Search results for: frequency and voltage regulation
593 Measuring Elemental Sulfur in Late Manually-Treated Grape Juice in Relation to Polyfunctional Mercaptan Formation in Sauvignon Blanc Wines
Authors: Bahareh Sarmadi, Paul A. Kilmartin, Leandro D. Araújo, Brandt P. Bastow
Abstract:
Aim: Sauvignon blanc is the most substantial variety cultivated in almost 62% of all producing vineyards of New Zealand. The popularity of New Zealand Sauvignon blanc is due to its unique taste. It is the most famous wine characterized by its aroma profile derived from mercaptans. 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) are two of the most important volatile mercaptans found in Sauvignon blanc wines. “Viticultural” and “Enological” factors such as machine-harvesting, the most common harvesting practice used in New Zealand, can be among the reasons for this distinct flavor. Elemental sulfur is commonly sprayed in the fields to protect berries against powdery mildew. Although it is not the only source of sulfur, this practice creates a source of elemental sulfur that can be transferred into the must and eventually into wines. Despite the clear effects of residual elemental sulfur present in the must on the quality and aroma of the final wines, its measurement before harvest or fermentation is not a regular practice in the wineries. This can be due to the lack of accessible and applicable methods for the equipment at most commercial wineries. This study aims to establish a relationship between the number and frequency of elemental sulfur applications and the concentration of polyfunctional mercaptans in the final wines. Methods: An apparatus was designed to reduce elemental sulfur to sulfide, then an ion-selective electrode to measure sulfide concentration. During harvest 2022, we explored a wider range of residual elemental sulfur levels than what typically applies in the vineyards. This has been done through later manual elemental sulfur applications in the vineyard. Additional sulfur applications were made 20, 10 and 5 days prior to harvesting the treated grapes, covering long and short pre-harvest intervals (PHI). The grapes were processed into juice and fermented into wine; then, they were analyzed to find the correlation between polyfunctional mercaptans concentrations in the wines and residual elemental sulfur in the juice samples. Results: The research showed that higher 3MH/3MHA was formed when elemental sulfur was applied more frequent in the vineyards and supported the proposed pathway in which elemental sulfur is a source of 3MH formation in wines.Keywords: sauvignon blanc, elemental sulfur, polyfunctional mercaptans, varietal thiols
Procedia PDF Downloads 113592 Impact of Civil Engineering and Economic Growth in the Sustainability of the Environment: Case of Albania
Authors: Rigers Dodaj
Abstract:
Nowadays, the environment is a critical goal for civil engineers, human activity, construction projects, economic growth, and whole national development. Regarding the development of Albania's economy, people's living standards are increasing, and the requirements for the living environment are also increasing. Under these circumstances, environmental protection and sustainability this is the critical issue. The rising industrialization, urbanization, and energy demand affect the environment by emission of carbon dioxide gas (CO2), a significant parameter known to impact air pollution directly. Consequently, many governments and international organizations conducted policies and regulations to address environmental degradation in the pursuit of economic development, for instance in Albania, the CO2 emission calculated in metric tons per capita has increased by 23% in the last 20 years. This paper analyzes the importance of civil engineering and economic growth in the sustainability of the environment focusing on CO2 emission. The analyzed data are time series 2001 - 2020 (with annual frequency), based on official publications of the World Bank. The statistical approach with vector error correction model and time series forecasting model are used to perform the parameter’s estimations and long-run equilibrium. The research in this paper adds a new perspective to the evaluation of a sustainable environment in the context of carbon emission reduction. Also, it provides reference and technical support for the government toward green and sustainable environmental policies. In the context of low-carbon development, effectively improving carbon emission efficiency is an inevitable requirement for achieving sustainable economic and environmental protection. Also, the study reveals that civil engineering development projects impact greatly the environment in the long run, especially in areas of flooding, noise pollution, water pollution, erosion, ecological disorder, natural hazards, etc. The potential for reducing industrial carbon emissions in recent years indicates that reduction is becoming more difficult, it needs another economic growth policy and more civil engineering development, by improving the level of industrialization and promoting technological innovation in industrial low-carbonization.Keywords: CO₂ emission, civil engineering, economic growth, environmental sustainability
