Search results for: discrete curvature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 842

Search results for: discrete curvature

812 Numerical Investigation of Wave Run-Up on Curved Dikes

Authors: Suba Periyal Subramaniam, Babette Scheres, Altomare Corrado, Holger Schuttrumpf

Abstract:

Due to the climatic change and the usage of coastal areas, there is an increasing risk of dike failures along the coast worldwide. Wave run-up plays a key role in planning and design of a coastal structure. The coastal dike lines are bent either due to geological characteristics or due to influence of anthropogenic activities. The effect of the curvature of coastal dikes on wave run-up and overtopping is not yet investigated. The scope of this research is to find the effects of the dike curvature on wave run-up by employing numerical model studies for various dike opening angles. Numerical simulation is carried out using DualSPHysics, a meshless method, and OpenFOAM, a mesh-based method. The numerical results of the wave run-up on a curved dike and the wave transformation process for various opening angles, wave attacks, and wave parameters will be compared and discussed. This research aims to contribute a more precise analysis and understanding the influence of the curvature in the dike line and thus ensuring a higher level of protection in the future development of coastal structures.

Keywords: curved dikes, DualSPHysics, OpenFOAM, wave run-up

Procedia PDF Downloads 149
811 Automatic Registration of Rail Profile Based Local Maximum Curvature Entropy

Authors: Hao Wang, Shengchun Wang, Weidong Wang

Abstract:

On the influence of train vibration and environmental noise on the measurement of track wear, we proposed a method for automatic extraction of circular arc on the inner or outer side of the rail waist and achieved the high-precision registration of rail profile. Firstly, a polynomial fitting method based on truncated residual histogram was proposed to find the optimal fitting curve of the profile and reduce the influence of noise on profile curve fitting. Then, based on the curvature distribution characteristics of the fitting curve, the interval search algorithm based on dynamic window’s maximum curvature entropy was proposed to realize the automatic segmentation of small circular arc. At last, we fit two circle centers as matching reference points based on small circular arcs on both sides and realized the alignment from the measured profile to the standard designed profile. The static experimental results show that the mean and standard deviation of the method are controlled within 0.01mm with small measurement errors and high repeatability. The dynamic test also verified the repeatability of the method in the train-running environment, and the dynamic measurement deviation of rail wear is within 0.2mm with high repeatability.

Keywords: curvature entropy, profile registration, rail wear, structured light, train-running

Procedia PDF Downloads 260
810 Failure Mechanism of Slip-Critical Connections on Curved Surface

Authors: Bae Doobyong, Yoo Jaejun, Park Ilgyu, Choi Seowon, Oh Chang Kook

Abstract:

Variation of slip coefficient in slip-critical connections of curved plates. This paper presents the results of analytical investigations of slip coefficients in slip-critical bolted connections of curved plates. It may depend on the contact stress distribution at interface and the flexibility of spliced plate. Non-linear FEM analyses have been made to simulate the behavior of bolted connections of curved plates with various radiuses of curvature and thicknesses.

Keywords: slip coefficient, curved plates, slip-critical bolted connection, radius of curvature

Procedia PDF Downloads 517
809 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 14
808 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube

Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash

Abstract:

Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.

Keywords: shock wave, blast wave, discrete models, shock tube

Procedia PDF Downloads 331
807 A Generalization of Option Pricing with Discrete Dividends to Markets with Daily Price Limits

Authors: Jiahau Guo, Yihe Zhang

Abstract:

This paper proposes solutions for pricing options on stocks paying discrete dividends in markets with daily price limits. We first extend the intraday density function of Guo and Chang (2020) to a multi-day one and use the framework of Haug et al. (2003) to value European options on stocks paying discrete dividends. Next, we adopt the fast Fourier transform (FFT) to derive accurate and efficient formulae for American options and further employ the three-point Richardson extrapolation to accelerate the computation. Finally, the accuracy of our proposed methods is verified by simulations.

Keywords: daily price limit, discrete dividend, early exercise, fast Fourier transform, multi-day density function, Richardson extrapolation

Procedia PDF Downloads 164
806 Effects of Pipe Curvature and Internal Pressure on Stiffness and Buckling Phenomenon of Circular Thin-Walled Pipes

Authors: V. Polenta, S. D. Garvey, D. Chronopoulos, A. C. Long, H. P. Morvan

Abstract:

A parametric study on circular thin-walled pipes subjected to pure bending is performed. Both straight and curved pipes are considered. Ratio D/t, initial pipe curvature and internal pressure are the parameters varying in the analyses. The study is mainly FEA-based. It is found that negative curvatures (opposite to bending moment) considerably increase stiffness and buckling limit of the pipe when no internal pressure is acting and, similarly, positive curvatures decrease the stiffness and buckling limit. For internal pressurised pipes the effects of initial pipe curvature are less relevant. Results show that this phenomenon is in relationship with the cross-section deformation due to bending moment, which undergoes relevant ovalisation for no pressurised pipes and little ovalisation for pressurised pipes.

