Search results for: hybrid learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8730

Search results for: hybrid learning

2820 Surgical Hip Dislocation of Femoroacetabular Impingement: Survivorship and Functional Outcomes at 10 Years

Authors: L. Hoade, O. O. Onafowokan, K. Anderson, G. E. Bartlett, E. D. Fern, M. R. Norton, R. G. Middleton

Abstract:

Aims: Femoroacetabular impingement (FAI) was first recognised as a potential driver for hip pain at the turn of the last millennium. While there is an increasing trend towards surgical management of FAI by arthroscopic means, open surgical hip dislocation and debridement (SHD) remains the Gold Standard of care in terms of reported outcome measures. (1) Long-term functional and survivorship outcomes of SHD as a treatment for FAI are yet to be sufficiently reported in the literature. This study sets out to help address this imbalance. Methods: We undertook a retrospective review of our institutional database for all patients who underwent SHD for FAI between January 2003 and December 2008. A total of 223 patients (241 hips) were identified and underwent a ten year review with a standardised radiograph and patient-reported outcome measures questionnaire. The primary outcome measure of interest was survivorship, defined as progression to total hip arthroplasty (THA). Negative predictive factors were analysed. Secondary outcome measures of interest were survivorship to further (non-arthroplasty) surgery, functional outcomes as reflected by patient reported outcome measure scores (PROMS) scores, and whether a learning curve could be identified. Results: The final cohort consisted of 131 females and 110 males, with a mean age of 34 years. There was an overall native hip joint survival rate of 85.4% at ten years. Those who underwent a THA were significantly older at initial surgery, had radiographic evidence of preoperative osteoarthritis and pre- and post-operative acetabular undercoverage. In those whom had not progressed to THA, the average Non-arthritic Hip Score and Oxford Hip Score at ten year follow-up were 72.3% and 36/48, respectively, and 84% still deemed their surgery worthwhile. A learning curve was found to exist that was predicated on case selection rather than surgical technique. Conclusion: This is only the second study to evaluate the long-term outcomes (beyond ten years) of SHD for FAI and the first outside the originating centre. Our results suggest that, with correct patient selection, this remains an operation with worthwhile outcomes at ten years. How the results of open surgery compared to those of arthroscopy remains to be answered. While these results precede the advent of collison software modelling tools, this data helps set a benchmark for future comparison of other techniques effectiveness at the ten year mark.

Keywords: femoroacetabular impingement, hip pain, surgical hip dislocation, hip debridement

Procedia PDF Downloads 84
2819 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 75
2818 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 127
2817 Genesis and Survival Chance of Autotriploid in Natural Diploid Population of Lilium lancifolium Thunb

Authors: Ji-Won Park, Jong-Wha Kim

Abstract:

Triploid L. lancifolium have a wide geographic distribution. By contrast, diploid L. lancifolium have limited distributions in the islands and coastal regions of the South and West Korean Peninsula and northern Tsushima Island, Japan. L. lancifolium diploids and triploids are not sympatrically distributed with other lily species or ploidy lines in West Sea and South Sea Islands of the Korean Peninsula. This observation raises the following questions: 'Why have autotriploid L. lancifolium never been observed in those isolated islands?', 'What mechanism excludes the occurrence of autotriploids, if they arise?'. To determine the occurrence and survival of triploid plants in natural diploid populations of tiger lily (Lilium lancifolium), ploidy analysis was conducted on natural open-pollinated seeds produced from plants grown on isolated islands, and on hybrid seeds produced by artificial crossing between plant populations originating on different Korean islands. Normal seeds were classified into five grades depending on the ratio of embryo/endosperm lengths, including 5/5, 4/5, 3/5, 2/5, and 1/5. Triploids were not observed among seedlings produced from natural open pollinations on isolated islands. Triploids were detected only in seedlings of underdeveloped seed grades(3/5 and 2/5) from artificial crosses between populations from different isolated islands. The triploid occurrence frequency was calculated as 0.0 for natural open-pollinated seedlings and 0.000582 for artificial crosses(6 triploids from 10,303 seedlings). Triploids were produced from crosses between isolated populations located at least 70 km apart; no triploids were detected in inter-population crosses of plants originating on the same islands. Triploid seedlings have very low viability in soil. We analyzed factors affecting triploid occurrence and survival in natural diploid populations of L. lancifolium. The results suggest that triploids originate from fertilization between plants that are genetically isolated due to geographical isolation and/or genotypic differences.