Procedia PDF Downloads 91591 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 53590 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 92589 Modelling for Roof Failure Analysis in an Underground Cave
Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández
Abstract:
Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.Keywords: forensic analysis, hypothesis modelling, roof failure, seismic monitoring
Procedia PDF Downloads 119588 Assessment of Oral and Dental Health Status of Pregnant Women in Malaga, Spain
Authors: Nepton Kiani
Abstract:
Dental decay is one of the most common chronic diseases worldwide and imposes significant costs annually on people and healthcare systems. Addressing this issue is among the important programs of the World Health Organization in the field of oral and dental disease prevention and health promotion. In this context, oral and dental health in vulnerable groups, especially pregnant women, is of greater importance due to the health maintenance of the mother and fetus. The aim of this study is to investigate the DMFT index and various factors affecting it in order to identify different factors influencing the process of dental decay and to take an effective step in reducing the progression of this disease, control, and prevention. In this cross-sectional descriptive study, 120 pregnant women attending Nepton Policlinica clinic in Malaga, Spain, were evaluated for the DMFT index and oral and dental hygiene. In this regard, interviews, precise observations, and data collection were used. Subsequently, data analysis was performed using SPSS software and employing correlation tests, Kruskal-Wallis, and Mann-Whitney tests. The DMFT index for pregnant women in three age groups 22-26, 27- 31, and 32-36 years was respectively 2.8, 4.5, and 5.6. The results of logistic regression analysis showed that demographic variables (age, education, job, economic status) and the frequency of brushing and flossing lead to preventive behavior up to 49.58 percent (P<0.05). Generally, the results indicated that oral and dental care during pregnancy is poor. Only a small number of pregnant women regularly used toothbrush and dental floss or visited the dentist regularly. On the other hand, poor performance in adopting oral and dental care was more observed in pregnant women with lower economic and educational status. The present study showed that raising the level of awareness and education on oral and dental health in pregnant women is essential. In this field, it is necessary to focus on conducting educational-care courses at the level of healthcare centers for midwives, healthcare personnel, and at the community level for families, to prevent and perform dental treatments before the pregnancy periodKeywords: Malaga, oral and dental health, pregnant women, Spain
Procedia PDF Downloads 64587 Comparison of On-Site Stormwater Detention Real Performance and Theoretical Simulations
Authors: Pedro P. Drumond, Priscilla M. Moura, Marcia M. L. P. Coelho
Abstract:
The purpose of On-site Stormwater Detention (OSD) system is to promote the detention of addition stormwater runoff caused by impervious areas, in order to maintain the peak flow the same as the pre-urbanization condition. In recent decades, these systems have been built in many cities around the world. However, its real efficiency continues to be unknown due to the lack of research, especially with regard to monitoring its real performance. Thus, this study aims to compare the water level monitoring data of an OSD built in Belo Horizonte/Brazil with the results of theoretical methods simulations, usually adopted in OSD design. There were made two theoretical simulations, one using the Rational Method and Modified Puls method and another using the Soil Conservation Service (SCS) method and Modified Puls method. The monitoring data were obtained with a water level sensor, installed inside the reservoir and connected to a data logger. The comparison of OSD performance was made for 48 rainfall events recorded from April/2015 to March/2017. The comparison of maximum water levels in the OSD showed that the results of the simulations with Rational/Puls and SCS/Puls methods were, on average 33% and 73%, respectively, lower than those monitored. The Rational/Puls results were significantly higher than the SCS/Puls results, only in the events with greater frequency. In the events with average recurrence interval of 5, 10 and 200 years, the maximum water heights were similar in both simulations. Also, the results showed that the duration of rainfall events was close to the duration of monitored hydrograph. The rising time and recession time of the hydrographs calculated with the Rational Method represented better the monitored hydrograph than SCS Method. The comparison indicates that the real discharge coefficient value could be higher than 0.61, adopted in Puls simulations. New researches evaluating OSD real performance should be developed. In order to verify the peak flow damping efficiency and the value of the discharge coefficient is necessary to monitor the inflow and outflow of an OSD, in addition to monitor the water level inside it.Keywords: best management practices, on-site stormwater detention, source control, urban drainage
