Search results for: environmental features
10286 Security Features for Remote Healthcare System: A Feasibility Study
Authors: Tamil Chelvi Vadivelu, Nurazean Maarop, Rasimah Che Yusoff, Farhana Aini Saludin
Abstract:
Implementing a remote healthcare system needs to consider many security features. Therefore, before any deployment of the remote healthcare system, a feasibility study from the security perspective is crucial. Remote healthcare system using WBAN technology has been used in other countries for medical purposes but in Malaysia, such projects are still not yet implemented. This study was conducted qualitatively. The interview results involving five healthcare practitioners are further elaborated. The study has addressed four important security features in order to incorporate remote healthcare system using WBAN in Malaysian government hospitals.Keywords: remote healthcare, IT security, security features, wireless sensor application
Procedia PDF Downloads 30610285 Designing an Effective Accountability Model for Islamic Azad University Using the Qualitative Approach of Grounded Theory
Authors: Davoud Maleki, Neda Zamani
Abstract:
The present study aims at exploring the effective accountability model of Islamic Azad University using a qualitative approach of grounded theory. The data of this study were obtained from semi-structured interviews with 25 professors and scholars in Islamic Azad University of Tehran who were selected by theoretical sampling method. In the data analysis, the stepwise method and Strauss and Corbin analytical methods (1992) were used. After identification of the main component (balanced response to stakeholders’ needs) and using it to bring the categories together, expressions and ideas representing the relationships between the main and subcomponents, and finally, the revealed components were categorized into six dimensions of the paradigm model, with the relationships among them, including causal conditions (7 components), main component (balanced response to stakeholders’ needs), strategies (5 components), environmental conditions (5 components), intervention features (4 components), and consequences (3 components). Research findings show an exploratory model for describing the relationships between causal conditions, main components, accountability strategies, environmental conditions, university environmental features, and that consequences.Keywords: accountability, effectiveness, Islamic Azad University, grounded theory
Procedia PDF Downloads 8610284 Mood Recognition Using Indian Music
Authors: Vishwa Joshi
Abstract:
The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.Keywords: music, mood, features, classification
Procedia PDF Downloads 49710283 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 13810282 Systems Versioning: A Features-Based Meta-Modeling Approach
Authors: Ola A. Younis, Said Ghoul
Abstract:
Systems running these days are huge, complex and exist in many versions. Controlling these versions and tracking their changes became a very hard process as some versions are created using meaningless names or specifications. Many versions of a system are created with no clear difference between them. This leads to mismatching between a user’s request and the version he gets. In this paper, we present a system versions meta-modeling approach that produces versions based on system’s features. This model reduced the number of steps needed to configure a release and gave each version its unique specifications. This approach is applicable for systems that use features in its specification.Keywords: features, meta-modeling, semantic modeling, SPL, VCS, versioning
Procedia PDF Downloads 44610281 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins
Authors: Navab Karimi, Tohid Alizadeh
Abstract:
An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.