Keywords: Lilium lancifolium, autotriploid, natural population, genetic distance, 2n female gamete

Procedia PDF Downloads 521
2816 Inclusive Education in Nigeria Prospects and Challenges

Authors: Laraba Bala Mohammed

Abstract:

Education is a very vital tool in enhancement of the general development of individuals in the society who would participate effectively in national development processes, including people with special need, educating children with special needs is one of the greatest challenges of this millennium, this is because professionals in the field of special education are operating in an exciting and rapidly changing phenomenon. Inclusive education in Nigeria is not a new development in the teaching and learning process, but the most important aspect is the utilization and effective integration of people with special needs in the society. This paper focuses on the need of parents, government, professionals in the field of special education and stakeholders to work together for the full implementation of inclusive education in Nigeria.

Keywords: inclusive education, national policy, education, special needs

Procedia PDF Downloads 507
2815 Developing Metaverse Initiatives: Insights from a University Case Study

Authors: Jiongbin Liu, William Yeoh, Shang Gao, Xiaoliang Meng, Yuhan Zhu

Abstract:

The metaverse concept has sparked significant interest in both academic and industrial spheres. As educational institutions increasingly adopt this technology, understanding its implementation becomes crucial. In response, we conducted a comprehensive case study at a large university, systematically analyzing the nine stages of metaverse development initiatives. Our study unveiled critical insights into the planning, assessment, and execution processes, offering invaluable guidance for stakeholders. The findings highlight both the opportunities for enhanced learning experiences and the challenges related to technological integration and social interaction in higher education.

Keywords: metaverse, metaverse development framework, higher education, case study

Procedia PDF Downloads 41
2814 Investigating Students’ Cognitive Processes in Solving Stoichiometric Problems and its Implications to Teaching and Learning Chemistry

Authors: Allen A. Espinosa, Larkins A. Trinidad

Abstract:

The present study investigated collegiate students’ problem solving strategies and misconceptions in solving stoichiometric problems and later on formulate a teaching framework from the result of the study. The study found out that the most prominent strategies among students are the mole method and the proportionality method, which are both algorithmic by nature. Misconception was also noted as some students rely on Avogadro’s number in converting between moles. It is suggested therefore that the teaching of stoichiometry should not be confined to demonstration. Students should be involved in the process of thinking of ways to solve the problem.

Keywords: stoichiometry, Svogadro’s number, mole method, proportionality method

Procedia PDF Downloads 381
2813 The Repetition of New Words and Information in Mandarin-Speaking Children: A Corpus-Based Study

Authors: Jian-Jun Gao

Abstract:

Repetition is used for a variety of functions in conversation. When young children first learn to speak, they often repeat words from the adult’s recent utterance with the learning and social function. The objective of this study was to ascertain whether the repetitions are equivalent in indicating attention to new words and the initial repeat of information in conversation. Based on the observation of naturally occurring language use in Taiwan Corpus of Child Mandarin (TCCM), the results in this study provided empirical support to the previous findings that children are more likely to repeat new words they are offered than to repeat new information. When children get older, there would be a drop in the repetition of both new words and new information.