Procedia PDF Downloads 192586 Policy Guidelines to Enhance the Mathematics Teachers’ Association of the Philippines (MTAP) Saturday Class Program
Authors: Roselyn Alejandro-Ymana
Abstract:
The study was an attempt to assess the MTAP Saturday Class Program along its eight components namely, modules, instructional materials, scheduling, trainer-teachers, supervisory support, administrative support, financial support and educational facilities, the results of which served as bases in developing policy guidelines to enhance the MTAP Saturday Class Program. Using a descriptive development method of research, this study involved the participation of twenty-eight (28) schools with MTAP Saturday Class Program in the Division of Dasmarinas City where twenty-eight school heads, one hundred twenty-five (125) teacher-trainer, one hundred twenty-five (125) pupil program participants, and their corresponding one hundred twenty-five (125) parents were purposively drawn to constitute the study’s respondent. A self-made validated survey questionnaire together with Pre and Post-Test Assessment Test in Mathematics for pupils participating in the program, and an unstructured interview guide was used to gather the data needed in the study. Data obtained from the instruments administered was organized and analyzed through the use of statistical tools that included the Mean, Weighted Mean, Relative Frequency, Standard Deviation, F-Test or One-Way ANOVA and the T-Test. Results of the study revealed that all the eight domains involved in the MTAP Saturday Class Program were practiced with the areas of 'trainer-teachers', 'educational facilities', and 'supervisory support' identified as the program’s strongest components while the areas of 'financial support', 'modules' and 'scheduling' as being the weakest program’s components. Moreover, the study revealed based on F-Test, that there was a significant difference in the assessment made by the respondents in each of the eight (8) domains. It was found out that the parents deviated significantly from the assessment of either the school heads or the teachers on the indicators of the program. There is much to be desired when it comes to the quality of the implementation of the MTAP Saturday Class Program. With most of the indicators of each component of the program, having received overall average ratings that were at least 0.5 point away from the ideal rating 5 for total quality, school heads, teachers, and supervisors need to work harder for total quality of the implementation of the MTAP Saturday Class Program in the division.Keywords: mathematics achievement, MTAP program, policy guidelines, program assessment
Procedia PDF Downloads 219585 The Regionalism Paradox in the Fight against Human Trafficking: Indonesia and the Limits of Regional Cooperation in ASEAN
Authors: Nur Iman Subono, Meidi Kosandi
Abstract:
This paper examines the role of regional cooperation in the Association of Southeast Asian Nations (ASEAN) in the fight against human trafficking for Indonesia. Many among scholars suggest that regional cooperation is necessary for combating human trafficking for its transnational and organized character as a crime against humanity. ASEAN members have been collectively active in responding transnational security issues with series of talks and collaboration agreement since early 2000s. Lately in 2015, ASEAN agreed on ASEAN Convention against Trafficking in Persons, particularly Women and Children (ACTIP) that requires each member to collaborate in information sharing and providing effective safeguard and protection of victims. Yet, the frequency of human trafficking crime occurrence remains high and tend to increase in Indonesian in 2017-2018. The objective of this paper is to examine the effectiveness and success of ACTIP implementation in the fight against human trafficking in Indonesia. Based on two years of research (2017-2018) in three provinces with the largest number of victims in Indonesia, this paper shows the tendency of persisting crime despite the implementation of regional and national anti-trafficking policies. The research was conducted by archive study, literature study, discourse analysis, and depth interviews with local government