Search results for: carbonate chemistry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 882

Search results for: carbonate chemistry

852 Hard Water Softening by Chronoamperometry and Impedancemetry

Authors: Samira Ghizellaoui, Manel Boumagoura, Rayane Menzri

Abstract:

The ground water Hamma rich in calcium and bicarbonate likely to deposit the tartar and subsequently lead to the obstruction of the pipes and the seizing of the stopping devices in addition to the financial losses resulting there from. It is therefore necessary to optimise an antiscaling treatment in order to avoid the risk of formation of tartar deposits in the various installations and to protect the equipment in contact with this water. MgCl2 is the chemical inhibitor which was tested. To optimise the effective concentration of this product, we used two electrochemical methods (chronoamperometry and impedancemetry) to identify the best method for optimizing antiscaling treatment. IR, RX, Raman spectroscopy and SEM indicate that the raw waters of Hamma give precipitates in the form of calcite (the most stable form), with the presence of a small amount of magnesian calcite and aragonite. In the presence of the inhibitor (MgCl2), calcium carbonate changes morphology to other forms that do not exist in the deposit obtained from the raw water (vaterite and calcium carbonate monohydrate).

Keywords: calcium carbonate, MgCl2, chronoamperometry, Impedancemetry

Procedia PDF Downloads 53
851 Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa

Authors: Modreck Gomo

Abstract:

The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO3 hydrochemical facie while fractured-rock aquifer has a Ca-HCO3 facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca2+ in the Ca-HCO3 hydrochemical type to result in the Na-HCO3 hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted.

Keywords: alluvial aquifer, fractured-rock aquifer, groundwater quality, hydrogeochemical processes

Procedia PDF Downloads 171
850 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures

Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov

Abstract:

Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.

Keywords: multiscale modeling, permeability, texture, micro-tomography images

Procedia PDF Downloads 163
849 Professional Ambitions of Students of Faculty of Chemistry, Adam Mickiewicz University in the Context of Teaching Profession

Authors: Malgorzata Bartoszewicz, Grzegorz Krzysko

Abstract:

Chemistry students plan a career path based on their interests, predispositions, and preferences. This study aims to determine what percentage of all chemistry students selected teaching as a career. There is a lack of science teachers (especially physics and chemistry) in Poland, and there is limited research on students' choices and professional preferences. At the Faculty of Chemistry of the Adam Mickiewicz University in the academic year 2019/2020, changes were introduced to the study program resulting from legal regulations and as part of the funds raised from the project "Teacher - competent practitioner, supervisor, expert", No. POWR.03.01.00-00-KN40/18. The aim of the study was to determine how many first-cycle and second-cycle studies students declare the teaching profession as a career. In the case of first-cycle studies students, 9.5% of respondents choose the teaching profession and 9.2% of second-cycle studies students. It was found that the number of students who chose the teacher preparation programme at Faculty of Chemistry of the Adam Mickiewicz University has decreased since 5 years.

Keywords: faculty of chemistry, Adam Mickiewicz University, professional ambitions, students, teacher

Procedia PDF Downloads 115
848 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Authors: Rouzbeh Ramezani, Renzo Di Felice

Abstract:

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

Keywords: absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity

Procedia PDF Downloads 253
847 Density Functional Theory Study of the Surface Interactions between Sodium Carbonate Aerosols and Fission Products

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

The interaction of fission products (FP) with sodium carbonate (Na₂CO₃) aerosols is of a high safety concern because of their potential role in the radiological source term mitigation by FP trapping. In a sodium-cooled fast nuclear reactor (SFR) experiencing a severe accident, sodium (Na) aerosols can be formed after the ejection of the liquid Na coolant inside the containment. The surface interactions between these aerosols and different FP species have been investigated using ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package (VASP). In addition, an improved thermodynamic model has been proposed to treat DFT-VASP calculated energies to extrapolate them to temperatures and pressures of interest in our study. A combined experimental and theoretical chemistry study has been carried out to have both atomistic and macroscopic understanding of the chemical processes; the theoretical chemistry part of this approach is presented in this paper. The Perdew, Burke, and Ernzerhof functional were applied in combination with Grimme’s van der Waals correction to compute exchange-correlational energy at 0 K. Seven different surface cleavages were studied of Ƴ-Na₂CO₃ phase (stable at 603.15 K), it was found that for defect-free surfaces, the (001) facet is the most stable. Furthermore, calculations were performed to study surface defects and reconstructions on the ideal surface. All the studied surface defects were found to be less stable than the ideal surface. More than one adsorbate-ligand configurations were found to be stable confirming that FP vapors could be trapped on various adsorption sites. The calculated adsorption energies (Eads, eV) for the three most stable adsorption sites for I₂ are -1.33, -1.088, and -1.085. Moreover, the adsorption of the first molecule of I₂ changes the surface in a way which would favor stronger adsorption of a second molecule of I2 (Eads, eV = -1.261). For HI adsorption, the most favored reactions have the following Eads (eV) -1.982, -1.790, -1.683 implying that HI would be more reactive than I₂. In addition to FP species, adsorption of H₂O was also studied as the hydrated surface can have different reactivity than the bare surface. One thermodynamically favored site for H₂O adsorption was found with an Eads, eV of -0.754. Finally, the calculations of hydrated surfaces of Na₂CO₃ show that a layer of water adsorbed on the surface significantly reduces its affinity for iodine (Eads, eV = -1.066). According to the thermodynamic model built, the required partial pressure at 373 K to have adsorption of the first layer of iodine is 4.57×10⁻⁴ bar. The second layer will be adsorbed at partial pressures higher than 8.56×10⁻⁶ bar; a layer of water on the surface will increase these pressure almost ten folds to 3.71×10⁻³ bar. The surface interacts with elemental Cs with an Eads (eV) of -1.60, while interacts even strongly with CsI with an Eads (eV) of -2.39. More results on the interactions between Na₂CO₃ (001) and cesium-based FP will also be presented in this paper.