Keywords: acquisition, corpus, mandarin, new words, new information, repetition

Procedia PDF Downloads 149
2812 Improving Academic Literacy in the Secondary History Classroom

Authors: Wilhelmina van den Berg

Abstract:

Through intentionally developing the Register Continuum and the Functional Model of Language in the secondary history classroom, teachers can effectively build a teaching and learning cycle geared towards literacy improvement and EAL differentiation. Developing an understanding of and engaging students in the field, tenor, and tone of written and spoken language, allows students to build the foundation for greater academic achievement due to integrated literacy skills in the history classroom. Building a variety of scaffolds during lessons within these models means students can improve their academic language and communication skills.

Keywords: academic language, EAL, functional model of language, international baccalaureate, literacy skills

Procedia PDF Downloads 62
2811 Best Resource Recommendation for a Stochastic Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

The aim of this study was to develop an Artificial Neural Network0 s recommendation model for an online process using the complexity of load, performance, and average servicing time of the resources. Here, the proposed model investigates the resource performance using stochastic gradient decent method for learning ranking function. A probabilistic cost function is implemented to identify the optimal θ values (load) on each resource. Based on this result the recommendation of resource suitable for performing the currently executing task is made. The test result of CoSeLoG project is presented with an accuracy of 72.856%.

Keywords: ADALINE, neural network, gradient decent, process mining, resource behaviour, polynomial regression model

Procedia PDF Downloads 390
2810 The Views of German Preparatory Language Programme Students about German Speaking Activity

Authors: Eda Üstünel, Seval Karacabey

Abstract:

The students, who are enrolled in German Preparatory Language Programme at the School of Foreign Languages, Muğla Sıtkı Koçman University, Turkey, learn German as a foreign language for two semesters in an academic year. Although the language programme is a skills-based one, the students lack German speaking skills due to their fear of making language mistakes while speaking in German. This problem of incompetency in German speaking skills exists also in their four-year departmental study at the Faculty of Education. In order to address this problem we design German speaking activities, which are extra-curricular activities. With the help of these activities, we aim to lead Turkish students of German language to speak in the target language, to improve their speaking skills in the target language and to create a stress-free atmosphere and a meaningful learning environment to communicate in the target language. In order to achieve these aims, an ERASMUS+ exchange staff (a German trainee teacher of German as a foreign language), who is from Schwabisch Gmünd University, Germany, conducted out-of-class German speaking activities once a week for three weeks in total. Each speaking activity is lasted for one and a half hour per week. 7 volunteered students of German preparatory language programme attended the speaking activity for three weeks. The activity took place at a cafe in the university campus, that’s the reason, we call it as an out-of-class activity. The content of speaking activity is not related to the topics studied at the units of coursebook, that’s the reason, we call this activity as extra-curricular one. For data collection, three tools are used. A questionnaire, which is an adapted version of Sabo’s questionnaire, is applied to seven volunteers. An interview session is then held with each student on individual basis. The interview questions are developed so as to ask students to expand their answers that are given at the questionnaires. The German trainee teacher wrote fieldnotes, in which the teacher described the activity in the light of her thoughts about what went well and which areas were needed to be improved. The results of questionnaires show that six out of seven students note that such an acitivity must be conducted by a native speaker of German. Four out of seven students emphasize that they like the way that the activities are designed in a learner-centred fashion. All of the students point out that they feel motivated to talk to the trainee teacher in German. Six out of seven students note that the opportunity to communicate in German with the teacher and the peers enable them to improve their speaking skills, the use of grammatical rules and the use of vocabulary.

Keywords: Learning a Foreign Language, Speaking Skills, Teaching German as a Foreign Language, Turkish Learners of German Language

Procedia PDF Downloads 321
2809 Integrating Blogging into Peer Assessment on College Students’ English Writing

Authors: Su-Lien Liao

Abstract:

Most of college students in Taiwan do not have sufficient English proficiency to express themselves in written English. Teachers spent a lot of time correcting students’ English writing, but the results are not satisfactory. This study aims to use blogs as a teaching and learning tool in written English. Before applying peer assessment, students should be trained to be good reviewers. The teacher starts the course by posting the error analysis of students’ first English composition on blogs as the comment models for students. Then the students will go through the process of drafting, composing, peer response and last revision on blogs. Evaluation Questionnaires and interviews will be conducted at the end of the course to see the impact and students’ perception for the course.

