2.6 GHz, 5.1 GHz, 9.4 GHz, 11.5 GHz, 13.8 GHz, 16.3 GHz, and 18.6 GHz. Simulated results presented here shows that the minimum return loss is achieved at the 16.3 GHz frequency which is up to 37 dB. Also the maximum band width of 700 MHz is achieved by the frequency bands 13.4 GHz to 14.1 GHz, 15.9 GHz to 16.6 GHz and 18.2 GHz to 18.9 GHz. The proposed feed line is sandwiched between two substrate layers and increases in the bandwidth of antenna has been observed up to 13% in comparison of micro strip feed line. Effect of key design parameters such as variation in substrate material, substrate height and feeding technique on antenna S-parameter have been investigated and discussed.

Keywords: fractal antenna, pre-fractals, micro strip antenna, ISM band, electromagnetic coupling, VSWR

Procedia PDF Downloads 588
6631 The Mathematics of Fractal Art: Using a Derived Cubic Method and the Julia Programming Language to Make Fractal Zoom Videos

Authors: Darsh N. Patel, Eric Olson

Abstract:

Fractals can be found everywhere, whether it be the shape of a leaf or a system of blood vessels. Fractals are used to help study and understand different physical and mathematical processes; however, their artistic nature is also beautiful to simply explore. This project explores fractals generated by a cubically convergent extension to Newton's method. With this iteration as a starting point, a complex plane spanning from -2 to 2 is created with a color wheel mapped onto it. Next, the polynomial whose roots the fractal will generate from is established. From the Fundamental Theorem of Algebra, it is known that any polynomial has as many roots (counted by multiplicity) as its degree. When generating the fractals, each root will receive its own color. The complex plane can then be colored to indicate the basins of attraction that converge to each root. From a computational point of view, this project’s code identifies which points converge to which roots and then obtains fractal images. A zoom path into the fractal was implemented to easily visualize the self-similar structure. This path was obtained by selecting keyframes at different magnifications through which a path is then interpolated. Using parallel processing, many images were generated and condensed into a video. This project illustrates how practical techniques used for scientific visualization can also have an artistic side.

Keywords: fractals, cubic method, Julia programming language, basin of attraction

Procedia PDF Downloads 251
6630 The Quantitative Analysis of the Traditional Rural Settlement Plane Boundary

Authors: Yifan Dong, Xincheng Pu

Abstract:

Rural settlements originate from the accumulation of residential building elements, and their agglomeration forms the settlement pattern and defines the relationship between the settlement and the inside and outside. The settlement boundary is an important part of the settlement pattern. Compared with the simplification of the urban settlement boundary, the settlement of the country is more complex, fuzzy and uncertain, and then presents a rich and diverse boundary morphological phenomenon. In this paper, China traditional rural settlements plane boundary as the research object, using fractal theory and fractal dimension method, quantitative analysis of planar shape boundary settlement, and expounds the research for the architectural design, ancient architecture protection and renewal and development and the significance of the protection of settlements.

Keywords: rural settlement, border, fractal, quantification

Procedia PDF Downloads 248
6629 Invistigation of Surface Properties of Nanostructured Carbon Films

Authors: Narek Margaryan, Zhozef Panosyan

Abstract:

Due to their unique properties, carbon nanofilms have become the object of general attention and intensive research. In this case it plays a very important role to study surface properties of these films. It is also important to study processes of forming of this films, which is accompanied by a process of self-organization at the nano and micro levels. For more detailed investigation, we examined diamond-like carbon (DLC) layers deposited by chemical vapor deposition (CVD) method on Ge substrate and hydro-generated grapheme layers obtained on surface of colloidal solution using grouping method. In this report surface transformation of these CVD nanolayers is studied by atomic force microscopy (AFM) upon deposition time. Also, it can be successfully used to study surface properties of self-assembled grapheme layers. In turn, it is possible to sketch out their boundary line, which enables one to draw an idea of peculiarities of formation of these layers. Images obtained by AFM are investigated as a mathematical set of numbers and fractal and roughness analysis were done. Fractal dimension, Regne’s fractal coefficient, histogram, Fast Fourier transformation, etc. were obtained. The dependence of fractal parameters on the deposition duration for CVD films and on temperature of solution tribolayers was revealed. As an important surface parameter for our carbon films, surface energy was calculated as function of Regne’s fractal coefficient. Surface potential was also measured with Kelvin probe method using semi-contacting AFM. The dependence of surface potential on the deposition duration for CVD films and on temperature of solution for hydro-generated graphene was found as well. Results obtained by fractal analysis method was related with purly esperimental results for number of samples.