Keywords: iodine uptake, sodium carbonate surface, sodium-cooled fast nuclear reactor, DFT calculations, fission products

Procedia PDF Downloads 130
846 Implementation of an Undergraduate Integrated Biology and Chemistry Course

Authors: Jayson G. Balansag

Abstract:

An integrated biology and chemistry (iBC) course for freshmen college students was developed in University of Delaware. This course will prepare students to (1) become interdisciplinary thinkers in the field of biology and (2) collaboratively work with others from multiple disciplines in the future. This paper documents and describes the implementation of the course. The information gathered from reading literature, classroom observations, and interviews were used to carry out the purpose of this paper. The major goal of the iBC course is to align the concepts between Biology and Chemistry, so that students can draw science concepts from both disciplines which they can apply in their interdisciplinary researches. This course is offered every fall and spring semesters of each school year. Students enrolled in Biology are also enrolled in Chemistry during the same semester. The iBC is composed of lectures, laboratories, studio sessions, and workshops and is taught by the faculty from the biology and chemistry departments. In addition, the preceptors, graduate teaching assistants, and studio fellows facilitate the laboratory and studio sessions. These roles are interdependent with each other. The iBC can be used as a model for higher education institutions who wish to implement an integrated biology course.

Keywords: integrated biology and chemistry, integration, interdisciplinary research, new biology, undergraduate science education

Procedia PDF Downloads 219
845 Small-Group Case-Based Teaching: Effects on Student Achievement, Critical Thinking, and Attitude toward Chemistry

Authors: Reynante E. Autida, Maria Ana T. Quimbo

Abstract:

The chemistry education curriculum provides an excellent avenue where students learn the principles and concepts in chemistry and at the same time, as a central science, better understand related fields. However, the teaching approach used by teachers affects student learning. Cased-based teaching (CBT) is one of the various forms of inductive method. The teacher starts with specifics then proceeds to the general principles. The students’ role in inductive learning shifts from being passive in the traditional approach to being active in learning. In this paper, the effects of Small-Group Case-Based Teaching (SGCBT) on college chemistry students’ achievement, critical thinking, and attitude toward chemistry including the relationships between each of these variables were determined. A quasi-experimental counterbalanced design with pre-post control group was used to determine the effects of SGCBT on Engineering students of four intact classes (two treatment groups and two control groups) in one of the State Universities in Mindanao. The independent variables are the type of teaching approach (SGCBT versus pure lecture-discussion teaching or PLDT) while the dependent variables are chemistry achievement (exam scores) and scores in critical thinking and chemistry attitude. Both Analysis of Covariance (ANCOVA) and t-tests (within and between groups and gain scores) were used to compare the effects of SGCBT versus PLDT on students’ chemistry achievement, critical thinking, and attitude toward chemistry, while Pearson product-moment correlation coefficients were calculated to determine the relationships between each of the variables. Results show that the use of SGCBT fosters positive attitude toward chemistry and provides some indications as well on improved chemistry achievement of students compared with PLDT. Meanwhile, the effects of PLDT and SGCBT on critical thinking are comparable. Furthermore, correlational analysis and focus group interviews indicate that the use of SGCBT not only supports development of positive attitude towards chemistry but also improves chemistry achievement of students. Implications are provided in view of the recent findings on SGCBT and topics for further research are presented as well.