Keywords: blog, peer assessment, English writing, error analysis

Procedia PDF Downloads 421
2808 E-learning: An Effective Approach for Enhancing Social and Behavior Change Communication Capacity in Bangladesh

Authors: Mohammad K. Abedin, Mohammad Shahjahan, Zeenat Sultana, Tawfique Jahan, Jesmin Akter

Abstract:

To strengthen social and behavior change communication (SBCC) capacity of Ministry of Health and Family Welfare (MoHFW) of the Government of Bangladesh, BCCP/BKMI developed two eLearning courses providing opportunities for professional development of SBCC Program Managers who have no access to training or refreshers training. The two eLearning courses – Message and Material Development (MMD) and Monitoring and Evaluation (MandE) of SBCC programs – went online in September 2015, where all users could register their participation so results could be monitored. Methodology: To assess the uses of these courses a randomly selected sample was collected to run a pre and post-test analyses and a phone survey were conducted. Systematic random sampling was used to select a sample of 75 MandE and 25 MMD course participants from a sampling frame of 179 and 51 respectively. Results: As of September 2016, more than 179 learners have completed the MandE course, and 49 learners have completed the MMD course. The users of these courses are program managers, university faculty members, and students. Encouraging results were revealed from the analysis of pre and post-test scores and a phone survey three months after course completion. Test scores suggested a substantial increase in knowledge. The pre-test scores findings suggested that about 19% learners scored high on the MandE. The post-test scores finding indicated a high score (92%) of the sample across 4 modules of MandE. For MMD course in pre-test scoring, 30% of the learners scored high, and 100% scored high at the post-test. It was found that all the learners in the phone survey have discussed the courses. Most of the sharing occurred with colleagues and friends, usually through face to face (70%) interaction. The learners reported that they did recommend the two courses to concerned people. About 67% MandE and 76% MMD learners stated that the concepts that they had to learn during the course were put into practice in their work settings. The respondents for both MandE and MMD courses have provided a valuable set of suggestions that would further strengthen the courses. Conclusions: The study showed that the initiative offered ample opportunities to build capacity in various ways in which the eLearning courses were used. It also highlighted the importance of scaling up these efforts to further strengthen the outcomes.

Keywords: e-learning course, message & material development, monitoring & evaluation, social and behavior change communication

Procedia PDF Downloads 296
2807 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: neural network, conformal prediction, cancer classification, regression

Procedia PDF Downloads 291
2806 Effect of Xenobiotic Bioactive Compounds from Grape Waste on Inflammation and Oxidative Stress in Pigs

Authors: Ionelia Taranu, Gina Cecilia Pistol, Mihai Alexandru Gras, Mihai Laurentiu Palade, Mariana Stancu, Veronica Sanda Chedea

Abstract:

In the last decade bioactive compounds from grape waste are investigated as new therapeutic agents for the inhibition of carcinogenesis and other diseases. The objective of this study was to characterize several bioactive compounds (polyphenols and polyunsaturated fatty acids) of a dried grape pomace (GP) derived from a Romanian winery and further to evaluate their effect on inflammation and oxidative markers in liver of pig used as animal model. The total polyphenol concentration of pomace was 36.2g gallic acid equiv /100g. The pomace was rich in polyphenols from the flavonoids group, the main class being flavanols (epicatechins, catechin, epigallocatechin, procyanidins) and antocyanins (Malvidin 3-O-glucoside). The highest concentration was recorded for epicatechin (51.96g/100g) and procyanidin dimer (22.79g/100g). A high concentration of total polyunsaturated fatty acids (PUFA) especially ω-6 fatty acids (59.82 g/100g fat) was found in grape pomace. 20 crossbred TOPIG hybrid fattening pigs were randomly assigned (n = 10) to two experimental treatments: a normal diet (control group) and a diet included 5% grape pomace (GP group) for 24 days. The GP diet lowered the gene expression and protein concentration of IL-1β, IL-8, TNF-α and IFN-γ cytokines in liver suggesting an anti-inflammatory effect of GP diet. Concentration of hepatic TBARS also decreased, but the total antioxidant capacity (liver TEAC) and activity and gene expression of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) did not differ between the GP and control diet. The results showed that GP diet exerted an anti-inflammatory effect, but the 5% dietary inclusion modulated only partially the oxidative stress.

