Search results for: compressive strength shear strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4708

Search results for: compressive strength shear strength

4678 Shear Behavior of Reinforced Concrete Beams Casted with Recycled Coarse Aggregate

Authors: Salah A. Aly, Mohammed A. Ibrahim, Mostafa M. khttab

Abstract:

The amount of construction and demolition (C&D) waste has increased considerably over the last few decades. From the viewpoint of environmental preservation and effective utilization of resources, crushing C&D concrete waste to produce coarse aggregate (CA) with different replacement percentage for the production of new concrete is one common means for achieving a more environment-friendly concrete. In the study presented herein, the investigation was conducted in two phases. In the first phase, the selection of the materials was carried out and the physical, mechanical and chemical characteristics of these materials were evaluated. Different concrete mixes were designed. The investigation parameter was Recycled Concrete Aggregate (RCA) ratios. The mechanical properties of all mixes were evaluated based on compressive strength and workability results. Accordingly, two mixes have been chosen to be used in the next phase. In the second phase, the study of the structural behavior of the concrete beams was developed. Sixteen beams were casted to investigate the effect of RCA ratios, the shear span to depth ratios and the effect of different locations and reinforcement of openings on the shear behavior of the tested specimens. All these beams were designed to fail in shear. Test results of the compressive strength of concrete indicated that, replacement of natural aggregate by up to 50% recycled concrete aggregates in mixtures with 350 Kg/m3 cement content led to increase of concrete compressive strength. Moreover, the tensile strength and the modulus of elasticity of the specimens with RCA have very close values to those with natural aggregates. The ultimate shear strength of beams with RCA is very close to those with natural aggregates indicating the possibility of using RCA as partial replacement to produce structural concrete elements. The validity of both the Egyptian Code for the design and implementation of Concrete Structures (ECCS) 203-2007 and American Concrete Institute (ACI) 318-2011Codes for estimating the shear strength of the tested RCA beams was investigated. It was found that the codes procedures gives conservative estimates for shear strength.

Keywords: construction and demolition (C&D) waste, coarse aggregate (CA), recycled coarse aggregates (RCA), opening

Procedia PDF Downloads 381
4677 Effects of Aggregate Type and Concrete Age on Compressive Strength After Subjected to Elevated Temperature

Authors: Ahmed M. Seyam, Rita Nemes

Abstract:

In this study, the influence of elevated temperature and concrete age on the compressive strength of concrete produced by normal quartz aggregate, expanded clay, expanded glass, crushed andesite and crushed clay bricks aggregates were investigated. For this purpose, six different mixtures were prepared by 100% replacement of the coarse aggregate. The specimens were cured in water for seven days, then kept in the laboratory for 120 days and 240 days. The concrete specimens were heated in an electric furnace up to 200, 400, 600, 800, and 1000 °C and kept at these temperatures for two hours heating, then for 24 hours cooling. The residual compressive strength of the specimens was measured. The results showed that, the elevated temperature induces a significant decrease in a compressive strength in both normal weight and lightweight aggregate concrete, by comparing the behavior of different mixes, in all cases, the strength of the specimens containing crushed andesite aggregates showed a better performance for compressive strength after exposure to elevated temperatures over 800 °C, while the specimens containing expanded glass showing the least residual strength after subjected to elevated temperature; moreover the age of the concrete in all mixes has also been an effective factor, the behavior of the concrete strength loss by increasing heating temperature was not changed but the strength results showing the better performance and higher compressive strength in both ambient and elevated temperature.

Keywords: elevated temperature, concrete age, compressive strength, expanded clay, expanded glass, crushed andesite, crushed clay bricks

Procedia PDF Downloads 103
4676 Improving Concrete Properties with Fibers Addition

Authors: E. Mello, C. Ribellato, E. Mohamedelhassan

Abstract:

This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concrete increased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.

Keywords: concrete, compressive strength, fibers, flexural strength, tensile strength

Procedia PDF Downloads 427
4675 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut

Abstract:

Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.