Keywords: case-based teaching, small-group learning, chemistry cases, chemistry achievement, critical thinking, chemistry attitude

Procedia PDF Downloads 270
844 Wave Velocity-Rock Property Relationships in Shallow Marine Libyan Carbonate Reservoir

Authors: Tarek S. Duzan, Abdulaziz F. Ettir

Abstract:

Wave velocities, Core and Log petrophysical data were collected from recently drilled four new wells scattered through-out the Dahra/Jofra (PL-5) Reservoir. The collected data were analyzed for the relationships of Wave Velocities with rock property such as Porosity, permeability and Bulk Density. Lots of Literature review reveals a number of differing results and conclusions regarding wave velocities (Compressional Waves (Vp) and Shear Waves (Vs)) versus rock petrophysical property relationships, especially in carbonate reservoirs. In this paper, we focused on the relationships between wave velocities (Vp , Vs) and the ratio Vp/Vs with rock properties for shallow marine libyan carbonate reservoir (Real Case). Upon data analysis, a relationship between petrophysical properties and wave velocities (Vp, Vs) and the ratio Vp/Vs has been found. Porosity and bulk density properties have shown exponential relationship with wave velocities, while permeability has shown a power relationship in the interested zone. It is also clear that wave velocities (Vp , Vs) seems to be a good indicator for the lithology change with true vertical depth. Therefore, it is highly recommended to use the output relationships to predict porosity, bulk density and permeability of the similar reservoir type utilizing the most recent seismic data.

Keywords: conventional core analysis (porosity, permeability bulk density) data, VS wave and P-wave velocities, shallow carbonate reservoir in D/J field

Procedia PDF Downloads 308
843 The Mechanism of Calcium Carbonate Scale Deposition Affected by Carboxymethyl Chitosan

Authors: Genaro Bolívar, Manuel Mas, Maria Tortolero, Jorge Salazar

Abstract:

Due to the extensive use of water injection for oil displacement and pressure maintenance in oil fields, many reservoirs experience the problem of scale deposition when injection water starts to break through. In most cases the scaled-up wells are caused by the formation of sulfate and carbonate scales of calcium and strontium. Due to their relative hardness and low solubility, there are limited processes available for their removal and preventive measures such as the “squeeze” inhibitor treatment have to be taken. It is, therefore, important to gain a proper understanding of the kinetics of scale formation and its detrimental effects on formation damage under both inhibited and uninhibited conditions. Recently, the production of chitosan was started in our country and in the PDVSA-Intevep laboratories was synthesized and evaluated the properties of carboxymethyl chitosan (CMQ) as chelating agent of Ca2 + ions in water injection. In this regard, the characterization of the biopolymer by 13C - NMR, FTIR, TGA, and TM0374-2007 standard laboratory test has demonstrated the ability to remove up to 70% calcium ions in solution and shows a behavior that approaches that of commercial products.

Keywords: carboxymethyl chitosan, scale, calcium carbonate scale deposition, water injection

Procedia PDF Downloads 414
842 Peculiar Mineralogical and Chemical Evolution of Contaminated Igneous Rocks at a Gabbro-Carbonate Contact, Wadai Bayhan, Yemen

Authors: Murad Ali, Shoji Arai, Mohamed Khedr, Mukhtar Nasher, Shawki Nasr

Abstract:

The Wadi Bayhan area of southeastern Yemen is about 60 km NW of Al-Bayda city in the Al-Bayda uplift terrane at the southeast margin of the Arabian-Nubian Shield. Intrusion of alkali gabbro into carbonate rocks apparently produced an 8m to 10 m thick reaction zone at the contact. This had been identified as nepheline pyroxenite. We have observed this to be mineralogically zoned with calc-silicate assemblages (e.g. pyroxene, calcite, spinel, garnet and melilite). The presence of melilite implies a skarn. The sinuous embayed pyroxenite-skarn contact, the presence of skarn minerals in pyroxenite, and textural evidence for growth of calc-silicate skarn by replacement of both carbonate rocks and solid pyroxenite indicate that reaction involved assimilation of carbonate wall rock by magma and loss of Al and Si to the skarn. Textural relationships between minerals provide evidence for a metasomatic development of the skarn at the expense of the pyroxenite. This process, related to the circulation of fluids equilibrated with carbonates, is responsible for those pyroxenite-spinel (± calcite) skarns. The uneven modal distribution of euhedral pyroxenite and enveloping nepheline in pyroxenite, the restricted occurrence of alkali gabbro as dikes in pyroxenite and skarn and the leucocratic matrix of pyroxenite suggest that pyroxenite represents an accumulation of titanaugite cemented by an alkali-rich residual magma and that alkali gabbro represents a part of the residual contaminated magma that was squeezed out of the pyroxene crystal mush. Carbonate assimilation is modeled by reaction of calcite and magmatic plagioclase, which results in resorption of plagioclase, growth of pyroxene enriched in Ca, Fe, Ti, and Al, and solution of nepheline in residual contaminated magma. The composition of nepheline pyroxenite evolved by addition of Ca from dissolved carbonate rocks, loss of Al and Si to skarn, and local segregation of solid pyroxene and alkali gabbro magma. The predominance of pyroxenite among contaminated rocks and their restriction to a large zone along the intrusive contact provide little evidence for the genesis of a significant volume of alkaline magmatic surroundings by carbonate assimilation.