Keywords: nanostructured films, self-assembled grapheme, diamond-like carbon, surface potential, Kelvin probe method, fractal analysis

Procedia PDF Downloads 268
6628 Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded

Authors: Phyo Wai Aung, Sysoev Oleg Evgenevich, Boris Necolavet Maryin

Abstract:

The article deals with theoretical problems of correlation of processes of microstructure changes of structural materials under cyclic loading and acoustic emission. The ways of the evolution of a microstructure under the influence of cyclic loading are shown depending on the structure of the initial crystal structure of the material. The spectra of the frequency characteristics of acoustic emission signals are experimentally obtained when testing titanium samples for cyclic loads. Changes in the fractal dimension of the acoustic emission signals in the selected frequency bands during the evolution of the microstructure of structural materials from the action of cyclic loads, as well as in the destruction of samples, are studied. The experimental samples were made of VT-20 structural material widely used in aircraft and rocket engineering. The article shows the striving of structural materials for synergistic stability and reduction of the fractal dimension of acoustic emission signals, in accordance with the degradation of the microstructure, which occurs as a result of fatigue processes from the action of low cycle loads. As a result of the research, the frequency range of acoustic emission signals of 100-270 kHz is determined, in which the fractal dimension of the signals, it is possible to most reliably predict the durability of structural materials.

Keywords: cyclic loadings, material structure changing, acoustic emission, fractal dimension

Procedia PDF Downloads 262
6627 New Hybrid Method to Model Extreme Rainfalls

Authors: Youness Laaroussi, Zine Elabidine Guennoun, Amine Amar

Abstract:

Modeling and forecasting dynamics of rainfall occurrences constitute one of the major topics, which have been largely treated by statisticians, hydrologists, climatologists and many other groups of scientists. In the same issue, we propose in the present paper a new hybrid method, which combines Extreme Values and fractal theories. We illustrate the use of our methodology for transformed Emberger Index series, constructed basing on data recorded in Oujda (Morocco). The index is treated at first by Peaks Over Threshold (POT) approach, to identify excess observations over an optimal threshold u. In the second step, we consider the resulting excess as a fractal object included in one dimensional space of time. We identify fractal dimension by the box counting. We discuss the prospect descriptions of rainfall data sets under Generalized Pareto Distribution, assured by Extreme Values Theory (EVT). We show that, despite of the appropriateness of return periods given by POT approach, the introduction of fractal dimension provides accurate interpretation results, which can ameliorate apprehension of rainfall occurrences.

Keywords: extreme values theory, fractals dimensions, peaks Over threshold, rainfall occurrences

Procedia PDF Downloads 361
6626 Using of the Fractal Dimensions for the Analysis of Hyperkinetic Movements in the Parkinson's Disease

Authors: Sadegh Marzban, Mohamad Sobhan Sheikh Andalibi, Farnaz Ghassemi, Farzad Towhidkhah

Abstract:

Parkinson's disease (PD), which is characterized by the tremor at rest, rigidity, akinesia or bradykinesia and postural instability, affects the quality of life of involved individuals. The concept of a fractal is most often associated with irregular geometric objects that display self-similarity. Fractal dimension (FD) can be used to quantify the complexity and the self-similarity of an object such as tremor. In this work, we are aimed to propose a new method for evaluating hyperkinetic movements such as tremor, by using the FD and other correlated parameters in patients who are suffered from PD. In this study, we used 'the tremor data of Physionet'. The database consists of fourteen participants, diagnosed with PD including six patients with high amplitude tremor and eight patients with low amplitude. We tried to extract features from data, which can distinguish between patients before and after medication. We have selected fractal dimensions, including correlation dimension, box dimension, and information dimension. Lilliefors test has been used for normality test. Paired t-test or Wilcoxon signed rank test were also done to find differences between patients before and after medication, depending on whether the normality is detected or not. In addition, two-way ANOVA was used to investigate the possible association between the therapeutic effects and features extracted from the tremor. Just one of the extracted features showed significant differences between patients before and after medication. According to the results, correlation dimension was significantly different before and after the patient's medication (p=0.009). Also, two-way ANOVA demonstrates significant differences just in medication effect (p=0.033), and no significant differences were found between subject's differences (p=0.34) and interaction (p=0.97). The most striking result emerged from the data is that correlation dimension could quantify medication treatment based on tremor. This study has provided a technique to evaluate a non-linear measure for quantifying medication, nominally the correlation dimension. Furthermore, this study supports the idea that fractal dimension analysis yields additional information compared with conventional spectral measures in the detection of poor prognosis patients.