Keywords: ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber

Procedia PDF Downloads 345
4674 Enhancement of Cement Mortar Mechanical Properties with Replacement of Seashell Powder

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

Many synthetic additives have been using for improve cement mortar and concrete characteristics, but natural additive is a friendly environment option. The quantity of (2% and 4%) seashell powder has been replaced in cement mortar, and compared with plain cement mortar in early age of 7 days. The strain gauges have been installed on beams and cube, for monitoring fluctuation of flexural and compressive strength. Main objective of this paper is to study effect of linear static force on flexural and compressive strength of modified cement mortar. The results have been indicated that the replacement of appropriate proportion of seashell powder enhances cement mortar mechanical properties. The replacement of 2% seashell causes improvement of deflection, time to failure and maximum load to failure on concrete beam and cube, the same occurs for compressive modulus elasticity. Increase replacement of seashell to 4% reduces all flexural strength, compressive strength and strain of cement mortar.

Keywords: compressive strength, flexural strength, compressive modulus elasticity, time to failure, deflection

Procedia PDF Downloads 443
4673 Investigating Geopolymerization Process of Aluminosilicates and its Impact on the Compressive Strength of the Produced Geopolymers

Authors: Heba Fouad, Tarek M. Madkour, Safwan A. Khedr

Abstract:

This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced Geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which corresponds to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.

Keywords: calcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement

Procedia PDF Downloads 153
4672 Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis

Authors: Perminder JitKaur, Santosh Satya, K. K. Pant, S. N. Naik

Abstract:

Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neem oil(25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results of compressive strength analysis using The results from compressive strength analysis using HEICO Automatic Compression Testing Machine, reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable.

Keywords: D. strictus, bamboo, neem oil, presure treatment, compressive strength

Procedia PDF Downloads 395
4671 The Effect of Air Entraining Agents on Compressive Strength

Authors: Demet Yavuz

Abstract:

Freeze-thaw cycles are one of the greatest threats to concrete durability. Lately, protection against this threat excites scientists’ attention. Air-entraining admixtures have been widely used to produce freeze-thaw resistant at concretes. The use of air-entraining agents (AEAs) enhances not only freeze-thaw endurance but also the properties of fresh concrete such as segregation, bleeding and flow ability. This paper examines the effects of air-entraining on compressive strength of concrete. Air-entraining is used between 0.05% and 0.4% by weight of cement. One control and four fiber reinforced concrete mixes are prepared and three specimens are tested for each mix. It is concluded from the test results that when air entraining is increased the compressive strength of concrete reduces for all mixes with AEAs.

Keywords: concrete, air-entraining, compressive strength, mechanical properties

Procedia PDF Downloads 269
4670 Influence of Flexural Reinforcement on the Shear Strength of RC Beams Without Stirrups

Authors: Guray Arslan, Riza Secer Orkun Keskin

Abstract:

Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and load-strain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of the diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.

Keywords: finite element, flexural reinforcement, reinforced concrete beam, shear strength

Procedia PDF Downloads 317
4669 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 180
4668 Minimum Ratio of Flexural Reinforcement for High Strength Concrete Beams

Authors: Azad A. Mohammed, Dunyazad K. Assi, Alan S. Abdulrahman

Abstract:

Current ACI 318 Code provides two limits for minimum steel ratio for concrete beams. When concrete compressive strength be larger than 31 MPa the limit of √(fc')/4fy usually governs. In this paper shortcomings related to using this limit was fairly discussed and showed that the limit is based on 90% safety factor and was derived based on modulus of rupture equation suitable for concretes of compressive strength lower than 31 MPa. Accordingly, the limit is nor suitable and critical for concretes of higher compressive strength. An alternative equation was proposed for minimum steel ratio of rectangular beams and was found that the proposed limit is accurate for beams of wide range of concrete compressive strength. Shortcomings of the current ACI 318 Code equation and accuracy of the proposed equation were supported by test data obtained from testing six reinforced concrete beams.

Keywords: concrete beam, compressive strength, minimum steel ratio, modulus of rupture

Procedia PDF Downloads 536
4667 Effect of Clay Content on the Drained Shear Strength

Authors: Navid Khayat

Abstract:

Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand–clay at optimum water content is main purpose of this research. To prepare the required samples, first clay and sand are mixed in 10, 30, 50, and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress –strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed.

Keywords: clay, sand, drained shear strength, cohesion intercept

Procedia PDF Downloads 425
4666 Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS

Authors: M. Nili, S. Tavasoli, A. R. Yazdandoost

Abstract:

In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages.

Keywords: compressive strength, GGBS, normal concrete, self-consolidating concrete

Procedia PDF Downloads 419
4665 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams

Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali

Abstract:

This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.