Keywords: Yemen, Wadi Bayhan, skarn, pyroxenite, carbonatite, metasomatic

Procedia PDF Downloads 304
841 Assessment of Online Web-Based Learning for Enhancing Student Grades in Chemistry

Authors: Ian Marc Gealon Cabugsa, Eleanor Pastrano Corcino, Gina Lapaza Montalan

Abstract:

This study focused on the effect of Online Web-Learning (OWL) in the performance of the freshmen Civil Engineering Students of Ateneo de Davao University in their Chem 12 subject. The grades of the students that were required to use OWL were compared to students without OWL. The result of the study suggests promising result for the use of OWL in increasing the performance rate of students taking up Chem 12. Furthermore, there was a positive correlation between the final grade and OWL grade of the students that had OWL. While the majority of the students find OWL to be helpful in supporting their chemistry knowledge needs, most of them still prefer to learn using the traditional face-to-face instruction.

Keywords: chemistry education, enhanced performance, engineering chemistry, online web-based learning

Procedia PDF Downloads 343
840 The Influence of Sulfate and Magnesium Ions on the Growth Kinetics of CaCO3

Authors: Kotbia Labiod, Mohamed Mouldi Tlili

Abstract:

The presence of different mineral salts in natural waters may precipitate and form hard deposits in water distribution systems. In this respect, we have developed numerous works on scaling by Algerian water with a very high hardness of 102 °F. The aim of our work is to study the influence of water dynamics and its composition on mineral salts on the precipitation of calcium carbonate (CaCO3). To achieve this objective, we have adopted two precipitation techniques based on controlled degassing of dissolved CO2. This study will identify the causes and provide answers to this complex phenomenon.

Keywords: calcium carbonate, controlled degassing, precipitation, scaling

Procedia PDF Downloads 200
839 Immobilization of Lead in Contaminated Soil Using Enzyme Induced Calcite Precipitation (EİCP) Along with Coconut Fiber Biochar (CFB)

Authors: Kaniz Roksana, Aluthgun Hewage Shaini, Cheng Zhu

Abstract:

Lead is environmentally hazardous because it may persist for a long time in soil, water, and air, and it can travel large distances when carried by wind or water. Lead is toxic to many different species of organisms and has the potential to disrupt ecosystem stability. Moreover, lead can contaminate crops and livestock, which can then have an adverse effect on human health. This study was conducted to use the enzyme-induced calcium carbonate precipitation (EICP) technique from soybean crude extract urease along coconut fiber derived biochar’s (CFB) to bioremediate lead. To study the desorption rates of heavy metals from the soil, lead (Pb) was added to the soil at load ratios of 50 and 100 mg/kg. There were five separate treatment soil columns created: control sample, only CFB, only EICP, EICP with 2% (w/w) CFB, and EICP with 4% (w/w) CFB. Laboratory scale experiment demonstrates significant lead removal from soil. The amount of CaCO₃ precipitated in the soil was measured using a gravimetric acid digestion test, which related heavy metal desorption to the amount of precipitated calcium carbonate. These findings were validated using a scanning electron microscope (SEM), which revealed calcium carbonate and lead coprecipitation. As a result, the study reveals that the EICP technique, in conjunction with coconut fiber biochar, could be an efficient alternative in the remediation of heavy metal ion-contaminated soils.

Keywords: enzyme induced calcium carbonate precipitation (EICP), coconut fiber derived biochar’s (CFB), bioremediation, heavy metal

Procedia PDF Downloads 47
838 Partially Fluorinated Electrolyte for Lithium-Ion Batteries

Authors: Gebregziabher Brhane Berhe, Bing Joe Hwange, Wei-Nien Su

Abstract:

For a high-voltage cell, severe capacity fading is usually observed when the commercially carbonate-based electrolyte is employed due to the oxidative decomposition of solvents. To mitigate this capacity fading, an advanced electrolyte of fluoroethylene carbonate, ethyl methyl carbonate (EMC), and 1,1,2,2-Tetrafluoroetyle-2,2,3,3-tetrafluoropropyl ether (TTE) (in vol. ratio of 3:2:5) is dissolved with oxidative stability. A high-voltage lithium-ion battery was designed by coupling sulfured carbon anode from polyacrylonitrile (S-C(PAN)) and LiN0.5Mn1.5 O4 (LNMO) cathode. The discharged capacity of the cell made with modified electrolyte reaches 688 mAhg-1S a rate of 2 C, while only 19 mAhg-1S for the control electrolyte. The adopted electrolyte can effectively stabilize the sulfurized carbon anode and LNMO cathode surfaces, as the X-ray photoelectron spectroscopy (XPS) results confirmed. The developed robust high-voltage lithium-ion battery enjoys wider oxidative stability, high rate capability, and good cyclic performance, which can be attributed to the partially fluorinated electrolyte formulations with balanced viscosity and conductivity.

