Search results for: false positives and negatives (FPFN)
411 Utility of the Loop-Mediated Isothermal Amplification Assay for the Diagnosis of Visceral Leishmaniasis from Blood Samples in Ethiopia
Authors: Dawit Gebreegzabher Hagos, Yazezew Kebede Kiro, Mahmud Abdulkader, Henk H. D. F. Schallig, Dawit Wolday
Abstract:
Rapid and accurate visceral leishmaniasis (VL) diagnosis is needed to initiate prompt treatment to reduce morbidity and mortality. Here, we evaluated the performance of loop-mediated isothermal amplification (LAMP) assay for the diagnosis of VL from blood in an endemic area in Ethiopia. LAMP was positive in 117/122 confirmed VL cases and negative in 149/152 controls, resulting in a sensitivity of 95.9% (95% CI: 90.69–98.66) and a specificity of 98.0% (95% CI: 94.34–99.59), respectively. The sensitivity of the LAMP assay was 95.0% (95% CI: 88.61–98.34) in HIV-negatives and 100% (95% CI: 85.18–100.0) in HIV-positives. Compared with microscopy, LAMP detected 82/87 (94.3%, 95% CI: 87.10–98.11) of the microscopy1 cases and was negative in 11/27 (40.7%, 95% CI: 22.39–61.20) of the microscopy2 cases. Compared with the rK39 serology, LAMP detected 113/120 (94.2%, 95% CI: 88.35–97.62) of the rK391 cases and was negative in 149/154 (96.8%, 95% CI: 92.59–98.94) of the rK392 cases. However, when compared with microscopy only, rK39 detected 83/87 (95.4%, 95% CI: 88.64–98.73) of the microscopy1 cases and negative in only 12/27 (44.4%, 95% CI: 25.48–64.67) of the microscopy– cases. There was an excellent agreement between rK39 and LAMP (Kappa 5 0.91, 95% CI: 0.86–0.96). Furthermore, an algorithm using rK39 followed by LAMP would yield a sensitivity of 99.2% (95%CI: 95.52–99.89) and a specificity of 98.0% (95% CI: 94.34–99.59). The findings demonstrate that the LAMP assay is an accurate and rapid molecular assay for VL diagnosis, including in HIV-1 co-infected patients, in an endemic setting.Keywords: visceral leishmaniasis, HIV, diagnosis, LAMP, Ethiopia
Procedia PDF Downloads 104410 South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels
Authors: Jaco Oosthuizen, Nerina C. Van Der Merwe
Abstract:
The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency.Keywords: familial breast cancer, multiplex ligation-dependent probe amplification, next generation sequencing, South Africa
Procedia PDF Downloads 235409 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems
Authors: Nadjah Chergui, Narhimene Boustia
Abstract:
Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.Keywords: context, default, exception, vulnerability
Procedia PDF Downloads 261408 Effects of Artificial Intelligence Technology on Children: Positives and Negatives
Authors: Paula C. Latorre Arroyo, Andrea C. Latorre Arroyo
Abstract:
In the present society, children are exposed to and impacted by technology from very early on in various ways. Artificial intelligence (AI), in particular, directly affects them, be it positively or negatively. The concept of artificial intelligence is commonly defined as the technological programming of computers or robotic mechanisms with humanlike capabilities and characteristics. These technologies are often designed as helpful machines or disguised as handy tools that could ultimately steal private information for illicit purposes. Children, being one of the most vulnerable groups due to their lack of experience and knowledge, do not have the ability to recognize or have the malice to distinguish if an apparatus with artificial intelligence is good or bad for them. For this reason, as a society, there must be a sense of responsibility to regulate and monitor different types of uses for artificial intelligence to protect children from potential risks that might arise. This article aims to investigate the many implications that artificial intelligence has in the lives of children, starting from a home setting, within the classroom, and, ultimately, in online spaces. Irrefutably, there are numerous beneficial aspects to the use of artificial intelligence. However, due to its limitless potential and lack of specific and substantial regulations to prevent the illicit use of this technology, safety and privacy concerns surface, specifically regarding the youth. This written work aims to provide an in-depth analysis of how artificial intelligence can both help children and jeopardize their safety. Concluding with resources and data supporting the aforementioned statement.Keywords: artificial intelligence, children, privacy, rights, safety
Procedia PDF Downloads 72407 Evaluation of Four Different DNA Targets in Polymerase Chain Reaction for Detection and Genotyping of Helicobacter pylori
Authors: Abu Salim Mustafa
Abstract:
Polymerase chain reaction (PCR) assays targeting genomic DNA segments have been established for the detection of Helicobacter pylori in clinical specimens. However, the data on comparative evaluations of various targets in detection of H. pylori are limited. Furthermore, the frequencies of vacA (s1 and s2) and cagA genotypes, which are suggested to be involved in the pathogenesis of H. pylori in other parts of the world, are not well studied in Kuwait. The aim of this study was to evaluate PCR assays for the detection and genotyping of H. pylori by targeting the amplification of DNA targets from four genomic segments. The genomic DNA were isolated from 72 clinical isolates of H. pylori and tested in PCR with four pairs of oligonucleotides primers, i.e. ECH-U/ECH-L, ET-5U/ET-5L, CagAF/CagAR and Vac1F/Vac1XR, which were expected to amplify targets of various sizes (471 bp, 230 bp, 183 bp and 176/203 bp, respectively) from the genomic DNA of H. pylori. The PCR-amplified DNA were analyzed by agarose gel electrophoresis. PCR products of expected size were obtained with all primer pairs by using genomic DNA isolated from H. pylori. DNA dilution experiments showed that the most sensitive PCR target was 471 bp DNA amplified by the primers ECH-U/ECH-L, followed by the targets of Vac1F/Vac1XR (176 bp/203 DNA), CagAF/CagAR (183 bp DNA) and ET-5U/ET-5L (230 bp DNA). However, when tested with undiluted genomic DNA isolated from single colonies of all isolates, the Vac1F/Vac1XR target provided the maximum positive results (71/72 (99% positives)), followed by ECH-U/ECH-L (69/72 (93% positives)), ET-5U/ET-5L (51/72 (71% positives)) and CagAF/CagAR (26/72 (46% positives)). The results of genotyping experiments showed that vacA s1 (46% positive) and vacA s2 (54% positive) genotypes were almost equally associated with VaCA+/CagA- isolates (P > 0.05), but with VacA+/CagA+ isolates, S1 genotype (92% positive) was more frequently detected than S2 genotype (8% positive) (P< 0.0001). In conclusion, among the primer pairs tested, Vac1F/Vac1XR provided the best results for detection of H. pylori. The genotyping experiments showed that vacA s1 and vacA s2 genotypes were almost equally associated with vaCA+/cagA- isolates, but vacA s1 genotype had a significantly increased association with vacA+/cagA+ isolates.Keywords: H. pylori, PCR, detection, genotyping
Procedia PDF Downloads 135406 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection
Authors: Weihao Wang, Zhulin Zong
Abstract:
Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals
Procedia PDF Downloads 84405 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 290404 The Perils of Flagging Pirates: How Gender, False Consensus and Normative Messages Influence Digital Piracy Intentions
Authors: Kate Whitman, Zahra Murad, Joe Cox, Adam Cox
Abstract:
This study investigates the influence of normative communications on digital piracy intentions. Although descriptive norms are thought to influence behavior, the study examines the potential bias in one's own behavior, leading to false consensus—a phenomenon perpetuating undesirable activities. The research tests the presence of false consensus and the effect of correcting normative predictions on changes in piracy intentions, examining gender differences. Results from a controlled experiment (N = 684) indicate that normative communications, reflecting the "real" norm based on government data (N=5000), increase (decrease) piracy intentions among men (women) underestimating their peers' behavior. Conversely, neither men nor women overestimating their peers' piracy show any notable change in intentions. Considering men consume more illegal content than women, suggesting they pose a higher risk, the study highlights the need for cautious use of normative communications. Therefore, policymakers should minimize the visibility of piracy behavior for effective digital piracy management.Keywords: digital piracy, false consensus, normative interventions, persuasive messages
Procedia PDF Downloads 63403 Improving Human Resources Management in Indian Civil Service
Authors: Anant Deogaonkar, Archana Nanoty
Abstract:
The term civil service plays a vital role in functioning of any government. In today’s modern era of globalization civil services essentially contribute for the success of the good governance system. The civil service in India refers to the body of government officials employed in civil occupations that are neither political nor judicial. The Indian Civil Services were created to foster the idea of unity in diversity with the expectation of giving continuity and change in administration independent of the political scenario and turmoil affecting the country. The civil service is an integral part of administration and the structures of administration to determine the way civil service functions. The concept of good governance necessarily precludes the effective human resource management ensuring the root level reach of the good governance. The serious matter of concern is the element of change. The civil service in general has maintained status quo instead of sweeping changes in social and economic scenario. One may disagree for this but it is a fact on the street that the Indian civil service was not able to deliver up to the expectations of the people and was lacking on the service front. The effective management of human resources at civil service needs to be prioritized and will form a key factor in successful delivery of the desired results may be in minimum duration. This paper focuses on the various ways of effective management of human resources in civil services. It also highlights the importance of improvement in human resource management in civil services with the detailed discussion of positives and negatives if any of the human resource management in civil services.Keywords: civil services, human resources management, India, governance