Keywords: experimental, fire, high strength concrete beams, monotonic loading

Procedia PDF Downloads 387
4664 Influence of Locally Made Effective Microorganisms on the Compressive Strength of Concrete

Authors: Muhammad Nura Isa, Magaji Muhammad Garba, Dauda Dahiru Danwata

Abstract:

A lot of research was carried out to improve the technology of concrete, some of which include the introduction of new admixture in concrete production such as effective microorganisms. Researches carried out in Japan and Malaysia indicated that the Effective Microorganisms improve the strength and durability of concrete. Therefore, the main objective of this research is to assess the effect of the locally made effective microorganisms on the compressive strength of concrete in Nigeria. The effective microorganisms were produced locally. The locally made effective microorganism was added in 3%, 5%, 10% and 15% to replace the mixing water required. The results of the tests indicated that the concrete specimens with 3% content of locally made EM-A possessed the highest compressive strength, this proved the 3% to be the optimum dosage of locally made EM-A in the concrete.

Keywords: locally made effective microorganisms, compressive strength, admixture, fruits and vegetable wastes

Procedia PDF Downloads 329
4663 Effect of Rice Husk Ash and Metakaolin on the Compressive Strengths of Ternary Cement Mortars

Authors: Olubajo Olumide Olu

Abstract:

This paper studies the effect of Metakaolin (MK) and Rice husk ash (RHA) on the compressive strength of ternary cement mortar at replacement level up to 30%. The compressive strength test of the blended cement mortars were conducted using Tonic Technic compression and machine. Nineteen ternary cement mortars were prepared comprising of ordinary Portland cement (OPC), Rice husk ash (RHA) and Metakaolin (MK) at different proportion. Ternary mortar prisms in which Portland cement was replaced by up to 30% were tested at various age; 2, 7, 28 and 60 days. Result showed that the compressive strength of the cement mortars increased as the curing days were lengthened for both OPC and the blended cement samples. The ternary cement’s compressive strengths showed significant improvement compared with the control especially beyond 28 days. This can be attributed to the slow pozzolanic reaction resulting from the formation of additional CSH from the interaction of the residual CH content and the silica available in the Metakaolin and Rice husk ash, thus providing significant strength gain at later age. Results indicated that the addition of metakaolin with rice husk ash kept constant was found to lead to an increment in the compressive strength. This can either be attributed to the high silica/alumina contribution to the matrix or the C/S ratio in the cement matrix. Whereas, increment in the rice husk ash content while metakaolin was held constant led to an increment in the compressive strength, which could be attributed to the reactivity of the rice husk ash followed by decrement owing to the presence of unburnt carbon in the RHA matrix. The best compressive strength results were obtained at 10% cement replacement (5% RHA, 5% MK); 15% cement replacement (10% MK and 5% RHA); 20% cement replacement (15% MK and 5% RHA); 25% cement replacement (20% MK and 5% RHA); 30% cement replacement (10%/20% MK and 20%/10% RHA). With the optimal combination of either 15% and 20% MK with 5% RHA giving the best compressive strength of 40.5MPa.

Keywords: metakaolin, rice husk ash, compressive strength, ternary mortar, curing days

Procedia PDF Downloads 328
4662 The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters

Authors: Yulia Hastuti, Ratna Dewi, Muhammad Sandi

Abstract:

Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil.

Keywords: expansive soil, gypsum, soil binder, shear strength

Procedia PDF Downloads 460
4661 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay

Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer

Abstract:

For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.

Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength

Procedia PDF Downloads 124
4660 Evaluation of Drained Shear Strength of Bentonite-Sand Mixtures

Authors: Navid Khayat

Abstract:

Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand-bentonite at optimum water content is main purpose of this research. To prepare the required samples, first, bentonite and sand are mixed in 10, 30, 50 and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress-strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed.

Keywords: bentonite, sand, drained shear strength, cohesion intercept

Procedia PDF Downloads 303
4659 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil

Authors: Dogan Cetin, Omar Hamdi Jasim

Abstract:

Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.

Keywords: compaction test, sawdust, shear strength, UU Triaxial Test

Procedia PDF Downloads 337
4658 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns

Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally

Abstract:

This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.

Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength

Procedia PDF Downloads 498
4657 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt

Authors: Youssouf Benmeriem

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength

Procedia PDF Downloads 373
4656 Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression

Authors: A. A. Okeola, T. I. Sijuade

Abstract:

Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days of water submerged curing were tested under compression loading. The result shows that the compressive strength of plastic fibre reinforced concrete increased with rise in curing age. The strength increases for all percentage dosage of fibre used for the concrete. The density of the Plastic Fibre Reinforced Concrete (PFRC) also increases with curing age, which implies that during curing, concrete absorbs water which aids its hydration. The least compressive strength obtained with the introduction of plastic fibre is more than the targeted 20 N/mm2 recommended for construction work showing that PFRC can be used where significant loading is expected.

Keywords: compressive strength, concrete, curing, density, plastic fibre

Procedia PDF Downloads 397
4655 Oriented Strandboard-GEOGYPTM Undelayment, a Novel Composite Flooring System

Authors: B. Noruziaan, A. Shvarzman, R. Leahy

Abstract:

An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes.

Keywords: Composite, floor deck, gypsum based, lumber joist, non-cement, oriented strandboard, shear bond

Procedia PDF Downloads 410
4654 Experiments on Residual Compressive Strength After Fatigue of Carbon Fiber Fabric Composites in Hydrothermal Environment

Authors: Xuan Sun, Mingbo Tong

Abstract:

In order to study the effect of hydrothermal environment on the fatigue properties of carbon fiber fabric composites, the experiments on fatigue and residual compressive strength with the center-hole laminates were carried out. For the experiments on fatigue in hydrothermal environment, an environmental chamber used for hydrothermal environment was designed, and the FLUENT was used to simulate the field of temperature in the environmental chamber, it proved that the design met the test requirements. In accordance with ASTM standard, the fatigue test fixture and compression test fixture were designed and produced. Then the tension-compression fatigue tests were carried out in conditions of standard environment (temperature of 23+2℃, relative humidity of 50+/-5%RH) and hydrothermal environment (temperature of 70 +2℃, relative humidity of 85+/-5%RH). After that, the residual compressive strength tests were carried out, respectively. The residual compressive strength after fatigue in condition of standard environment was set as a reference value, compared with the value in condition of hydrothermal environment, calculating the difference between them. According to the result of residual compressive strength tests, it shows that the residual compressive strength after fatigue in condition of hydrothermal environment was decreased by 13.5%,so the hydrothermal environment has little effect on the residual compressive strength of carbon fiber fabric composites laminates after fatigue under load spectrum in this research.

Keywords: carbon fiber, hydrothermal environment, fatigue, residual compressive strength

Procedia PDF Downloads 472
4653 Influence of Random Fibre Packing on the Compressive Strength of Fibre Reinforced Plastic

Authors: Y. Wang, S. Zhang, X. Chen

Abstract:

The longitudinal compressive strength of fibre reinforced plastic (FRP) possess a large stochastic variability, which limits efficient application of composite structures. This study aims to address how the random fibre packing affects the uncertainty of FRP compressive strength. An novel approach is proposed to generate random fibre packing status by a combination of Latin hypercube sampling and random sequential expansion. 3D nonlinear finite element model is built which incorporates both the matrix plasticity and fibre geometrical instability. The matrix is modeled by isotropic ideal elasto-plastic solid elements, and the fibres are modeled by linear-elastic rebar elements. Composite with a series of different nominal fibre volume fractions are studied. Premature fibre waviness at different magnitude and direction is introduced in the finite element model. Compressive tests on uni-directional CFRP (carbon fibre reinforced plastic) are conducted following the ASTM D6641. By a comparison of 3D FE models and compressive tests, it is clearly shown that the stochastic variation of compressive strength is partly caused by the random fibre packing, and normal or lognormal distribution tends to be a good fit the probabilistic compressive strength. Furthermore, it is also observed that different random fibre packing could trigger two different fibre micro-buckling modes while subjected to longitudinal compression: out-of-plane buckling and twisted buckling. The out-of-plane buckling mode results much larger compressive strength, and this is the major reason why the random fibre packing results a large uncertainty in the FRP compressive strength. This study would contribute to new approaches to the quality control of FRP considering higher compressive strength or lower uncertainty.

Keywords: compressive strength, FRP, micro-buckling, random fibre packing

Procedia PDF Downloads 263
4652 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio

Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog

Abstract:

Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.