Procedia PDF Downloads 7310280 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features
Authors: Stylianos Kampakis
Abstract:
This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.Keywords: neural networks, feature selection, regularization, aggressive reweighting
Procedia PDF Downloads 45510279 An Automatic Feature Extraction Technique for 2D Punch Shapes
Authors: Awais Ahmad Khan, Emad Abouel Nasr, H. M. A. Hussein, Abdulrahman Al-Ahmari
Abstract:
Sheet-metal parts have been widely applied in electronics, communication and mechanical industries in recent decades; but the advancement in sheet-metal part design and manufacturing is still behind in comparison with the increasing importance of sheet-metal parts in modern industry. This paper presents a methodology for automatic extraction of some common 2D internal sheet metal features. The features used in this study are taken from Unipunch ™ catalogue. The extraction process starts with the data extraction from STEP file using an object oriented approach and with the application of suitable algorithms and rules, all features contained in the catalogue are automatically extracted. Since the extracted features include geometry and engineering information, they will be effective for downstream application such as feature rebuilding and process planning.Keywords: feature extraction, internal features, punch shapes, sheet metal
Procedia PDF Downloads 61610278 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis
Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze
Abstract:
The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.Keywords: auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter
Procedia PDF Downloads 42510277 Enterprise Information Portal Features: Results of Content Analysis Literature Review
Authors: Michal Krčál
Abstract:
Since their introduction in 1990’s, Enterprise Information Portals (EIPs) were investigated from different perspectives (e.g. project management, technology acceptance, IS success). However, no systematic literature review was produced to systematize both the research efforts and the technology itself. This paper reports first results of an extent systematic literature review study focused on research of EIPs and its categorization, specifically it reports a conceptual model of EIP features. The previous attempt to categorize EIP features was published in 2002. For the purpose of the literature review, content of 89 articles was analyzed in order to identify and categorize features of EIPs. The methodology of the literature review was as follows. Firstly, search queries in major indexing databases (Web of Science and SCOPUS) were used. The results of queries were analyzed according to their usability for the goal of the study. Then, full-texts were coded in Atlas.ti according to previously established coding scheme. The codes were categorized and the conceptual model of EIP features was created.Keywords: enterprise information portal, content analysis, features, systematic literature review
Procedia PDF Downloads 29810276 Content-Based Image Retrieval Using HSV Color Space Features
Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari
Abstract:
In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.Keywords: content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation
Procedia PDF Downloads 24910275 Investigating the Stylistic Features of Advertising: Ad Design and Creation
Authors: Asma Ben Abdallah
Abstract:
Language has a powerful influence over people and their actions. The language of advertising has a very great impact on the consumer. It makes use of different features from the linguistic continuum. The present paper attempts to apply the theories of stylistics to the analysis of advertising texts. In order to decipher the stylistic features of the advertising discourse, 30 advertising text samples designed by MA Business students have been selected. These samples have been analyzed at the level of design and content. The study brings insights into the use of stylistic devices in advertising, and it reveals that both linguistic and non-linguistic features of advertisements are frequently employed to develop a well-thought-out design and content. The practical significance of the study is to highlight the specificities of the advertising genre so that people interested in the language of advertising (Business students and ESP teachers) will have a better understanding of the nature of the language used and the techniques of writing and designing ads. Similarly, those working in the advertising sphere (ad designers) will appreciate the specificities of the advertising discourse.Keywords: the language of advertising, advertising discourse, ad design, stylistic features
Procedia PDF Downloads 23810274 Optimising GIS in Cushioning the Environmental Impact of Infrastructural Projects
Authors: Akerele Akintunde Hareef
Abstract:
GIS is an integrating tool for storing, retrieving, manipulating, and analyzing spatial data. It is a tool which defines an area with respect to features and other relevant thematic delineations. On the other hand, Environmental Impact Assessment in short is both positive and negative impact of an infrastructure on an environment. Impact of infrastructural projects on the environment is an aspect of development that barely get extensive portion of pre-project execution phase and when they do, the effects are most times not implemented to cushion the impact they have on human and the environment. In this research, infrastructural projects like road constructions, water reticulation projects, building constructions, bridge etc. have immense impact on the environment and the people that reside in location of construction. Hence, the need for this research tends to portray the relevance of Environmental Impact assessment in calculating the vulnerability of human and the environment to imbalance necessitated by this infrastructural development and how the use of GIS application can be optimally applied to annul or minimize the effect.Keywords: environmental impact assessment (EIA), geographic information system (GIS), infrastructural projects, environment