Procedia PDF Downloads 321402 Balanced Ischemia Misleading to a False Negative Myocardial Perfusion Imaging (Stress) Test
Authors: Devam Sheth
Abstract:
Nuclear imaging with stress myocardial perfusion (stress test) is the preferred first line investigation for noninvasive evaluation of ischaemic heart condition. The sensitivity of this test is close to 90 % making it a very reliable test. However, rarely it gives a false negative result which can be explained by the phenomenon termed as “balanced ischaemia”. We present the case of a 78 year Caucasian female without any significant past cardiac history, who presents with chest pain and shortness of breath since one day. The initial ECG and cardiac enzymes were non-impressive. Few hours later, she had some substernal chest pain along with some ST segment depression in the lateral leads. Stress test comes back negative for any significant perfusion defects. However, given her typical symptoms, she underwent a cardiac catheterization which revealed significant triple vessel disease mandating her to get a bypass surgery. This unusual phenomenon of false nuclear stress test in the setting of positive ECG changes can be explained only by balanced ischemia wherein due to global myocardial ischemia, the stress test fails to reveal relative perfusion defects in the affected segments.Keywords: balanced, false positive, ischemia, myocardial perfusion imaging
Procedia PDF Downloads 306401 The Phenomena of False Cognates and Deceptive Cognates: Issues to Foreign Language Learning and Teaching Methodology Based on Set Theory
Authors: Marilei Amadeu Sabino
Abstract:
The aim of this study is to establish differences between the terms ‘false cognates’, ‘false friends’ and ‘deceptive cognates’, usually considered to be synonyms. It will be shown they are not synonyms, since they do not designate the same linguistic process or phenomenon. Despite their differences in meaning, many pairs of formally similar words in two (or more) different languages are true cognates, although they are usually known as ‘false’ cognates – such as, for instance, the English and Italian lexical items ‘assist x assistere’; ‘attend x attendere’; ‘argument x argomento’; ‘apology x apologia’; ‘camera x camera’; ‘cucumber x cocomero’; ‘fabric x fabbrica’; ‘factory x fattoria’; ‘firm x firma’; ‘journal x giornale’; ‘library x libreria’; ‘magazine x magazzino’; ‘parent x parente’; ‘preservative x preservativo’; ‘pretend x pretendere’; ‘vacancy x vacanza’, to name but a few examples. Thus, one of the theoretical objectives of this paper is firstly to elaborate definitions establishing a distinction between the words that are definitely ‘false cognates’ (derived from different etyma) and those that are just ‘deceptive cognates’ (derived from the same etymon). Secondly, based on Set Theory and on the concepts of equal sets, subsets, intersection of sets and disjoint sets, this study is intended to elaborate some theoretical and practical questions that will be useful in identifying more precisely similarities and differences between cognate words of different languages, and according to graphic interpretation of sets it will be possible to classify them and provide discernment about the processes of semantic changes. Therefore, these issues might be helpful not only to the Learning of Second and Foreign Languages, but they could also give insights into Foreign and Second Language Teaching Methodology. Acknowledgements: FAPESP – São Paulo State Research Support Foundation – the financial support offered (proc. n° 2017/02064-7).Keywords: deceptive cognates, false cognates, foreign language learning, teaching methodology
Procedia PDF Downloads 340400 Fluorometric Aptasensor: Evaluation of Stability and Comparison to Standard Enzyme-Linked Immunosorbent Assay
Authors: J. Carlos Kuri, Varun Vij, Raymond J. Turner, Orly Yadid-Pecht
Abstract:
Celiac disease (CD) is an immune system disorder that is triggered by ingesting gluten. As a gluten-free (GF) diet has become a concern of many people for health reasons, a gold standard had to be nominated. Enzyme-linked immunosorbent assay (ELISA) has taken the seat of this role. However, multiple limitations were discovered, and with that, the desire for an alternative method now exists. Nucleic acid-based aptamers have become of great interest due to their selectivity, specificity, simplicity, and rapid-testing advantages. However, fluorescence-based aptasensors have been tagged as unstable, but lifespan details are rarely stated. In this work, the lifespan stability of a fluorescence-based aptasensor is shown over an 8-week-long study displaying the accuracy of the sensor and false negatives. This study follows 22 different samples, including GF and gluten-rich (GR) and soy sauce products, off-the-shelf products, and reference material from laboratories, giving a total of 836 tests. The analysis shows an accuracy of correctly classifying GF and GR products of 96.30% and 100%, respectively when the protocol is augmented with molecular sieves. The overall accuracy remains around 94% within the first four weeks and then decays to 63%.Keywords: aptasensor, PEG, rGO, FAM, RM, ELISA