Keywords: high voltage, LNMO, fluorinated electrolyte, lithium-ion batteries

Procedia PDF Downloads 31
837 Mineralogy and Classification of Altered Host Rocks in the Zaghia Iron Oxide Deposit, East of Bafq, Central Iran

Authors: Azat Eslamizadeh, Neda Akbarian

Abstract:

The Zaghia Iron ore, in 15 km east of a town named Bafq, is located in Precambrian formation of Central Iran in form of a small local deposit. The Volcano-sedimentary rocks of Precambrian-Cambrian age, belonging to Rizu series have spread through the region. Substantial portion of the deposit is covered by alluvial deposits. The rocks hosting the Zaghia iron ore have a main combination of rhyolitic tuffs along with clastic sediments, carbonate include sandstone, limestone, dolomite, conglomerate and is somewhat metamorphed causing them to have appeared as slate and phyllite. Moreover, carbonate rocks are in existence as skarn compound of marble bearing tremolite with mineralization of magnetite-hematite. The basic igneous rocks have dramatically altered into green rocks consist of actinolite-tremolite and chlorite along with amount of iron (magnetite + Martite). The youngest units of ore-bearing rocks in the area are found as dolerite - diabase dikes. The dikes are cutting the rhyolitic tuffs and carbonate rocks.

Keywords: Zaghia, iron ore deposite, mineralogy, petrography Bafq, Iran

Procedia PDF Downloads 497
836 An Approach to Improve Pre University Students' Responsible Environmental Behaviour through Science Writing Heuristic in Malaysia

Authors: Sheila Shamuganathan, Mageswary Karpudewan

Abstract:

This study investigated the effectiveness of green chemistry integrated with Science Writing Heuristic (SWH) in enhancing matriculation students’ responsible environmental behaviour. For this purpose 207 matriculation students were randomly assigned into experimental (N=118) and control (N=89) group. For the experimental group the chemistry concepts were taught using the instructional approach of green chemistry integrated with Science Writing Heuristic (SWH) while for the control group the same content was taught using green chemistry. The data was analysed using ANCOVA and findings obtained from the quantitative analysis reveals that there is significant changes in responsible environmental behaviour (F 1,204) = 32.13 (ηp² = 0.14) which favours the experimental group. The responses of the qualitative data obtained from an interview with the experimental group also further strengthen and indicated a significant improvement in responsible environmental behaviour. The outcome of the study suggests that using green chemistry integrated with Science Writing Heuristic (SWH) could be an alternative approach to improve students’ responsible environmental behaviour towards the environment.

Keywords: science writing heuristic, green chemistry, pro environmental behaviour, laboratory

Procedia PDF Downloads 286
835 Relationship between Wave Velocities and Geo-Pressures in Shallow Libyan Carbonate Reservoir

Authors: Tarek Sabri Duzan

Abstract:

Knowledge of the magnitude of Geo-pressures (Pore, Fracture & Over-burden pressures) is vital especially during drilling, completions, stimulations, Enhance Oil Recovery. Many times problems, like lost circulation could have been avoided if techniques for calculating Geo-pressures had been employed in the well planning, mud weight plan, and casing design. In this paper, we focused on the relationships between Geo-pressures and wave velocities (P-Wave (Vp) and S-wave (Vs)) in shallow Libyan carbonate reservoir in the western part of the Sirte Basin (Dahra F-Area). The data used in this report was collected from four new wells recently drilled. Those wells were scattered throughout the interested reservoir as shown in figure-1. The data used in this work are bulk density, Formation Mult -Tester (FMT) results and Acoustic wave velocities. Furthermore, Eaton Method is the most common equation used in the world, therefore this equation has been used to calculate Fracture pressure for all wells using dynamic Poisson ratio calculated by using acoustic wave velocities, FMT results for pore pressure, Overburden pressure estimated by using bulk density. Upon data analysis, it has been found that there is a linear relationship between Geo-pressures (Pore, Fracture & Over-Burden pressures) and wave velocities ratio (Vp/Vs). However, the relationship was not clear in the high-pressure area, as shown in figure-10. Therefore, it is recommended to use the output relationship utilizing the new seismic data for shallow carbonate reservoir to predict the Geo-pressures for future oil operations. More data can be collected from the high-pressure zone to investigate more about this area.