Procedia PDF Downloads 55210273 Environmental Online Campaigns Through Website Interactivity: The Case of Malaysia Environmental NGOs (MENGO)
Authors: Mohd Fadzil Mohd Idris, Aida Nasirah Abdullah, Kalthom Husain, Hanipah Hussin
Abstract:
Online campaigns reflect all the advantages; namely speed, low cost, accessibility, customization, interactivity, and persuasive ability over other media channels. Normally via websites, expensive campaigns could be done not only faster and cheaper, but also successfully. Web interactivity seems to be highly beneficial to ENGOs in advocating environmental campaigns and trigger interaction. This paper looks into the environmental online campaigns through websites of the environmental NGOs in Malaysia (MENGO); particularly on how is web interactivity structured and employed by the selected the MENGO to conduct campaigns on important issues and encourage dialogue among the audience. In this study, a quantitative method for website content analysis was conducted to investigate the availability of the coded units and to determine on which level(s) the units were placed. Twelve (12) interactivity features were coded, including the placement of units of analysis for interactivity category as units of analysis until the fourth level (Level 0-Level 3). The result demonstrates how the MENGO do not effectively structure and employ the web interactivity to conduct campaigns on important issues and encourage dialogue among the audience. It is suggested that the MENGO should redevelop the interactive website in order to effectively advocate environmental campaigns on important issues and encourage dialogue among the audience.Keywords: environmental NGOs (ENGO), Malaysia environmental NGOs (MENGO), internet, website, online campaigns, web interactivity
Procedia PDF Downloads 44010272 TARF: Web Toolkit for Annotating RNA-Related Genomic Features
Abstract:
Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications.Keywords: RNA-related genomic features, annotation, visualization, web server
Procedia PDF Downloads 20810271 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines
Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi
Abstract:
In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.Keywords: breast cancer, mammography, CAD system, features, fusion
Procedia PDF Downloads 59910270 Using Priority Order of Basic Features for Circumscribed Masses Detection in Mammograms
Authors: Minh Dong Le, Viet Dung Nguyen, Do Huu Viet, Nguyen Huu Tu
Abstract:
In this paper, we present a new method for circumscribed masses detection in mammograms. Our method is evaluated on 23 mammographic images of circumscribed masses and 20 normal mammograms from public Mini-MIAS database. The method is quite sanguine with sensitivity (SE) of 95% with only about 1 false positive per image (FPpI). To achieve above results we carry out a progression following: Firstly, the input images are preprocessed with the aim to enhance key information of circumscribed masses; Next, we calculate and evaluate statistically basic features of abnormal regions on training database; Then, mammograms on testing database are divided into equal blocks which calculated corresponding features. Finally, using priority order of basic features to classify blocks as an abnormal or normal regions.Keywords: mammograms, circumscribed masses, evaluated statistically, priority order of basic features
Procedia PDF Downloads 33410269 1D Convolutional Networks to Compute Mel-Spectrogram, Chromagram, and Cochleogram for Audio Networks
Authors: Elias Nemer, Greg Vines
Abstract:
Time-frequency transformation and spectral representations of audio signals are commonly used in various machine learning applications. Training networks on frequency features such as the Mel-Spectrogram or Cochleogram have been proven more effective and convenient than training on-time samples. In practical realizations, these features are created on a different processor and/or pre-computed and stored on disk, requiring additional efforts and making it difficult to experiment with different features. In this paper, we provide a PyTorch framework for creating various spectral features as well as time-frequency transformation and time-domain filter-banks using the built-in trainable conv1d() layer. This allows computing these features on the fly as part of a larger network and enabling easier experimentation with various combinations and parameters. Our work extends the work in the literature developed for that end: First, by adding more of these features and also by allowing the possibility of either starting from initialized kernels or training them from random values. The code is written as a template of classes and scripts that users may integrate into their own PyTorch classes or simply use as is and add more layers for various applications.Keywords: neural networks Mel-Spectrogram, chromagram, cochleogram, discrete Fourrier transform, PyTorch conv1d()
Procedia PDF Downloads 23310268 Morphological Properties in Ndre Mjeda's Works
Authors: Shyhrete Morina
Abstract:
This paper deals with morphological features in Mjeda's works. To make such a distinction, these features will be compared to standard Albanian language, considering the linguistic structure in the morphological field, which represent an all-important segment of Albanian language. Therefore, the study will focus mainly on the description and construction of these paradigms, which will give a linguistic insight into the entire work of Mjeda as the author who wrote in the dialect of northwestern Geg. Therefore, we have tried to distinguish different parts of the author's language, as well as the distinctive features or even the similarities of these paradigms that arise in the literary work of Mjeda. By constructing the corpus of this phonetic and grammar segment from the whole of Mjeda's work, we have seen that in these fields has built a variety of grammar structures, which for the history of Albanian are of special importance, that in the full variant of the work, as far as we can investigate, we will point out in all the distinctive features. Therefore, our study aims to highlight the linguistic features, namely the author's deep knowledge toward the language, the authenticity of its use, and its mutual relationship with it.Keywords: distinctive morpholgy, nouns, adjetives, pronouns, Albanian standard language
Procedia PDF Downloads 16110267 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features
Procedia PDF Downloads 12210266 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V.K.Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Masses and microcalcifications, architectural distortions are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support Vector Machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and accuracy of 96% for the detection of abnormalities with mammogram images collected from Digital Database for Screening Mammography (DDSM) database.Keywords: architecture distortion, mammograms, GLCM texture features, GLRLM texture features, support vector machine classifier
Procedia PDF Downloads 49110265 Application of Data Mining for Aquifer Environmental Assessment
Authors: Saman Javadi, Mehdi Hashemy, Mohahammad Mahmoodi
Abstract:
Vulnerability maps are employed as an important solution in order to handle entrance of pollution into the aquifers. The common way to provide vulnerability map is DRASTIC. Meanwhile, application of the method is not easy to apply for any aquifer due to choosing appropriate constant values of weights and ranks. In this study, a new approach using k-means clustering is applied to make vulnerability maps. Four features of depth to groundwater, hydraulic conductivity, recharge value and vadose zone were considered at the same time as features of clustering. Five regions are recognized out of the case study represent zones with different level of vulnerability. The finding results show that clustering provides a realistic vulnerability map so that, Pearson’s correlation coefficients between nitrate concentrations and clustering vulnerability is obtained 61%.Keywords: clustering, data mining, groundwater, vulnerability assessment
Procedia PDF Downloads 60310264 The Discussion on the Composition of Feng Shui by the Environmental Planning Viewpoint
Authors: Jhuang Jin-Jhong, Hsieh Wei-Fan
Abstract:
Climate change causes natural disasters persistently. Therefore, nowadays environmental planning objective tends to the issues of respecting nature and coexisting with nature. As a result, the natural environment analysis, e.g., the analysis of topography, soil, hydrology, climate, vegetation, is highly emphasized. On the other hand, Feng Shui has been a criterion of site selection for residence in Eastern since the ancient times and has had farther influence on site selection for castles and even for temples and tombs. The primary criterion of site selection is judging the quality of Long: mountain range, Sha: nearby mountains, Shui: hydrology, Xue: foundation, Xiang: aspect, which are similar to the environmental variables of mountain range, topography, hydrology and aspect. For the reason, a lot researchers attempt to probe into the connection between the criterion of Feng Shui and environmental planning factors. Most researches only discussed with the composition and theory of space of Feng Shui, but there is no research which explained Feng Shui through the environmental field. Consequently, this study reviewed the theory of Feng Shui through the environmental planning viewpoint and assembled essential composition factors of Feng Shui. The results of this study point. From literature review and comparison of theoretical meanings, we find that the ideal principles for planning the Feng Shui environment can also be used for environmental planning. Therefore, this article uses 12 ideal environmental features used in Feng Shui to contrast the natural aspects of the environment and make comparisons with previous research and classifies the environmental factors into climate, topography, hydrology, vegetation, and soil.Keywords: the composition of Feng Shui, environmental planning, site selection, main components of the Feng Shui environment
Procedia PDF Downloads 50910263 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement
Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao
Abstract:
Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.Keywords: feature analysis, machine vision, PCA, surface roughness, SVM
Procedia PDF Downloads 21210262 Variability Management of Contextual Feature Model in Multi-Software Product Line
Authors: Muhammad Fezan Afzal, Asad Abbas, Imran Khan, Salma Imtiaz
Abstract:
Software Product Line (SPL) paradigm is used for the development of the family of software products that share common and variable features. Feature model is a domain of SPL that consists of common and variable features with predefined relationships and constraints. Multiple SPLs consist of a number of similar common and variable features, such as mobile phones and Tabs. Reusability of common and variable features from the different domains of SPL is a complex task due to the external relationships and constraints of features in the feature model. To increase the reusability of feature model resources from domain engineering, it is required to manage the commonality of features at the level of SPL application development. In this research, we have proposed an approach that combines multiple SPLs into a single domain and converts them to a common feature model. Extracting the common features from different feature models is more effective, less cost and time to market for the application development. For extracting features from multiple SPLs, the proposed framework consists of three steps: 1) find the variation points, 2) find the constraints, and 3) combine the feature models into a single feature model on the basis of variation points and constraints. By using this approach, reusability can increase features from the multiple feature models. The impact of this research is to reduce the development of cost, time to market and increase products of SPL.Keywords: software product line, feature model, variability management, multi-SPLs
Procedia PDF Downloads 6910261 Praetical and Theoretical Study on Characteristic Landscape Construction of Tujia Village in Xiaguping, Shennongjia Forestry Distric
Authors: Tingting Chen, Shouliang Zhao
Abstract:
Compared with other regions, the construction for villages and towns in regions inhabited by minority nationality shall be deeply rooted in natural and cultural endowment in locality, and more importance shall be attached to building of characteristics. In this kind of area, landscape design is very important for its character and tradition. By empirical study in Shennongjia Area, some findings could be summarized as below. There are unique natural and cultural resources in Shennongjia Forestry District; during transformation on style and features of Tujia Village, Xiaguping, special style and features have been successfully shaped through 4 strategies: (1) highlighting Tujia Culture and architectural style in west region of Hubei Province; (2) merging with local natural environment; (3) introducing system of rural coordination architect; and (4) making great efforts to design and construct environmental embellishments with village and town symbols.Keywords: rural coordination architect, special style and features, characteristic landscape, villages and towns in regions inhabited by minority nationality
Procedia PDF Downloads 27710260 Social Responsibility and Environmental Issues Addressed by Businesses in Romania
Authors: Daniela Gradinaru, Iuliana Georgescu, Loredana Hutanu (Toma), Mihai-Bogdan Afrasinei
Abstract:
This article aims to analyze the situation of Romanian companies from an environmental point of view. Environmental issues are addressed very often nowadays, and they reach and affect every domain, including the economical one. Implementing an environmental management system will not only help the companies to comply with laws and regulations, but, above all, will offer them an important competitive advantage.Keywords: environmental management system, environmental reporting, environmental expenses, sustainable development
Procedia PDF Downloads 41410259 Exploring the Impacts of Ogoni/African Indigenous Knowledge in Addressing Environmental Issues in Ogoniland, Nigeria
Authors: Lele Dominic Dummene
Abstract:
Environmental issues are predominant in rural areas where indigenous people reside. These environmental issues cover environmental, health, social, economic, and political issues that emanate from poor environmental management and unfair distribution of environmental resources. These issues have greatly affected the lives of the indigenous people and their daily activities. As these environmental issues grow in communities, environmental experts, scientists, and theorists have proposed and developed methods, policies, and strategies to address these environmental-related issues in indigenous communities. Thus, this paper explores how the Ogoni indigenous knowledge and cultural practices could be used to address environmental issues such as oil pollution and other environmental-related issues that have destroyed the Ogoni environment.Keywords: Ogoniland, indigenous knowledge, environment, environmental education
Procedia PDF Downloads 12110258 Artificial Intelligance Features in Canva
Authors: Amira Masood, Zainah Alshouri, Noor Bantan, Samira Kutbi
Abstract:
Artificial intelligence is continuously becoming more advanced and more widespread and is present in many of our day-to-day lives as a means of assistance in numerous different fields. A growing number of people, companies, and corporations are utilizing Canva and its AI tools as a method of quick and easy media production. Hence, in order to test the integrity of the rapid growth of AI, this paper will explore the usefulness of Canva's advanced design features as well as their accuracy by determining user satisfaction through a survey-based research approach and by investigating whether or not AI is successful enough that it eliminates the need for human alterations.Keywords: artificial intelligence, canva, features, users, satisfaction
Procedia PDF Downloads 10610257 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation
Procedia PDF Downloads 133