Procedia PDF Downloads 128399 Machine Learning Driven Analysis of Kepler Objects of Interest to Identify Exoplanets
Authors: Akshat Kumar, Vidushi
Abstract:
This paper identifies 27 KOIs, 26 of which are currently classified as candidates and one as false positives that have a high probability of being confirmed. For this purpose, 11 machine learning algorithms were implemented on the cumulative kepler dataset sourced from the NASA exoplanet archive; it was observed that the best-performing model was HistGradientBoosting and XGBoost with a test accuracy of 93.5%, and the lowest-performing model was Gaussian NB with a test accuracy of 54%, to test model performance F1, cross-validation score and RUC curve was calculated. Based on the learned models, the significant characteristics for confirm exoplanets were identified, putting emphasis on the object’s transit and stellar properties; these characteristics were namely koi_count, koi_prad, koi_period, koi_dor, koi_ror, and koi_smass, which were later considered to filter out the potential KOIs. The paper also calculates the Earth similarity index based on the planetary radius and equilibrium temperature for each KOI identified to aid in their classification.Keywords: Kepler objects of interest, exoplanets, space exploration, machine learning, earth similarity index, transit photometry
Procedia PDF Downloads 80398 Challenge of the Credibility of Witnesses in the International Criminal Court and the Precondition to Establish the Truth
Authors: Romina Beqiri
Abstract:
In the context of the prosecution of those responsible for the commission of the most hideous crimes and the fight against impunity, a fundamental role is played by witnesses of the crimes who contribute to ascertaining the ‘procedural truth’. This article examines recent decisions and legislation of the Hague-based International Criminal Court in terms of the endangerment of the integrity of the criminal proceedings in consequence of witness tampering. The analysis focuses on the new developments in the courtroom and the academia, in particular, on the first-ever sentence confirming the charges of corruptly influencing witnesses, interpretation of presenting false evidence and giving false testimony when under an obligation to tell the truth. Confronted with recent tampering with witnesses and their credibility at stake in the ongoing cases, the research explores different Court’s decisions and scholars’ legal disputes concerning the deterrence approach to punish the authors of offences against the administration of justice when committed intentionally. Therefore, the analysis concludes that the Court cannot tolerate any witness false testimony and should enhance consistency and severity of sanctions for the sake of fair trial and end impunity.Keywords: International Criminal Court, administration of justice, credibility of witness, fair trial, false testimony, witness tampering
Procedia PDF Downloads 173397 Inverse Problem Method for Microwave Intrabody Medical Imaging
Authors: J. Chamorro-Servent, S. Tassani, M. A. Gonzalez-Ballester, L. J. Roca, J. Romeu, O. Camara
Abstract:
Electromagnetic and microwave imaging (MWI) have been used in medical imaging in the last years, being the most common applications of breast cancer and stroke detection or monitoring. In those applications, the subject or zone to observe is surrounded by a number of antennas, and the Nyquist criterium can be satisfied. Additionally, the space between the antennas (transmitting and receiving the electromagnetic fields) and the zone to study can be prepared in a homogeneous scenario. However, this may differ in other cases as could be intracardiac catheters, stomach monitoring devices, pelvic organ systems, liver ablation monitoring devices, or uterine fibroids’ ablation systems. In this work, we analyzed different MWI algorithms to find the most suitable method for dealing with an intrabody scenario. Due to the space limitations usually confronted on those applications, the device would have a cylindrical configuration of a maximum of eight transmitters and eight receiver antennas. This together with the positioning of the supposed device inside a body tract impose additional constraints in order to choose a reconstruction method; for instance, it inhabitants the use of well-known algorithms such as filtered backpropagation for diffraction tomography (due to the unusual configuration with probes enclosed by the imaging region). Finally, the difficulty of simulating a realistic non-homogeneous background inside the body (due to the incomplete knowledge of the dielectric properties of other tissues between the antennas’ position and the zone to observe), also prevents the use