Keywords: bulk density, formation mult-tester (FMT) results, acoustic wave, carbonate shalow reservoir, d/jfield velocities

Procedia PDF Downloads 267
834 A Green Analytical Curriculum for Renewable STEM Education

Authors: Mian Jiang, Zhenyi Wu

Abstract:

We have incorporated green components into existing analytical chemistry curriculum with the aims to present a more environment benign approach in both teaching laboratory and undergraduate research. These include the use of cheap, sustainable, and market-available material; minimized waste disposal, replacement of non-aqueous media; and scale-down in sample/reagent consumption. Model incorporations have covered topics in quantitative chemistry as well as instrumental analysis, lower division as well as upper level, and research in traditional titration, spectroscopy, electrochemical analysis, and chromatography. The green embedding has made chemistry more daily life relevance, and application focus. Our approach has the potential to expand into all STEM fields to make renewable, high-impact education experience for undergraduate students.

Keywords: green analytical chemistry, pencil lead, mercury, renewable

Procedia PDF Downloads 300
833 Synthetic Access to Complex Metal Carbonates and Hydroxycarbonates via Sol-Gel Chemistry

Authors: Schirin Hanf, Carlos Lizandara-Pueyo, Timmo P. Emmert, Ivana Jevtovikj, Roger Gläser, Stephan A. Schunk

Abstract:

Metal alkoxides are very versatile precursors for a broad array of complex functional materials. However, metal alkoxides, especially transition metal alkoxides, tend to form oligomeric structures due to the very strong M–O–M binding motif. This fact hinders their facile application in sol-gel-processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. Therefore, the development of a synthetic alternative with the aim to grant access to carbonates and hydroxycarbonates from simple metal alkoxide precursors via hydrolysis is key to this project. Our approach involves the reaction of metal alkoxides with unsaturated isoelectronic molecules, such as carbon dioxide. Subsequently, a stoichiometric insertion of the CO₂ into the alkoxide M–O bond takes place and leads to the formation of soluble metal alkyl carbonates. This strategy is a very elegant approach to solubilize metal alkoxide precursors to make them accessible for sol-gel chemistry. After hydrolysis of the metal alkyl carbonates, crystalline metal carbonates, and hydroxycarbonates can be obtained, which were then utilized for the synthesis of Cu/Zn based bulk catalysts for methanol synthesis. Using these catalysts, a comparable catalytic activity to commercially available MeOH catalysts could be reached. Based on these results, a complement for traditional precipitation techniques, which are usually utilized for the synthesis of bulk methanol catalysts, have been found based on an alternative solubilization strategy.

Keywords: metal alkoxides, metal carbonates, metal hydroxycarbonates, CO₂ insertion, solubilization

Procedia PDF Downloads 154
832 Effect of Three Instructional Strategies on Pre-service Teachers’ Learning Outcomes in Practical Chemistry in Niger State, Nigeria

Authors: Akpokiere Ugbede Roseline

Abstract:

Chemistry is an activity oriented subject in which many students achievement over the years are not encouraging. Among the reasons found to be responsible for student’s poor performance in chemistry are ineffective teaching strategies. This study, therefore, sought to determine the effect of guided inquiry, guided inquiry with demonstration, and demonstration with conventional approach on pre-service teachers’ cognitive attainment and practical skills acquisition on stoichiometry and chemical reactions in practical chemistry, Two research questions and hypotheses were each answered and tested respectively. The study was a quasi-experimental research involving 50 students in each of the experimental groups and 50 students in the control group. Out of the five instruments used for the study, three were on stimulus and two on response (Test of Cognitive Attainment and Test of Practical Skills in Chemistry) instruments administered, and dataobtained were analyzed with t-test and Analysis of Variance. Findings revealed, among others, that there was a significant effect of treatments on students' cognitive attainment and on practical skills acquisition. Students exposed to guided inquiry (with/without demonstration) strategies achieved better than those exposed to demonstration with conventional strategy. It is therefore recommended, among others, that Lecturers in Colleges of Education should utilize the guided inquiry strategy for teaching concepts in chemistry.