Keywords: correlation dimension, non-linear measure, Parkinson’s disease, tremor

Procedia PDF Downloads 244
6625 The Logistics Equation and Fractal Dimension in Escalators Operations

Authors: Ali Albadri

Abstract:

The logistics equation has never been used or studied in scientific fields outside the field of ecology. It has never been used to understand the behavior of a dynamic system of mechanical machines, like an escalator. We have studied the compatibility of the logistic map against real measurements from an escalator. This study has proven that there is good compatibility between the logistics equation and the experimental measurements. It has discovered the potential of a relationship between the fractal dimension and the non-linearity parameter, R, in the logistics equation. The fractal dimension increases as the R parameter (non-linear parameter) increases. It implies that the fractal dimension increases as the phase of the life span of the machine move from the steady/stable phase to the periodic double phase to a chaotic phase. The fractal dimension and the parameter R can be used as a tool to verify and check the health of machines. We have come up with a theory that there are three areas of behaviors, which they can be classified during the life span of a machine, a steady/stable stage, a periodic double stage, and a chaotic stage. The level of attention to the machine differs depending on the stage that the machine is in. The rate of faults in a machine increases as the machine moves through these three stages. During the double period and the chaotic stages, the number of faults starts to increase and become less predictable. The rate of predictability improves as our monitoring of the changes in the fractal dimension and the parameter R improves. The principles and foundations of our theory in this work have and will have a profound impact on the design of systems, on the way of operation of systems, and on the maintenance schedules of the systems. The systems can be mechanical, electrical, or electronic. The discussed methodology in this paper will give businesses the chance to be more careful at the design stage and planning for maintenance to control costs. The findings in this paper can be implied and used to correlate the three stages of a mechanical system to more in-depth mechanical parameters like wear and fatigue life.

Keywords: logistcs map, bifurcation map, fractal dimension, logistics equation

Procedia PDF Downloads 108
6624 Step into the Escalator’s Fractal Behavior by Using the Poincare Map

Authors: Ali Albadri

Abstract:

Step band in an escalator moves in a cyclic periodic pattern. Similarly, most if not all of the components and sub-assemblies in the escalator operate in the same way. If you mark up one step in the step band of an escalator and stand next to the escalator, on the incline, to watch the marked-up step when it passes by, you ask yourself, does the marked up step behaves exactly the same way during each revolution when it passes you by again and again? We can say that; there is some similarity in this example and the example when an astronomer watches planets in the sky, and he or she asks himself or herself, does each planet intersects the plan of observation in the same position for every pantry rotation? For a fact, we know for the answer to the second example is no, because scientist, astronomers, and mathematicians have proven that planets deviate from their paths to take new paths during their planetary moves, albeit with minimal change. But what about the answer to the question in the first example? considering that there is increase in the wear and tear of components with time in the step, in the step band, in the tracks and in many other places in the escalator. There is also the accumulation of fatigue in the components and sub-assemblies. This research is part of many studies which we are conducting to address the answer for the question in the first example. We have been using the fractal dimension as a quantities tool and the Poincare map as a qualitative tool. This study has shown that the fractal dimension value and the shape and distribution of the orbits in the Poincare map has significant correlation with the quality of the mechanical components and sub-assemblies in the escalator.

Keywords: fractal dimension, Poincare map, rugby ball orbit, worm orbit

Procedia PDF Downloads 59
6623 A Neural Approach for Color-Textured Images Segmentation

Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui

Abstract:

In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.