officials, police, prosecutors, victims, and traffickers. This paper argues that the relative success of ASEAN in establishing convention at the high-level meetings has not been followed with the success in its implementation in the society. Three main factors have contributed to the ineffectiveness of the agreements, i.e. (1) ASEAN institutional arrangement as a collection of sovereign states instead of supranational organization with binding authority; (2) the lack of commitment of ASEAN sovereign member-states to the agreements; and (3) the complexity and variety of the nature of the crime in each member-state. In effect, these factors have contributed to generating the regionalism paradox in ASEAN where states tend to revert to national policies instead of seeking regional collective solution.Keywords: human trafficking, transnational security, regionalism, anti trafficking policy
Procedia PDF Downloads 171584 Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors
Authors: Y. Saylan, F. Yılmaz, A. Denizli
Abstract:
Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.Keywords: anti-CCP, molecular imprinting, nanosensor, rheumatoid arthritis, QCM
Procedia PDF Downloads 365583 Assessing Project Performance through Work Sampling and Earned Value Analysis
Authors: Shobha Ramalingam
Abstract:
The majority of the infrastructure projects are affected by time overrun, resulting in project delays and subsequently cost overruns. Time overrun may vary from a few months to as high as five or more years, placing the project viability at risk. One of the probable reasons noted in the literature for this outcome in projects is due to poor productivity. Researchers contend that productivity in construction has only marginally increased over the years. While studies in the literature have extensively focused on time and cost parameters in projects, there are limited studies that integrate time and cost with productivity to assess project performance. To this end, a study was conducted to understand the project delay factors concerning cost, time and productivity. A case-study approach was adopted to collect rich data from a nuclear power plant project site for two months through observation, interviews and document review. The data were analyzed using three different approaches for a comprehensive understanding. Foremost, a root-cause analysis was performed on the data using Ishikawa’s fish-bone diagram technique to identify the various factors impacting the delay concerning time. Based on it, a questionnaire was designed and circulated to concerned executives, including project engineers and contractors to determine the frequency of occurrence of the delay, which was then compiled and presented to the management for a possible solution to mitigate. Second, a productivity analysis was performed on select activities, including rebar bending and concreting through a time-motion study to analyze product performance. Third, data on cost of construction for three years allowed analyzing the cost performance using earned value management technique. All three techniques allowed to systematically and comprehensively identify the key factors that deter project performance and productivity loss in the construction of the nuclear power plant project. The findings showed that improper planning and coordination between multiple trades, concurrent operations, improper workforce and material management, fatigue due to overtime were some of the key factors that led to delays and poor productivity. The findings are expected to act as a stepping stone for further research and have implications for practitioners.Keywords: earned value analysis, time performance, project costs, project delays, construction productivity
Procedia PDF Downloads 100582 Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance
Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi
Abstract:
This paper explores a kinetic building facade designed for optimal energy capture and architectural expression. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of facade systems are necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, the design leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, Three-dimensional 3D printing, and laser cutting, were utilized to fabricate physical components. A modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of this facade system to an existing library building at Polytechnic University of Milan is presented. The system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. This work demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, this approach paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building
Procedia PDF Downloads 42581 Food Sharing App and the Ubuntu Ssharing Economy: Accessing the Impact of Technology of Food Waste Reduction
Authors: Gabriel Sunday Ayayia
Abstract:
Food waste remains a critical global challenge with significant environmental, economic, and ethical implications. In an era where food waste and food insecurity coexist, innovative technology-driven solutions have emerged, aiming to bridge the gap between surplus food and those in need. Simultaneously, disparities in food access persist, exacerbating issues of hunger and malnutrition. Emerging food-sharing apps offer a promising avenue to mitigate these problems but require further examination within the context of the Ubuntu sharing economy. This study seeks to understand the impact of food-sharing apps, guided by the principles of Ubuntu, on reducing food waste and enhancing food access. The study examines how specific food-sharing apps within the Ubuntu sharing economy could contribute to fostering community resilience and reducing food waste. Ubuntu underscores the idea that we are all responsible for the well-being of our community members. In the context of food waste, this means that individuals and businesses have a collective responsibility to ensure that surplus food is shared rather than wasted. Food-sharing apps align with this principle by facilitating the sharing of excess food with those in need, transforming waste into a communal resource. This research employs a mixed-methods approach of both quantitative analysis and qualitative inquiry. Large-scale surveys will be conducted to assess user behavior, attitudes, and experiences with food-sharing apps, focusing on the frequency of use, motivations, and perceived impacts. Qualitative interviews with app users, community organizers, and stakeholders will explore the Ubuntu-inspired aspects of food-sharing apps and their influence on reducing food waste and improving food access. Quantitative data will be analyzed using statistical techniques, while qualitative data will undergo thematic analysis to identify key patterns and insights. This research addresses a critical gap in the literature by examining the role of food-sharing apps in reducing food waste and enhancing food access, particularly within the Ubuntu sharing economy framework. Findings will offer valuable insights for policymakers, technology developers, and communities seeking to leverage technology to create a more just and sustainable food system.Keywords: sharing economy, food waste reduction, technology, community- based approach
Procedia PDF Downloads 72580 Human Lens Metabolome: A Combined LC-MS and NMR Study
Authors: Vadim V. Yanshole, Lyudmila V. Yanshole, Alexey S. Kiryutin, Timofey D. Verkhovod, Yuri P. Tsentalovich
Abstract:
Cataract, or clouding of the eye lens, is the leading cause of vision impairment in the world. The lens tissue have very specific structure: It does not have vascular system, the lens proteins – crystallins – do not turnover throughout lifespan. The protection of lens proteins is provided by the metabolites which diffuse inside the lens from the aqueous humor or synthesized in the lens epithelial layer. Therefore, the study of changes in the metabolite composition of a cataractous lens as compared to a normal lens may elucidate the possible mechanisms of the cataract formation. Quantitative metabolomic profiles of normal and cataractous human lenses were obtained with the combined use of high-frequency nuclear magnetic resonance (NMR) and ion-pairing high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. The quantitative content of more than fifty metabolites has been determined in this work for normal aged and cataractous human lenses. The most abundant metabolites in the normal lens are myo-inositol, lactate, creatine, glutathione, glutamate, and glucose. For the majority of metabolites, their levels in the lens cortex and nucleus are similar, with the few exceptions including antioxidants and UV filters: The concentrations of glutathione, ascorbate and NAD in the lens nucleus decrease as compared to the cortex, while the levels of the secondary UV filters formed from primary UV filters in redox processes increase. That confirms that the lens core is metabolically inert, and the metabolic activity in the lens nucleus is mostly restricted by protection from the oxidative stress caused by UV irradiation, UV filter spontaneous decomposition, or other factors. It was found that the metabolomic composition of normal and age-matched cataractous human lenses differ significantly. The content of the most important metabolites – antioxidants, UV filters, and osmolytes – in the cataractous nucleus is at least ten fold lower than in the normal nucleus. One may suppose that the majority of these metabolites are synthesized in the lens epithelial layer, and that age-related cataractogenesis might originate from the dysfunction of the lens epithelial cells. Comprehensive quantitative metabolic profiles of the human eye lens have been acquired for the first time. The obtained data can be used for the analysis of changes in the lens chemical composition occurring with age and with the cataract development.Keywords: cataract, lens, NMR, LC-MS, metabolome