Keywords: instructional strategy, practical chemistry, learning outcomes, pre-service teachers

Procedia PDF Downloads 75
831 Biogas Potential of Deinking Sludge from Wastepaper Recycling Industry: Influence of Dewatering Degree and High Calcium Carbonate Content

Authors: Moses Kolade Ogun, Ina Korner

Abstract:

To improve on the sustainable resource management in the wastepaper recycling industry, studies into the valorization of wastes generated by the industry are necessary. The industry produces different residues, among which is the deinking sludge (DS). The DS is generated from the deinking process and constitutes a major fraction of the residues generated by the European pulp and paper industry. The traditional treatment of DS by incineration is capital intensive due to energy requirement for dewatering and the need for complementary fuel source due to DS low calorific value. This could be replaced by a biotechnological approach. This study, therefore, investigated the biogas potential of different DS streams (different dewatering degrees) and the influence of the high calcium carbonate content of DS on its biogas potential. Dewatered DS (solid fraction) sample from filter press and the filtrate (liquid fraction) were collected from a partner wastepaper recycling company in Germany. The solid fraction and the liquid fraction were mixed in proportion to realize DS with different water content (55–91% fresh mass). Spiked samples of DS using deionized water, cellulose and calcium carbonate were prepared to simulate DS with varying calcium carbonate content (0– 40% dry matter). Seeding sludge was collected from an existing biogas plant treating sewage sludge in Germany. Biogas potential was studied using a 1-liter batch test system under the mesophilic condition and ran for 21 days. Specific biogas potential in the range 133- 230 NL/kg-organic dry matter was observed for DS samples investigated. It was found out that an increase in the liquid fraction leads to an increase in the specific biogas potential and a reduction in the absolute biogas potential (NL-biogas/ fresh mass). By comparing the absolute biogas potential curve and the specific biogas potential curve, an optimal dewatering degree corresponding to a water content of about 70% fresh mass was identified. This degree of dewatering is a compromise when factors such as biogas yield, reactor size, energy required for dewatering and operation cost are considered. No inhibitory influence was observed in the biogas potential of DS due to the reported high calcium carbonate content of DS. This study confirms that DS is a potential bioresource for biogas production. Further optimization such as nitrogen supplementation due to DS high C/N ratio can increase biogas yield.

Keywords: biogas, calcium carbonate, deinking sludge, dewatering, water content

Procedia PDF Downloads 136
830 Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters

Authors: Samira Ghizellaoui, Manel Boumagoura

Abstract:

Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate).

Keywords: water, scaling, calcium carbonate, green inhibitor

Procedia PDF Downloads 42
829 Copper Removal from Synthetic Wastewater by a Novel Fluidized-bed Homogeneous Crystallization (FBHC) Technology

Authors: Cheng-Yen Huang, Yu-Jen Shih, Ming-Chun Yen, Yao-Hui Huang

Abstract:

This research developed a fluidized-bed homogeneous crystallization (FBHC) process to remove copper from synthetic wastewater in terms of recovery of highly pure malachite (Cu2(OH)2CO3) pellets. The experimental parameters of FBHC which included pH, molar ratio of copper to carbonate, copper loading, upper flowrate and bed height were tested in the absence of seed particles. Under optimized conditions, both the total copper removal (TR) and crystallization ratio (CR) reached 99%. The malachite crystals were characterized by XRD and SEM. FBHC was capable of treating concentrated copper (1600 ppm) wastewater and minimizing the sludge production.

Keywords: copper, carbonate, fluidized-bed, crystallization, malachite

Procedia PDF Downloads 388
828 Cryogenic Separation of CO2 from Molten Carbonate Fuel Cell Anode Outlet—Experimental Guidelines

Authors: Jarosław Milewski, Rafał Bernat

Abstract:

This paper presents an analysis of using cryogenic separation unit for recovering fuel from anode off gas of molten carbonate fuel cells (MCFCs) in order to upgrade the efficiently of the unit. In the proposed solution, the CSU is used for condensing water and carbon dioxide from anode off gas, and re-cycling the rest of the stream to the anode, saving certain amount of fuel (at least 30%). The resulting system efficiency is increased considerably. CSU, virtually consumes power, thus this solution has energy penalty as well, on the other hand, MCFC generates large amount of heat at elevated temperature, thus part of the CSU can be based on absorption chiller. In all cases, a high amount of fuel is obtained after condensation of water and carbon dioxide and re-cycled to the anode inlet. Based on mathematical modeling done previously, the concept and guidelines for forthcoming experimental investigations are presented in this paper. During planned experiments, an existing single cell laboratory stand will be equipped with re-cycle device (a fan, a peristaltic pump, etc.). Parallel, a mixture of anode off gas will be cooled down for determining the proper temperature for the separation of water and carbon dioxide.