Keywords: segmentation, color-texture, neural networks, fractal, watershed

Procedia PDF Downloads 346
6622 Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface

Authors: Srijanani Anurag Prasad

Abstract:

The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprises a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS.

Keywords: fractal, interpolation, iterated function system, coalescence, node insertion, knot insertion

Procedia PDF Downloads 100
6621 Oil Reservoirs Bifurcation Analysis in the Democratic Republic of Congo: Fractal Characterization Approach of Makelekese MS-25 Field

Authors: Leonard Mike McNelly Longwa, Divine Kusosa Musiku, D. Nahum Kabeya

Abstract:

In this paper the bifurcation analysis of oilfield in Democratic Republic of Congo is presented in order to enhance petroleum production in an intense tectonic evolution characterized by distinct compressive and extensive phases and the digenetic transformation in the reservoirs during burial geological configuration. The use of porous media in Makelekese MS-25 field has been established to simulate the boundaries within 3 sedimentary basins open to exploration including the coastal basin with an area of 5992 km2, a central basin with an area of 800,000 km2, the western branch of the East African Rift in which there are 50,000 km2. The fractal characterization of complex hydro-dynamic fractures in oilfield is developed to facilitate oil production process based on reservoirs bifurcation model.

Keywords: reservoir bifurcation, fractal characterisation, permeability, conductivity, skin effect

Procedia PDF Downloads 198
6620 Oil Reservoirs Bifurcation Analysis in the Democratic Republic of Congo: Fractal Characterization Approach of Makelekese MS-25 Field

Authors: Leonard Mike McNelly Longwa, Divine Kusosa Musiku, Dieudonne Nahum Kabeya

Abstract:

In this paper, the bifurcation analysis of oilfields in the Democratic Republic of Congo is presented in order to enhance petroleum production in an intense tectonic evolution characterized by distinct compressive and extensive phases and the digenetic transformation in the reservoirs during burial geological configuration. The use of porous media in the Makelekese MS-25 field has been established to simulate the boundaries within 3 sedimentary basins open to exploration including the coastal basin with an area of 5992 km², a central basin with an area of 800,000 km², the western branch of the East African Rift in which there are 50,000 km². The fractal characterization of complex hydro-dynamic fractures in oilfields is developed to facilitate the oil production process based on the reservoirs bifurcation model.

Keywords: reservoir bifurcation, fractal characterization, permeability, conductivity, skin effect

Procedia PDF Downloads 130
6619 Geomorphology Evidence of Climate Change in Gavkhouni Lagoon, South East Isfahan, Iran

Authors: Manijeh Ghahroudi Tali, Ladan Khedri Gharibvand

Abstract:

Gavkhouni lagoon, in the South East of Isfahan (Iran), is one of the pluvial lakes and legacy of Quaternary era which has emerged during periods with more precipitation and less evaporation. Climate change, lack of water resources and dried freshwater of Zayandehrood resulted in increased entropy and activated a dynamic which in turn is converted to Playa. The morphometry of 61 polygonal clay microforms in wet zone soil, 52 polygonal clay microforms in pediplain zone soil and 63 microforms in sulfate soil, is evaluated by fractal model. After calculating the microforms’ area–perimeter fractal dimension, their turbulence level was analyzed. Fractal dimensions (DAP) obtained from the microforms’ analysis of pediplain zone, wet zone, and sulfate soils are 1/21-1/39, 1/27-1/44 and 1/29-1/41, respectively, which is indicative of turbulence in these zones. Logarithmic graph drawn for each region also shows that there is a linear relationship between logarithm of the microforms’ area and perimeter so that correlation coefficient (R2) obtained for wet zone is larger than 0.96, for pediplain zone is larger than 0.99 and for sulfated zone is 0.9. Increased turbulence in this region suggests morphological transformation of the system and lagoon’s conversion to a new ecosystem which can be accompanied with serious risks.