Keywords: buckling, curved pipes, internal pressure, ovalisation, pure bending, thin-walled pipes

Procedia PDF Downloads 376
805 Discrete Sliding Modes Regulator with Exponential Holder for Non-Linear Systems

Authors: G. Obregon-Pulido , G. C. Solis-Perales, J. A. Meda-Campaña

Abstract:

In this paper, we present a sliding mode controller in discrete time. The design of the controller is based on the theory of regulation for nonlinear systems. In the problem of disturbance rejection and/or output tracking, it is known that in discrete time, a controller that uses the zero-order holder only guarantees tracking at the sampling instances but not between instances. It is shown that using the so-called exponential holder, it is possible to guarantee asymptotic zero output tracking error, also between the sampling instant. For stabilizing the problem of close loop system we introduce the sliding mode approach relaxing the requirements of the existence of a linear stabilizing control law.

Keywords: regulation theory, sliding modes, discrete controller, ripple-free tracking

Procedia PDF Downloads 55
804 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay

Procedia PDF Downloads 240
803 Discrete-Time Bulk Queue with Service Capacity Depending on Previous Service Time

Authors: Yutae Lee

Abstract:

This paper considers a discrete-time bulk-arrival bulkservice queueing system, where service capacity varies depending on the previous service time. By using the generating function technique and the supplementary variable method, we compute the distributions of the queue length at an arbitrary slot boundary and a departure time.

Keywords: discrete-time queue, bulk queue, variable service capacity, queue length distribution

Procedia PDF Downloads 476
802 Bulk/Hull Cavitation Induced by Underwater Explosion: Effect of Material Elasticity and Surface Curvature

Authors: Wenfeng Xie

Abstract:

Bulk/hull cavitation evolution induced by an underwater explosion (UNDEX) near a free surface (bulk) or a deformable structure (hull) is numerically investigated using a multiphase compressible fluid solver coupled with a one-fluid cavitation model. A series of two-dimensional computations is conducted with varying material elasticity and surface curvature. Results suggest that material elasticity and surface curvature influence the peak pressures generated from UNDEX shock and cavitation collapse, as well as the bulk/hull cavitation regions near the surface. Results also show that such effects can be different for bulk cavitation generated from UNDEX-free surface interaction and for hull cavitation generated from UNDEX-structure interaction. More importantly, results demonstrate that shock wave focusing caused by a concave solid surface can lead to a larger cavitation region and thus intensify the cavitation reload. The findings can be linked to the strength and the direction of reflected waves from the structural surface and reflected waves from the expanding bubble surface, which are functions of material elasticity and surface curvature. Shockwave focusing effects are also observed for axisymmetric simulations, but the strength of the pressure contours for the axisymmetric simulations is less than those for the 2D simulations due to the difference between the initial shock energy. The current method is limited to two-dimensional or axisymmetric applications. Moreover, the thermal effects are neglected and the liquid is not allowed to sustain tension in the cavitation model.

Keywords: cavitation, UNDEX, fluid-structure interaction, multiphase

Procedia PDF Downloads 186
801 Introduction of Para-Sasaki-Like Riemannian Manifolds and Construction of New Einstein Metrics

Authors: Mancho Manev

Abstract:

The concept of almost paracontact Riemannian manifolds (abbr., apcR manifolds) was introduced by I. Sato in 1976 as an analogue of almost contact Riemannian manifolds. The notion of an apcR manifold of type (p,q) was defined by S. Sasaki in 1980, where p and q are respectively the numbers of the multiplicity of the structure eigenvalues 1 and -1. It also has a simple eigenvalue of 0. In our work, we consider (2n+1)-dimensional apcR manifolds of type (n,n), i.e., the paracontact distribution of the studied manifold can be considered as a 2n-dimensional almost paracomplex Riemannian distribution with almost paracomplex structure and structure group O(n) × O(n). The aim of the present study is to introduce a new class of apcR manifolds. Such a manifold is obtained using the construction of a certain Riemannian cone over it, and the resulting manifold is a paraholomorphic paracomplex Riemannian manifold (abbr., phpcR manifold). We call it a para-Sasaki-like Riemannian manifold (abbr., pSlR manifold) and give some explicit examples. We study the structure of pSlR spaces and find that the paracontact form η is closed and each pSlR manifold locally can be considered as a certain product of the real line with a phpcR manifold, which is locally a Riemannian product of two equidimensional Riemannian spaces. We also obtain that the curvature of the pSlR manifolds is completely determined by the curvature of the underlying local phpcR manifold. Moreover, the ξ-directed Ricci curvature is equal to -2n, while in the Sasaki case, it is 2n. Accordingly, the pSlR manifolds can be interpreted as the counterpart of the Sasaki manifolds; the skew-symmetric part of ∇η vanishes, while in the Sasaki case, the symmetric part vanishes. We define a hyperbolic extension of a (complete) phpcR manifold that resembles a certain warped product, and we indicate that it is a (complete) pSlR manifold. In addition, we consider the hyperbolic extension of a phpcR manifold and prove that if the initial manifold is a complete Einstein manifold with negative scalar curvature, then the resulting manifold is a complete Einstein pSlR manifold with negative scalar curvature. In this way, we produce new examples of a complete Einstein Riemannian manifold with negative scalar curvature. Finally, we define and study para contact conformal/homothetic deformations by deriving a subclass that preserves the para-Sasaki-like condition. We then find that if we apply a paracontact homothetic deformation of a pSlR space, we obtain that the Ricci tensor is invariant.

Keywords: almost paracontact Riemannian manifolds, Einstein manifolds, holomorphic product manifold, warped product manifold

Procedia PDF Downloads 206
800 2.5D Face Recognition Using Gabor Discrete Cosine Transform

Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao

Abstract:

In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.

Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose

Procedia PDF Downloads 328
799 Use of Six-sigma Concept in Discrete Manufacturing Industry

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

Efficiency in manufacturing is critical in raising the value of exports so as to gainfully trade on the regional and international markets. There seems to be increasing popularity of continuous improvement strategies availed to manufacturing entities, but this research study established that there has not been a similar popularity accorded to the Six Sigma methodology. Thus this work was conducted to investigate the applicability, effectiveness, usefulness, application and suitability of the Six Sigma methodology as a competitiveness option for discrete manufacturing entity. Development of Six-sigma center in the country with continuous improvement information would go a long way in benefiting the entire industry

Keywords: discrete manufacturing, six-sigma, continuous improvement, efficiency, competitiveness

Procedia PDF Downloads 464
798 Stability of Hybrid Stochastic Systems

Authors: Manlika Ratchagit

Abstract:

This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.

Keywords: robust mean square stability, discrete-time stochastic systems, hybrid systems, interval time-varying delays, Lyapunov functional, linear matrix inequalities

Procedia PDF Downloads 486
797 New Results on Stability of Hybrid Stochastic Systems

Authors: Manlika Rajchakit

Abstract:

This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.

Keywords: robust mean square stability, discrete-time stochastic systems, hybrid systems, interval time-varying delays, lyapunov functional, linear matrix inequalities

Procedia PDF Downloads 430
796 Einstein’s General Equation of the Gravitational Field

Authors: A. Benzian

Abstract:

The generalization of relativistic theory of gravity based essentially on the principle of equivalence stipulates that for all bodies, the grave mass is equal to the inert mass which leads us to believe that gravitation is not a property of the bodies themselves, but of space, and the conclusion that the gravitational field must curved space-time what allows the abandonment of Minkowski space (because Minkowski space-time being nonetheless null curvature) to adopt Riemannian geometry as a mathematical framework in order to determine the curvature. Therefore the work presented in this paper begins with the evolution of the concept of gravity then tensor field which manifests by Riemannian geometry to formulate the general equation of the gravitational field.

Keywords: inertia, principle of equivalence, tensors, Riemannian geometry

Procedia PDF Downloads 152
795 Discretization of Cuckoo Optimization Algorithm for Solving Quadratic Assignment Problems

Authors: Elham Kazemi

Abstract:

Quadratic Assignment Problem (QAP) is one the combinatorial optimization problems about which research has been done in many companies for allocating some facilities to some locations. The issue of particular importance in this process is the costs of this allocation and the attempt in this problem is to minimize this group of costs. Since the QAP’s are from NP-hard problem, they cannot be solved by exact solution methods. Cuckoo Optimization Algorithm is a Meta-heuristicmethod which has higher capability to find the global optimal points. It is an algorithm which is basically raised to search a continuous space. The Quadratic Assignment Problem is the issue which can be solved in the discrete space, thus the standard arithmetic operators of Cuckoo Optimization Algorithm need to be redefined on the discrete space in order to apply the Cuckoo Optimization Algorithm on the discrete searching space. This paper represents the way of discretizing the Cuckoo optimization algorithm for solving the quadratic assignment problem.