Keywords: animal model, inflammation, grape waste, immune organs

Procedia PDF Downloads 339
2805 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters

Authors: Bekir Turedi

Abstract:

Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.

Keywords: perovskite, solar cell, single crystal, diffusion length

Procedia PDF Downloads 52
2804 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method

Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary

Abstract:

Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.

Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method

Procedia PDF Downloads 430
2803 Knowledge Creation and Diffusion Dynamics under Stable and Turbulent Environment for Organizational Performance Optimization

Authors: Jessica Gu, Yu Chen

Abstract:

Knowledge Management (KM) is undoubtable crucial to organizational value creation, learning, and adaptation. Although the rapidly growing KM domain has been fueled with full-fledged methodologies and technologies, studies on KM evolution that bridge the organizational performance and adaptation to the organizational environment are still rarely attempted. In particular, creation (or generation) and diffusion (or share/exchange) of knowledge are of the organizational primary concerns on the problem-solving perspective, however, the optimized distribution of knowledge creation and diffusion endeavors are still unknown to knowledge workers. This research proposed an agent-based model of knowledge creation and diffusion in an organization, aiming at elucidating how the intertwining knowledge flows at microscopic level lead to optimized organizational performance at macroscopic level through evolution, and exploring what exogenous interventions by the policy maker and endogenous adjustments of the knowledge workers can better cope with different environmental conditions. With the developed model, a series of simulation experiments are conducted. Both long-term steady-state and time-dependent developmental results on organizational performance, network and structure, social interaction and learning among individuals, knowledge audit and stocktaking, and the likelihood of choosing knowledge creation and diffusion by the knowledge workers are obtained. One of the interesting findings reveals a non-monotonic phenomenon on organizational performance under turbulent environment while a monotonic phenomenon on organizational performance under a stable environment. Hence, whether the environmental condition is turbulence or stable, the most suitable exogenous KM policy and endogenous knowledge creation and diffusion choice adjustments can be identified for achieving the optimized organizational performance. Additional influential variables are further discussed and future work directions are finally elaborated. The proposed agent-based model generates evidence on how knowledge worker strategically allocates efforts on knowledge creation and diffusion, how the bottom-up interactions among individuals lead to emerged structure and optimized performance, and how environmental conditions bring in challenges to the organization system. Meanwhile, it serves as a roadmap and offers great macro and long-term insights to policy makers without interrupting the real organizational operation, sacrificing huge overhead cost, or introducing undesired panic to employees.

Keywords: knowledge creation, knowledge diffusion, agent-based modeling, organizational performance, decision making evolution

Procedia PDF Downloads 241
2802 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 521
2801 Effective Use of Visuals in Teaching Mathematics

Authors: Gohar Marikyan

Abstract:

This article is about investigating how to effectively use visuals in teaching introductory mathematics. The analysis showed the use of visuals in teaching introductory mathematics can be an effective tool for enhancing students’ learning and engagement in mathematics. The use of visuals was particularly effective for teaching concepts of numbers, operations with whole numbers, and properties of operations. The analysis also provides strong evidence that the effectiveness of visuals varied depending on the way the visuals are used. Furthermore, the analysis revealed that the use of visuals in mathematics instruction had a positive impact on student’s attitudes toward mathematics, with students showing higher levels of motivation and enjoyment in mathematics classes.