Keywords: shear strength, over-consolidation ratio, vane shear test, clayey soil

Procedia PDF Downloads 269
4651 Studies on Partial Replacement of Cement by Rice Husk Ash under Sodium Phosphate Medium

Authors: Dharmana Pradeep, Chandan Kumar Patnaikuni, N. V. S. Venugopal

Abstract:

Rice Husk Ash (RHA) is a green product contains carbon and also loaded with silica. For the development of durability and strength of any concrete, curing phenomenon shall be very important. In this communication, we reported the exposure of partial replacement of cement with RHA at different percentages of 0%, 5%, 7.5%, 10%, 12.5% and 15% by weight under sodium phosphate curing atmosphere. The mix is designed for M40 grade concrete with the proportions of 1:2.2:3.72. The tests conducted on concrete was a compressive strength, and the specimens were cured in normal water & exposed to the chemical solution for 7, 28 & 56 days. For chemical curing 0.5% & 1% concentrated sodium phosphates were used and were compared with normal concrete strength results. The strength of specimens of 1% sodium phosphate exposure showed that the compressive strength decreased with increase in RHA percentages.

Keywords: rice husk ash, compressive strength, sodium phosphate, curing

Procedia PDF Downloads 327
4650 An Experimental Study of the Effectiveness of Lubricants in Reducing the Sidewall Friction

Authors: Jian Zheng, Li Li, Maxime Daviault

Abstract:

In several cases, one needs apply lubrication materials in laboratory tests to reduce the friction (shear strength) along the interfaces between a tested soil and the side walls of container. Several types of lubricants are available. Their effectiveness had been tested mostly through direct shear tests. These testing conditions are quite different than those when the tested soil is placed in the container. Thus, the shear strengths measured from direct shear tests may not be totally representative of those of interfaces between the tested soil and the sidewalls of container. In this paper, the effectiveness of different lubricants used to reduce the friction (shear strength) of soil-structure interfaces has been studied. Results show that the selected lubricants do not significantly reduce the sidewall friction (shear strength). Rather, the application of wax, graphite, grease or lubricant oil has effect to increase the sidewall shear strength due probably to the high viscosity of such materials. Subsequently, the application of lubricants between tested soil and sidewall and neglecting the friction (shear strength) along the sidewalls may lead to inaccurate test results.

Keywords: arching, friction, laboratory tests, lubricants

Procedia PDF Downloads 257
4649 Shear Strength and Consolidation Behavior of Clayey Soil with Vertical and Radial Drainage

Authors: R. Pillai Aparna, S. R. Gandhi

Abstract:

Soft clay deposits having low strength and high compressibility are found all over the world. Preloading with vertical drains is a widely used method for improving such type of soils. The coefficient of consolidation, irrespective of the drainage type, plays an important role in the design of vertical drains and it controls accurate prediction of the rate of consolidation of soil. Also, the increase in shear strength of soil with consolidation is another important factor considered in preloading or staged construction. To our best knowledge no clear guidelines are available to estimate the increase in shear strength for a particular degree of consolidation (U) at various stages during the construction. Various methods are available for finding out the consolidation coefficient. This study mainly focuses on the variation of, consolidation coefficient which was found out using different methods and shear strength with pressure intensity. The variation of shear strength with the degree of consolidation was also studied. The consolidation test was done using two types of highly compressible clays with vertical, radial and a few with combined drainage. The test was carried out at different pressures intensities and for each pressure intensity, once the target degree of consolidation is achieved, vane shear test was done at different locations in the sample, in order to determine the shear strength. The shear strength of clayey soils under the application of vertical stress with vertical and radial drainage with target U value of 70% and 90% was studied. It was found that there is not much variation in cv or cr value beyond 80kPa pressure intensity. Correlations were developed between shear strength ratio and consolidation pressure based on laboratory testing under controlled condition. It was observed that the shear strength of sample with target U value of 90% is about 1.4 to 2 times than that of 70% consolidated sample. Settlement analysis was done using Asaoka’s and hyperbolic method. The variation of strength with respect to the depth of sample was also studied, using large-scale consolidation test. It was found, based on the present study that the gain in strength is more on the top half of the clay layer, and also the shear strength of the sample ensuring radial drainage is slightly higher than that of the vertical drainage.

Keywords: consolidation coefficient, degree of consolidation, PVDs, shear strength

Procedia PDF Downloads 220