Keywords: cryogenic separation, experiments, fuel cells, molten carbonate fuel cells

Procedia PDF Downloads 223
827 Total Organic Carbon, Porosity and Permeability Correlation: A Tool for Carbon Dioxide Storage Potential Evaluation in Irati Formation of the Parana Basin, Brazil

Authors: Richardson M. Abraham-A., Colombo Celso Gaeta Tassinari

Abstract:

The correlation between Total Organic Carbon (TOC) and flow units have been carried out to predict and compare the carbon dioxide (CO2) storage potential of the shale and carbonate rocks in Irati Formation of the Parana Basin. The equations for permeability (K), reservoir quality index (RQI) and flow zone indicator (FZI) are redefined and engaged to evaluate the flow units in both potential reservoir rocks. Shales show higher values of TOC compared to carbonates, as such,  porosity (Ф) is most likely to be higher in shales compared to carbonates. The increase in Ф corresponds to the increase in K (in both rocks). Nonetheless, at lower values of Ф, K is higher in carbonates compared to shales. This shows that at lower values of TOC in carbonates, Ф is low, yet, K is likely to be high compared to shale. In the same vein, at higher values of TOC in shales, Ф is high, yet, K is expected to be low compared to carbonates.  Overall, the flow unit factors (RQI and FZI) are better in the carbonates compared to the shales. Moreso, within the study location,  there are some portions where the thicknesses of the carbonate units are higher compared to the shale units. Most parts of the carbonate strata in the study location are fractured in situ, hence,  this could provide easy access for the storage of CO2. Therefore, based on these points and the disparities between the flow units in the evaluated rock types, the carbonate units are expected to show better potentials for the storage of CO2. The shale units may be considered as potential cap rocks or seals.

Keywords: total organic content, flow units, carbon dioxide storage, geologic structures

Procedia PDF Downloads 137
826 Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios.

Keywords: carbonate aquifer, karst, sub-surface flow, groundwater model

Procedia PDF Downloads 128
825 Systematic Exploration and Modulation of Nano-Bio Interactions

Authors: Bing Yan

Abstract:

Nanomaterials are widely used in various industrial sectors, biomedicine, and more than 1300 consumer products. Although there is still no standard safety regulation, their potential toxicity is a major concern worldwide. We discovered that nanoparticles target and enter human cells1, perturb cellular signaling pathways2, affect various cell functions3, and cause malfunctions in animals4,5. Because the majority of atoms in nanoparticles are on the surface, chemistry modification on their surface may change their biological properties significantly. We modified nanoparticle surface using nano-combinatorial chemistry library approach6. Novel nanoparticles were discovered to exhibit significantly reduced toxicity6,7, enhance cancer targeting ability8, or re-program cellular signaling machineries7. Using computational chemistry, quantitative nanostructure-activity relationship (QNAR) is established and predictive models have been built to predict biocompatible nanoparticles.

Keywords: nanoparticle, nanotoxicity, nano-bio, nano-combinatorial chemistry, nanoparticle library

Procedia PDF Downloads 377
824 Syntheses of Biobased Hybrid Poly(epoxy-hydroxyurethane) Polymers

Authors: Adrien Cornille, Sylvain Caillol, Bernard Boutevon

Abstract:

The development of polyurethanes began in 1937 at I. G. Farbenindustrie where Bayer with coworkers discovered the addition polymerization reaction between diisocyanates and diols. Since their discovery, the demand in PU has continued to increase and it will attain in 2016 a production of 18 million tons. However, isocyanates compounds are harmful to human and environment. Methylene diphenyl 4,4’-diisocyanate (MDI) and toluene diisocyanate (TDI), the most widely used isocyanates in PU industry, are classified as CMR (Carcinogen, Mutagen, and Reprotoxic). In order to design isocyanate-free materials, an interesting alternative is the use of Polyhydroxyurethanes (PHUs) by reaction between cyclic carbonate and polyfunctional amines. The main problem concerning PHUs synthesis relates to the low reactivity of carbonate/amine reaction. To solve this issue, many studies in the literature have been conducted to design PHU from more reactive cyclic-carbonates, bearing electro-withdrawing substituent or by using six-membered, seven-membered or thio-cyclic carbonate. The main drawback of all these systems remains the low molar masses obtained for the synthesized PHUs, which hinders their use for material applications. Therefore, we developed another strategy to afford new hybrid PHU with high conversion. This very innovative two-step approach consists in the first step in the synthesis of aminotelechelic PHU oligomers with different chain length from bis-cyclic carbonate with different excess of primary amine functions. In the second step, these aminotelechelic PHU oligomers were used in formulation with biobased epoxy monomers (from cashew nut shell liquid and tannins) to synthesize hybrid polyepoxyurethane polymers. These materials were then characterized by thermal and mechanical analyses.

Keywords: polyurethane, polyhydroxyurethane, aminotelechelic NIPU oligomers, carbonates, epoxy, amine, epoxyurethane polymers, hybrid polymers

Procedia PDF Downloads 186
823 The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China

Authors: Lixin Zhao, Genmao Zhou

Abstract:

Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit.

Keywords: CO₂+O₂ ISL, industrial production, well field layout, uranium processing

Procedia PDF Downloads 146