Keywords: analytical thinking skills, instructional strategies with visuals, introductory mathematics, student engagement and motivation

Procedia PDF Downloads 122
2800 The Impact of Entrepreneurship Education on the Entrepreneurial Tendencies of Students: A Quasi-Experimental Design

Authors: Lamia Emam

Abstract:

The attractiveness of entrepreneurship education stems from its perceived value as a venue through which students can develop an entrepreneurial mindset, skill set, and practice, which may not necessarily lead to them starting a new business, but could, more importantly, be manifested as a life skill that could be applied to all types of organizations and career endeavors. This, in turn, raises important questions about what happens in our classrooms; our role as educators, the role of students, center of learning, and the instructional approach; all of which eventually contribute to achieving the desired EE outcomes. With application to an undergraduate entrepreneurship course -Entrepreneurship as Practice- the current paper aims to explore the effect of entrepreneurship education on the development of students’ general entrepreneurial tendencies. Towards that purpose, the researcher herein uses a pre-test and post-test quasi-experimental research design where the Durham University General Enterprising Tendency Test (GET2) is administered to the same group of students before and after course delivery. As designed and delivered, the Entrepreneurship as Practice module is a highly applied and experiential course where students are required to develop an idea for a start-up while practicing the entrepreneurship-related knowledge, mindset, and skills that are taught in class, both individually and in groups. The course is delivered using a combination of short lectures, readings, group discussions, case analysis, guest speakers, and, more importantly, actively engaging in a series of activities that are inspired by diverse methods for developing successful and innovative business ideas, including design thinking, lean-start up and business feasibility analysis. The instructional approach of the course particularly aims at developing the students' critical thinking, reflective, analytical, and creativity-based problem-solving skills that are needed to launch one’s own start-up. The analysis and interpretation of the experiment’s outcomes shall simultaneously incorporate the views of both the educator and students. As presented, the study responds to the rising call for the application of experimental designs in entrepreneurship in general and EE in particular. While doing so, the paper presents an educator’s perspective of EE to complement the dominant stream of research which is constrained to the students’ point of view. Finally, the study sheds light on EE in the MENA region, where the study is applied.

Keywords: entrepreneurship education, andragogy and heutagogy, scholarship of teaching and learning, experiment

Procedia PDF Downloads 127
2799 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
2798 A Challenge of the 3ʳᵈ Millenium: The Emotional Intelligence Development

Authors: Florentina Hahaianu, Mihaela Negrescu

Abstract:

The analysis of the positive and negative effects of technology use and abuse in Generation Z comes as a necessity in order to understand their ever-changing emotional development needs. The article quantitatively analyzes the findings of a sociological questionnaire on a group of students in social sciences. It aimed to identify the changes generated by the use of digital resources in the emotional intelligence development. Among the outcomes of our study we include a predilection for IT related activities – be they social, learning, entertainment, etc. which undermines the manifestation of emotional intelligence, especially the reluctance to face-to-face interaction. In this context, the issue of emotional intelligence development comes into focus as a solution to compensate for the undesirable effects that contact with technology has on this generation.

Keywords: digital resources, emotional intelligence, generation Z, students

Procedia PDF Downloads 206
2797 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation

Procedia PDF Downloads 279
2796 Neurocognitive and Executive Function in Cocaine Addicted Females

Authors: Gwendolyn Royal-Smith

Abstract:

Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.

Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function

Procedia PDF Downloads 402
2795 Artificial Intelligence for All: Artificial Intelligence Education for K-12

Authors: Yiqiao Yin

Abstract:

Many scholars and educators have dedicated their lives in K12 education system and there has been an exploding amount of attention to implement technical foundations for Artificial Intelligence Education for high school and precollege level students. This paper focuses on the development and use of resources to support K-12 education in Artificial Intelligence (AI). The author and his team have more than three years of experience coaching students from pre-college level age from 15 to 18. This paper is a culmination of the experience and proposed online tools, software demos, and structured activities for high school students. The paper also addresses a portfolio of AI concepts as well as the expected learning outcomes. All resources are provided with online videos and Github repositories for immediate use.