Keywords: Quadratic Assignment Problem (QAP), Discrete Cuckoo Optimization Algorithm (DCOA), meta-heuristic algorithms, optimization algorithms

Procedia PDF Downloads 517
794 Space Tourism Pricing Model Revolution from Time Independent Model to Time-Space Model

Authors: Kang Lin Peng

Abstract:

Space tourism emerged in 2001 and became famous in 2021, following the development of space technology. The space market is twisted because of the excess demand. Space tourism is currently rare and extremely expensive, with biased luxury product pricing, which is the seller’s market that consumers can not bargain with. Spaceship companies such as Virgin Galactic, Blue Origin, and Space X have been charged space tourism prices from 200 thousand to 55 million depending on various heights in space. There should be a reasonable price based on a fair basis. This study aims to derive a spacetime pricing model, which is different from the general pricing model on the earth’s surface. We apply general relativity theory to deduct the mathematical formula for the space tourism pricing model, which covers the traditional time-independent model. In the future, the price of space travel will be different from current flight travel when space travel is measured in lightyear units. The pricing of general commodities mainly considers the general equilibrium of supply and demand. The pricing model considers risks and returns with the dependent time variable as acceptable when commodities are on the earth’s surface, called flat spacetime. Current economic theories based on the independent time scale in the flat spacetime do not consider the curvature of spacetime. Current flight services flying the height of 6, 12, and 19 kilometers are charging with a pricing model that measures time coordinate independently. However, the emergence of space tourism is flying heights above 100 to 550 kilometers that have enlarged the spacetime curvature, which means tourists will escape from a zero curvature on the earth’s surface to the large curvature of space. Different spacetime spans should be considered in the pricing model of space travel to echo general relativity theory. Intuitively, this spacetime commodity needs to consider changing the spacetime curvature from the earth to space. We can assume the value of each spacetime curvature unit corresponding to the gradient change of each Ricci or energy-momentum tensor. Then we know how much to spend by integrating the spacetime from the earth to space. The concept is adding a price p component corresponding to the general relativity theory. The space travel pricing model degenerates into a time-independent model, which becomes a model of traditional commodity pricing. The contribution is that the deriving of the space tourism pricing model will be a breakthrough in philosophical and practical issues for space travel. The results of the space tourism pricing model extend the traditional time-independent flat spacetime mode. The pricing model embedded spacetime as the general relativity theory can better reflect the rationality and accuracy of space travel on the universal scale. The universal scale from independent-time scale to spacetime scale will bring a brand-new pricing concept for space traveling commodities. Fair and efficient spacetime economics will also bring to humans’ travel when we can travel in lightyear units in the future.

Keywords: space tourism, spacetime pricing model, general relativity theory, spacetime curvature

Procedia PDF Downloads 129
793 Failure Simulation of Small-scale Walls with Chases Using the Lattic Discrete Element Method

Authors: Karina C. Azzolin, Luis E. Kosteski, Alisson S. Milani, Raquel C. Zydeck

Abstract:

This work aims to represent Numerically tests experimentally developed in reduced scale walls with horizontal and inclined cuts by using the Lattice Discrete Element Method (LDEM) implemented On de Abaqus/explicit environment. The cuts were performed with depths of 20%, 30%, and 50% On the walls subjected to centered and eccentric loading. The parameters used to evaluate the numerical model are its strength, the failure mode, and the in-plane and out-of-plane displacements.

Keywords: structural masonry, wall chases, small scale, numerical model, lattice discrete element method

Procedia PDF Downloads 178
792 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field

Authors: Tun Myat Aung, Ni Ni Hla

Abstract:

This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.c

Keywords: discrete logarithm problem, general attacks, elliptic curve, prime field, binary field

Procedia PDF Downloads 233
791 Numerical Solution of Integral Equations by Using Discrete GHM Multiwavelet

Authors: Archit Yajnik, Rustam Ali

Abstract:

In this paper, numerical method based on discrete GHM multiwavelets is presented for solving the Fredholm integral equations of second kind. There is hardly any article available in the literature in which the integral equations are numerically solved using discrete GHM multiwavelet. A number of examples are demonstrated to justify the applicability of the method. In GHM multiwavelets, the values of scaling and wavelet functions are calculated only at t = 0, 0.5 and 1. The numerical solution obtained by the present approach is compared with the traditional Quadrature method. It is observed that the present approach is more accurate and computationally efficient as compared to quadrature method.