Keywords: fractal, Gavkhouni, microform, Iran

Procedia PDF Downloads 271
6618 Investigation of Complexity Dynamics in a DC Glow Discharge Magnetized Plasma Using Recurrence Quantification Analysis

Authors: Vramori Mitra, Bornali Sarma, Arun K. Sarma

Abstract:

Recurrence is a ubiquitous feature of any real dynamical system. The states in phase space trajectory of a system have an inherent tendency to return to the same state or its close state after certain time laps. Recurrence quantification analysis technique, based on this fundamental feature of a dynamical system, detects evaluation of state under variation of control parameter of the system. The paper presents the investigation of nonlinear dynamical behavior of plasma floating potential fluctuations obtained by using a Langmuir probe in different magnetic field under the variation of discharge voltages. The main measures of recurrence quantification analysis are considered as determinism, linemax and entropy. The increment of the DET and linemax variables asserts that the predictability and periodicity of the system is increasing. The variable linemax indicates that the chaoticity is being diminished with the slump of magnetic field while increase of magnetic field enhancing the chaotic behavior. Fractal property of the plasma time series estimated by DFA technique (Detrended fluctuation analysis) reflects that long-range correlation of plasma fluctuations is decreasing while fractal dimension is increasing with the enhancement of magnetic field which corroborates the RQA analysis.

Keywords: detrended fluctuation analysis, chaos, phase space, recurrence

Procedia PDF Downloads 328
6617 Box Counting Dimension of the Union L of Trinomial Curves When α ≥ 1

Authors: Kaoutar Lamrini Uahabi, Mohamed Atounti

Abstract:

In the present work, we consider one category of curves denoted by L(p, k, r, n). These curves are continuous arcs which are trajectories of roots of the trinomial equation zn = αzk + (1 − α), where z is a complex number, n and k are two integers such that 1 ≤ k ≤ n − 1 and α is a real parameter greater than 1. Denoting by L the union of all trinomial curves L(p, k, r, n) and using the box counting dimension as fractal dimension, we will prove that the dimension of L is equal to 3/2.

Keywords: feasible angles, fractal dimension, Minkowski sausage, trinomial curves, trinomial equation

Procedia PDF Downloads 189
6616 Approach to Study the Workability of Concrete with the Fractal Model

Authors: Achouri Fatima, Chouicha Kaddour

Abstract:

The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability, to develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G / S, the quantity of cement C and the quantity of mixing water E. We also call on other model as the model for the thickness of the water layer and model of the thickness of the paste layer to judge their relevance, hence the following results : the relevance of the model of the thickness of the water layer is considered relevant when there is a variation in the water quantity, the model of the thickness of the layer of the paste is only applicable if we consider that the paste is made with the grain value Dmax = 2.85: value from which we see a stable model.

Keywords: concrete, fractal method, paste thickness, water thickness, workability

Procedia PDF Downloads 379
6615 Aggregation of Fractal Aggregates Inside Fractal Cages in Irreversible Diffusion Limited Cluster Aggregation Binary Systems

Authors: Zakiya Shireen, Sujin B. Babu

Abstract:

Irreversible diffusion-limited cluster aggregation (DLCA) of binary sticky spheres was simulated by modifying the Brownian Cluster Dynamics (BCD). We randomly distribute N spheres in a 3D box of size L, the volume fraction is given by Φtot = (π/6)N/L³. We identify NA and NB number of spheres as species A and B in our system both having identical size. In these systems, both A and B particles undergo Brownian motion. Irreversible bond formation happens only between intra-species particles and inter-species interact only through hard-core repulsions. As we perform simulation using BCD we start to observe binary gels. In our study, we have observed that species B always percolate (cluster size equal to L) as expected for the monomeric case and species A does not percolate below a critical ratio which is different for different volume fractions. We will also show that the accessible volume of the system increases when compared to the monomeric case, which means that species A is aggregating inside the cage created by B. We have also observed that for moderate Φtot the system undergoes a transition from flocculation region to percolation region indicated by the change in fractal dimension from 1.8 to 2.5. For smaller ratio of A, it stays in the flocculation regime even though B have already crossed over to the percolation regime. Thus, we observe two fractal dimension in the same system.