Keywords: K12 education, AI4ALL, pre-college education, pre-college AI

Procedia PDF Downloads 133
2794 Understand and Redefine Lean Product Development

Authors: Alemu Moges Belay, Torgeir Welo, Jan Ola Strandhagen

Abstract:

Lean has long been linked with manufacturing, but its application claimed also by other functions such as product development and services. However, there is a challenge on understanding and defining lean in each function context. This paper aims to investigate the literature that focus mainly on PD process improvement, obtain better understanding and redefine LPD in systematic way. In addition to that, the paper attempts to summarize various proposed transformation strategies, definitions, identifying features of manufacturing and product development that would help to redefining lean in product development context. Finally we redefine LPD in organized way that encompasses different steps such as stage gate, communication and information, events, learning, innovation, knowledge and value creation.

Keywords: lean, lean manufacturing, lean product development, transformation, strategies

Procedia PDF Downloads 473
2793 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga

Abstract:

Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.

Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC

Procedia PDF Downloads 257
2792 Supports for Student Learning Program: Exploring the Educational Terrain of Newcomer and Refugee Students in Canada

Authors: Edward Shizha, Edward Makwarimba

Abstract:

This literature review explores current research on the educational strengths and barriers of newcomer and refugee youth in Canada. Canada’s shift in immigration policy in the past three decades, from Europe to Asian and African countries as source continents of recent immigrants to Canada, has tremendously increased the ethnic, linguistic, cultural and religious diversity of the population, including that of students in its education system. Over 18% of the country’s population was born in another country, of which 70% are visible minorities. There has been an increase in admitted immigrants and refugees, with a total of 226,203 between July 2020 and June 2021. Newcomer parents and their children in all major destination countries, including Canada, face tremendous challenges, including racism and discrimination, lack of English language skills, poverty, income inequality, unemployment, and underemployment. They face additional challenges, including discrimination against those who cannot speak the official languages, English or French. The severity of the challenges depends on several intersectional factors, including immigrant status (asylum seeker, refugee, or immigrant), age, gender, level of education and others. Through the lens of intersectionality as an explanatory perspective, this literature review examines the educational attainment and outcomes of newcomer and refugee youth in Canada in order to understand their educational needs, educational barriers and strengths. Newcomer youths’ experiences are shaped by numerous intersectional and interconnected sociocultural, sociopolitical, and socioeconomic factors—including gender, migration status, racialized status, ethnicity, socioeconomic class, sexual minority status, age, race—that produce and perpetuate their disadvantage. According to research, immigrants and refugees from visible minority ethnic backgrounds experience exclusions more than newcomers from other backgrounds and groups from the mainstream population. For many immigrant parents, migration provides financial and educational opportunities for their children. Yet, when attending school, newcomer and refugee youth face unique challenges related to racism and discrimination, negative attitudes and stereotypes from teachers and other school authorities, language learning and proficiency, differing levels of acculturation, and different cultural views of the role of parents in relation to teachers and school, and unfamiliarity with the social or school context in Canada. Recognizing discrepancies in educational attainment of newcomer and refugee youth based on their race and immigrant status, the paper develops insights into existing research and data gaps related to educational strengths and challenges for visible minority newcomer youth in Canada. The paper concludes that the educational successes or failures of the newcomer and refugee youth and their settlement and integration into the school system in Canada may depend on where their families settle, the attitudes of the host community and the school officials (teachers, guidance counsellors and school administrators) after-school support programs and their own set of coping mechanisms. Conceivably a unique approach to after-school programming should provide learning supports and opportunities that consider newcomer and refugee youth’s needs, experiences, backgrounds and circumstances. This support is likely to translate into significant academic and psychological well-being of newcomer students.

Keywords: deficit discourse, discrimination, educational outcomes, newcomer and refugee youth, racism, strength-based approach, whiteness

Procedia PDF Downloads 67
2791 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 361