Keywords: GHM multiwavelet, fredholm integral equations, quadrature method, function approximation

Procedia PDF Downloads 462
790 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: robotics, aerial robots, motion primitives, helicopter

Procedia PDF Downloads 616
789 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption

Authors: Ashish Ashish

Abstract:

In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.

Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption

Procedia PDF Downloads 154
788 A Robust Hybrid Blind Digital Image Watermarking System Using Discrete Wavelet Transform and Contourlet Transform

Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy

Abstract:

In this paper, a hybrid blind digital watermarking system using Discrete Wavelet Transform (DWT) and Contourlet Transform (CT) has been implemented and tested. The implemented combined digital watermarking system has been tested against five common types of image attacks. The performance evaluation shows improved results in terms of imperceptibility, robustness, and high tolerance against these attacks; accordingly, the system is very effective and applicable.

Keywords: discrete wavelet transform (DWT), contourlet transform (CT), digital image watermarking, copyright protection, geometric attack

Procedia PDF Downloads 394
787 Pure and Mixed Nash Equilibria Domain of a Discrete Game Model with Dichotomous Strategy Space

Authors: A. S. Mousa, F. Shoman

Abstract:

We present a discrete game theoretical model with homogeneous individuals who make simultaneous decisions. In this model the strategy space of all individuals is a discrete and dichotomous set which consists of two strategies. We fully characterize the coherent, split and mixed strategies that form Nash equilibria and we determine the corresponding Nash domains for all individuals. We find all strategic thresholds in which individuals can change their mind if small perturbations in the parameters of the model occurs.

Keywords: coherent strategy, split strategy, pure strategy, mixed strategy, Nash equilibrium, game theory

Procedia PDF Downloads 148
786 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
785 Discrete Element Modeling on Bearing Capacity Problems

Authors: N. Li, Y. M. Cheng

Abstract:

In this paper, the classical bearing capacity problem is re-considered from discrete element analysis. In the discrete element approach, the bearing capacity problem is considered from the elastic stage to plastic stage to rupture stage (large displacement). The bearing capacity failure mechanism of a strip footing on soil is investigated, and the influence of micro-parameters on the bearing capacity of soil is also observed. It is found that the distinct element method (DEM) gives very good visualized results, and basically coincides well with that derived by the classical methods.

Keywords: bearing capacity, distinct element method, failure mechanism, large displacement

Procedia PDF Downloads 365
784 Variation of Airfoil Pressure Profile Due to Confined Air Streams: Application in Gas-Oil Separators

Authors: Amir Hossein Haji, Nabeel Al-Rawahi, Gholamreza Vakili-Nezhaad

Abstract:

An innovative design has been examined for a gas-oil separator based on pressure reduction over an airfoil surface. The primary motivations are to shorten the release trajectory of the bubbles by minimizing the thickness of the oil layer as well as improving uniform pressure reduction zones. Restricted airflow over an airfoil is investigated for its effect on the pressure drop enhancement and the maximum attainable attack angle prior to the stall condition. Aerodynamic separation is delayed based on numerical simulation of Wortmann FX 63137 Airfoil in a confined domain using FLUENT 6.3.26. The proposed set up results in higher pressure drop compared with the free stream case. With the aim of optimum power consumption we have pursued further restriction to an air jet case over the airfoil. Then, a curved strip model is suggested for the air jet which can be applied as an analysis/design tool for the best performance conditions. Pressure reduction is shown to be inversely proportional to the curvature of the upper airfoil profile. This reduction occurs within the tracking zones where the air jet is effectively attached to the airfoil surface. The zero slope condition is suggested to estimate the onset of these zones after which the minimum curvature should be searched. The corresponding zero slope curvature is applied for estimation of the maximum pressure drop which shows satisfactory agreement with the simulation results.

Keywords: airfoil, air jet, curved fluid flow, gas-oil separator

Procedia PDF Downloads 474
783 Exact Solutions of Discrete Sine-Gordon Equation

Authors: Chao-Qing Dai

Abstract:

Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering.

Keywords: exact solutions, variable-coefficient Jacobian elliptic function method, discrete sine-Gordon equation, dynamical behaviors

Procedia PDF Downloads 420