Keywords: BCD, fractals, percolation, sticky spheres

Procedia PDF Downloads 280
6614 Fractal Analysis of Some Bifurcations of Discrete Dynamical Systems in Higher Dimensions

Authors: Lana Horvat Dmitrović

Abstract:

The main purpose of this paper is to study the box dimension as fractal property of bifurcations of discrete dynamical systems in higher dimensions. The paper contains the fractal analysis of the orbits near the hyperbolic and non-hyperbolic fixed points in discrete dynamical systems. It is already known that in one-dimensional case the orbit near the hyperbolic fixed point has the box dimension equal to zero. On the other hand, the orbit near the non-hyperbolic fixed point has strictly positive box dimension which is connected to the non-degeneracy condition of certain bifurcation. One of the main results in this paper is the generalisation of results about box dimension near the hyperbolic and non-hyperbolic fixed points to higher dimensions. In the process of determining box dimension, the restriction of systems to stable, unstable and center manifolds, Lipschitz property of box dimension and the notion of projective box dimension are used. The analysis of the bifurcations in higher dimensions with one multiplier on the unit circle is done by using the normal forms on one-dimensional center manifolds. This specific change in box dimension of an orbit at the moment of bifurcation has already been explored for some bifurcations in one and two dimensions. It was shown that specific values of box dimension are connected to appropriate bifurcations such as fold, flip, cusp or Neimark-Sacker bifurcation. This paper further explores this connection of box dimension as fractal property to some specific bifurcations in higher dimensions, such as fold-flip and flip-Neimark-Sacker. Furthermore, the application of the results to the unit time map of continuous dynamical system near hyperbolic and non-hyperbolic singularities is presented. In that way, box dimensions which are specific for certain bifurcations of continuous systems can be obtained. The approach to bifurcation analysis by using the box dimension as specific fractal property of orbits can lead to better understanding of bifurcation phenomenon. It could also be useful in detecting the existence or nonexistence of bifurcations of discrete and continuous dynamical systems.

Keywords: bifurcation, box dimension, invariant manifold, orbit near fixed point

Procedia PDF Downloads 253
6613 Approximation of the Time Series by Fractal Brownian Motion

Authors: Valeria Bondarenko

Abstract:

In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.

Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model

Procedia PDF Downloads 376
6612 On the Design of Wearable Fractal Antenna

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.

Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna

Procedia PDF Downloads 463
6611 Morphological Investigation of Sprawling Along Emerging Peri-Urban Transit Corridor of Mowe-Ibafo Axis of the Lagos Megacity Region

Authors: Folayele Oluyemi Akindeju, Tobi Joseph Ajoro

Abstract:

The city as a complex system exhibiting chaotic behaviour is in a state of constant change, in response to prevailing social, economic, environmental and technological factors. Without adequate investigation and control mechanisms to tame the sporadic nature of growth in most urban areas of cities in developing regions, organic sprawling visibly manifests with its attendant problems, most especially at peri-urban areas. The Lagos Megacity region in southwest Nigeria, as one of the largest megacities in the world contends with the challenges of sprawling at the peri-urban areas especially along emerging transit corridors. Due to the seemingly unpredictable nature of this growth, this paper attempts a morphological investigation into the growth of peri-urban settlements along the Mowe-Ibafo transit corridor of the Megacity region over a temporal space of three decades (1984-2014). This study adopts the application of the Fractal Analysis and Regression Analysis methods through the correlation of population density and fractal dimension values to establish the pattern and nature of growth, due to the inadequacies of conventional methods of urban analysis which cannot deal with the unpredictability of such complex urban forms as the peri-urban areas. It was deduced that the dynamic urban expansion in the last three decades resulted in about 74.2% urban change rate between 1984 and 2000 and 63.4% urban change rate between 2000 and 2014. With the R2 value between the fractal dimension and population density been 1, the regression model indicates a positive correlation between Fractal Dimension (D) and Population Density (pop/km2), where the increase in the population density from 5740 pop/km2 to 8060 pop/km2 and later decrease to 7580 pop/km2 leads to an increase in the fractal dimension of urban growth from 1.451 in 1984 to 1.853 in 2014. This, therefore, justifies the ability to predict and determine the nature and direction of growth of complex entities and is sufficient to substantially suggest the need for adequate policy framework towards sustainable urban planning and infrastructural provision in the Peri-urban areas.

Keywords: fractal analysis, Lagos Megacity, peri-urban, sprawling, urban morphology

Procedia PDF Downloads 174
6610 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport

Authors: Surupa Shaw, Debjyoti Banerjee

Abstract:

Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.

Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement

Procedia PDF Downloads 318