of Born and Rytov algorithms due to their limitations with a heterogeneous background. Instead, we decided to use a time-reversed algorithm (mostly used in geophysics) due to its characteristics of ignoring heterogeneities in the background medium, and of focusing its generated field onto the scatters. Therefore, a 2D time-reversed finite difference time domain was developed based on the time-reversed approach for microwave breast cancer detection. Simultaneously an in-silico testbed was also developed to compare ground-truth dielectric properties with corresponding microwave imaging reconstruction. Forward and inverse problems were computed varying: the frequency used related to a small zone to observe (7, 7.5 and 8 GHz); a small polyp diameter (5, 7 and 10 mm); two polyp positions with respect to the closest antenna (aligned or disaligned); and the (transmitters-to-receivers) antenna combination used for the reconstruction (1-1, 8-1, 8-8 or 8-3). Results indicate that when using the existent time-reversed method for breast cancer here for the different combinations of transmitters and receivers, we found false positives due to the high degrees of freedom and unusual configuration (and the possible violation of Nyquist criterium). Those false positives founded in 8-1 and 8-8 combinations, highly reduced with the 1-1 and 8-3 combination, being the 8-3 configuration de most suitable (three neighboring receivers at each time). The 8-3 configuration creates a region-of-interest reduced problem, decreasing the ill-posedness of the inverse problem. To conclude, the proposed algorithm solves the main limitations of the described intrabody application, successfully detecting the angular position of targets inside the body tract.Keywords: FDTD, time-reversed, medical imaging, microwave imaging
Procedia PDF Downloads 131396 Real, Ideal, or False Self- Presentation among Young Adult and Middle Adult Facebook Users
Authors: Maria Joan Grafil, Hannah Wendam, Christine Joyce Yu
Abstract:
The use of social networking sites had been a big part of life of most people. One of the most popular among these is Facebook. Users range from young adults to late adults. While it is more popular among emerging and young adults, this social networking site gives people opportunities to express the self. Via Facebook, people have the opportunity to think about what they prefer to show others. This study identified which among the multiple facets of the self (real self, false self or ideal self) is dominantly presented by young adults and middle adults in using the social networking site Facebook. South Metro Manila was the locale of this study where 100 young adult participants (aged 18-25) were students from nearby universities and the 100 middle adult participants (aged 35-45) were working residents within the area. Participants were comprised of 53% females and 47% males. The data was gathered using a self-report questionnaire to determine which online self-presentation (real self-presentation, false self-presentation, or ideal self-presentation) of the participants has greater extent when engaging in the social networking site Facebook. Using means comparison, results showed that both young adults and middle adults engaged primarily in real self-presentation.Keywords: false self, ideal self, middle adult, real self, self presentation, young adult
Procedia PDF Downloads 292395 Parameter Estimation of False Dynamic EIV Model with Additive Uncertainty
Authors: Dalvinder Kaur Mangal
Abstract:
For the past decade, noise corrupted output measurements have been a fundamental research problem to be investigated. On the other hand, the estimation of the parameters for linear dynamic systems when also the input is affected by noise is recognized as more difficult problem which only recently has received increasing attention. Representations where errors or measurement noises/disturbances are present on both the inputs and outputs are usually called errors-in-variables (EIV) models. These disturbances may also have additive effects which are also considered in this paper. Parameter estimation of false EIV problem using equation error, output error and iterative prefiltering identification schemes with and without additive uncertainty, when only the output observation is corrupted by noise has been dealt in this paper. The comparative study of these three schemes has also been carried out.Keywords: errors-in-variable (EIV), false EIV, equation error, output error, iterative prefiltering, Gaussian noise
Procedia PDF Downloads 500394 True and False Cognates of Japanese, Chinese and Philippine Languages: A Contrastive Analysis
Authors: Jose Marie E. Ocdenaria, Riceli C. Mendoza
Abstract:
Culturally, languages meet, merge, share, exchange, appropriate, donate, and divide in and to and from each other. Further, this type of recurrence manifests in East Asian cultures, where language influence diffuses across geographical proximities. Historically, China has notable impacts on Japan’s culture. For instance, Japanese borrowed words from China and their way of reading and writing. This qualitative and descriptive employing contrastive analysis study addressed the true and false cognates of Japanese-Philippine languages and Chinese-Philippine languages. It involved a rich collection of data from various sources like textual pieces of evidence or corpora to gain a deeper understanding of true and false cognates between L1 and L2. Cognates of Japanese-Philippine languages and Chinese-Philippine languages were analyzed contrastively according to orthography, phonology, and semantics. The words presented were the roots; however, derivatives, reduplications, and variants of stress were included when they shed emphases on the comparison. The basis of grouping the cognates was its phonetic-semantic resemblance. Based on the analysis, it revealed that there are words which may have several types of lexical relationship. Further, the study revealed that the Japanese language has more false cognates in the Philippine languages, particularly in Tagalog and Cebuano. On the other hand, there are more true cognates of Chinese in Tagalog. It is the hope of this study to provide a significant contribution to a diverse audience. These include the teachers and learners of foreign languages such as Japanese and Chinese, future researchers and investigators, applied linguists, curricular theorists, community, and publishers.Keywords: Contrastive Analysis, Japanese, Chinese and Philippine languages, Qualitative and descriptive study, True and False Cognates
Procedia PDF Downloads 141393 The Role of Mobile Applications on Consumerism Case Study: Snappfood Application
Authors: Vajihe Fasihi
Abstract:
With the advancement of technology and the expansion of the Internet, a significant change in lifestyle and consumption can be seen in societies. The increasing number of mobile applications (such as SnappFood) has expanded the scope of using apps for wider access to services to citizens and meets the needs of a large number of citizens in the shortest time and with reasonable quality. First, this article seeks to understand the concept and function of the Internet distribution network on the Iranian society, which was investigated in a smaller sample (students of the Faculty of Social Sciences of the Tehran university ) and uses the semi-structured interview method, and then explores the concept of consumerism. The main issue of this research is the effect of mobile apps, especially SnappFood, on increasing consumption and the difference between real needs and false needs among consumers. The findings of this research show that the use of the mentioned program has been effective in increasing the false needs of the sample community and has led to the phenomenon of consumerism.Keywords: consumerism economics, false needs, mobile applications, reel needs
Procedia PDF Downloads 61392 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 24391 An Improved Sub-Nyquist Sampling Jamming Method for Deceiving Inverse Synthetic Aperture Radar
Authors: Yanli Qi, Ning Lv, Jing Li
Abstract:
Sub-Nyquist sampling jamming method (SNSJ) is a well known deception jamming method for inverse synthetic aperture radar (ISAR). However, the anti-decoy of the SNSJ method performs easier since the amplitude of the false-target images are weaker than the real-target image; the false-target images always lag behind the real-target image, and all targets are located in the same cross-range. In order to overcome the drawbacks mentioned above, a simple modulation based on SNSJ (M-SNSJ) is presented in this paper. The method first uses amplitude modulation factor to make the amplitude of the false-target images consistent with the real-target image, then uses the down-range modulation factor and cross-range modulation factor to make the false-target images move freely in down-range and cross-range, respectively, thus the capacity of deception is improved. Finally, the simulation results on the six available combinations of three modulation factors are given to illustrate our conclusion.Keywords: inverse synthetic aperture radar (ISAR), deceptive jamming, Sub-Nyquist sampling jamming method (SNSJ), modulation based on Sub-Nyquist sampling jamming method (M-SNSJ)
Procedia PDF Downloads 220390 Angiographic Evaluation of ETT (Treadmill) Positive Patients in a Tertiary Care Hospital of Bangladesh
Authors: Syed Dawood Md. Taimur, Saidur Rahman Khan, Farzana Islam
Abstract:
Objective: To evaluate the factors which predetermine the coronary artery disease in patients having positive Exercise Tolerance Test (ETT) that is treadmill results and coronary artery findings. Methods: This descriptive study was conducted at Department of Cardiology, Ibrahim Cardiac Hospital & Research Institute,Dhaka,Bangladesh from 1st January, 2014 to 31st August, 2014. All patients who had done ETT (treadmill) for chest pain diagnosis were studied. One hundred and four patients underwent coronary angiogram after positive treadmill result. Patients were divided into two groups depending upon the angiographic findings, i.e. true positive and false positive. Positive treadmill test patients who have coronary artery involvement these are called true positive and who have no involvement they are called false positive group. Both groups were compared with each other. Results: Out of 104 patients, 81 (77.9%) patients had true positive ETT and 23 (22.1%) patients had false positive ETT. The mean age of patients in positive ETT was 53.46± 8.06 years and male mean age was 53.63±8.36 years and female was 52.87 ± 7.0 years. Sixty nine (85.19%) male patients and twelve (14.81%) female patients had true positive ETT, whereas 15 (65.21%) males and 8 (34.79%) females had false positive ETT, this was statistically significant (p<0.032)difference in the two groups(sex) in comparison of true and false positive ETT. The risk factors of these patients like diabetes mellitus, hypertension, dyslipidemia, family history and smoking were seen among these patients. Hypertensive patients having true positive which were statically significant (p<0.004) and diabetic, dyslipidaemic patients having true positive which were statically significant (p < 0.032 & 0.030).True positive patients had family history were 68 (83.95%) and smoking were 52 (64.20%), where family history patients had statistically significant(p<0.017) between two groups of patients and smokers were significant (p<0.012). 46 true positive patients achieved THR which was not statistically significant (P<0.138)and 79 true patients had abnormal resting ECG whether it was significant (p<0.036). Amongst the vessels involvement the most common was LAD 55 (67.90%), followed by LCX 42 (51.85%), RCA 36 (44.44%) and the LMCA was 9 (11.11%), .40 patients (49.38%) had SVD, 26 (30.10%) had DVD, 15(18.52%) had TVD and 23 had normal coronary arteries. Conclusion: It can be concluded that among the female patients who have positive ETT with normal resting ECG, who had achieved target heart rate are likely to have a false positive test result. Conversely male patients,resting abnormal ECG who had not achieved THR, symptom limited ETT, have a hypertension, diabetis, dyslipidaemic, family history and smoking are likely to have a true positive treadmill test result.Keywords: exercise tolerance test, coronary artery disease, coronary angiography, true positive, false positive
Procedia PDF Downloads 276389 Heuristic Classification of Hydrophone Recordings
Authors: Daniel M. Wolff, Patricia Gray, Rafael de la Parra Venegas
Abstract:
An unsupervised machine listening system is constructed and applied to a dataset of 17,195 30-second marine hydrophone recordings. The system is then heuristically supplemented with anecdotal listening, contextual recording information, and supervised learning techniques to reduce the number of false positives. Features for classification are assembled by extracting the following data from each of the audio files: the spectral centroid, root-mean-squared values for each frequency band of a 10-octave filter bank, and mel-frequency cepstral coefficients in 5-second frames. In this way both time- and frequency-domain information are contained in the features to be passed to a clustering algorithm. Classification is performed using the k-means algorithm and then a k-nearest neighbors search. Different values of k are experimented with, in addition to different combinations of the available feature sets. Hypothesized class labels are 'primarily anthrophony' and 'primarily biophony', where the best class result conforming to the former label has 104 members after heuristic pruning. This demonstrates how a large audio dataset has been made more tractable with machine learning techniques, forming the foundation of a framework designed to acoustically monitor and gauge biological and anthropogenic activity in a marine environment.Keywords: anthrophony, hydrophone, k-means, machine learning
Procedia PDF Downloads 172388 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images
Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara
Abstract:
Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases
Procedia PDF Downloads 147387 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.Keywords: Epilepsy, seizure, phase correlation, fluctuation, deviation.
Procedia PDF Downloads 467386 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework
Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim
Abstract:
Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change
Procedia PDF Downloads 224385 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 60384 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection
Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs
Abstract:
Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance
Procedia PDF Downloads 118383 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy
Authors: Ingrid Argote, John Archila, Marcelo Becker
Abstract:
In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.
Procedia PDF Downloads 234382 Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes
Authors: Dmitry Dikarev, Ajit Nimbalker, Alexei Davydov
Abstract:
Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard.Keywords: 5G New Radio, channel coding, cyclic redundancy check, list decoding, polar codes
Procedia PDF Downloads 244