Procedia PDF Downloads 325579 Analytical Performance of Cobas C 8000 Analyzer Based on Sigma Metrics
Authors: Sairi Satari
Abstract:
Introduction: Six-sigma is a metric that quantifies the performance of processes as a rate of Defects-Per-Million Opportunities. Sigma methodology can be applied in chemical pathology laboratory for evaluating process performance with evidence for process improvement in quality assurance program. In the laboratory, these methods have been used to improve the timeliness of troubleshooting, reduce the cost and frequency of quality control and minimize pre and post-analytical errors. Aim: The aim of this study is to evaluate the sigma values of the Cobas 8000 analyzer based on the minimum requirement of the specification. Methodology: Twenty-one analytes were chosen in this study. The analytes were alanine aminotransferase (ALT), albumin, alkaline phosphatase (ALP), Amylase, aspartate transaminase (AST), total bilirubin, calcium, chloride, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, lactate dehydrogenase (LDH), magnesium, potassium, protein, sodium, triglyceride, uric acid and urea. Total error was obtained from Clinical Laboratory Improvement Amendments (CLIA). The Bias was calculated from end cycle report of Royal College of Pathologists of Australasia (RCPA) cycle from July to December 2016 and coefficient variation (CV) from six-month internal quality control (IQC). The sigma was calculated based on the formula :Sigma = (Total Error - Bias) / CV. The analytical performance was evaluated based on the sigma, sigma > 6 is world class, sigma > 5 is excellent, sigma > 4 is good and sigma < 4 is satisfactory and sigma < 3 is poor performance. Results: Based on the calculation, we found that, 96% are world class (ALT, albumin, ALP, amylase, AST, total bilirubin, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, LDH, magnesium, potassium, triglyceride and uric acid. 14% are excellent (calcium, protein and urea), and 10% ( chloride and sodium) require more frequent IQC performed per day. Conclusion: Based on this study, we found that IQC should be performed frequently for only Chloride and Sodium to ensure accurate and reliable analysis for patient management.Keywords: sigma matrics, analytical performance, total error, bias
Procedia PDF Downloads 174578 Efficacy and Safety of Eucalyptus for Relief Cough Symptom: A Systematic Review and Meta-Analysis
Authors: Ladda Her, Juntip Kanjanasilp, Ratree Sawangjit, Nathorn Chaiyakunapruk
Abstract:
Cough is the common symptom of the respiratory tract infections or non-infections; the duration of cough indicates a classification and severity of disease. Herbal medicines can be used as the alternative to drugs for relief of cough symptoms from acute and chronic disease. Eucalyptus was used for reducing cough with evidences suggesting it has an active role in reduction of airway inflammation. The present study aims to evaluate efficacy and safety of eucalyptus for relief of cough symptom in respiratory disease. Method: The Cochrane Library, MEDLINE (PubMed), Scopus, CINAHL, Springer, Science direct, ProQuest, and THAILIS databases. From its inception until 01/02/2019 for randomized control trials. We follow for the efficacy and safety of eucalyptus for reducing cough. Methodological quality was evaluated by using the Cochrane risk of bias tool; two reviewers in our team screened eligibility and extracted data. Result: Six studies were included for the review and five studies were included in the meta-analysis, there were 1.911 persons including children (n: 1) and adult (n: 5) studies; for study in children and adult were between 1 and 80 years old, respectively. Eucalyptus was used as mono herb (n: 2) and in combination with other herbs form (n: 4). All of the studies with eucalyptus were compared for efficacy and safety with placebo or standard treatment, Eucalyptus dosage form in studies included capsules, spray, and syrup. Heterogeneity was 32.44 used random effect model (I² = 1.2%, χ² = 1.01; P-value = 0.314). The efficacy of eucalyptus was showed a reduced cough symptom statistically significant (n = 402, RR: 1.40, 95%CI [1.19, 1.65], P-value < 0.0001) when compared with placebo. Adverse events (AEs) were reported mild to moderate intensity with mostly gastrointestinal symptom. The methodological quality of the included trials was overall poor. Conclusion: Eucalyptus appears to be beneficial and safe for relieving in respiratory diseases focus on cough frequency. The evidence was inconclusive due to limited quality trial. Well-designed trials for evaluating the effectiveness in humans, the effectiveness for reducing cough symptom in human is needed. Eucalyptus had safety as monotherapy or in combination with other herbs.Keywords: cough, eucalyptus, cineole, herbal medicine, systematic review, meta-analysis
Procedia PDF Downloads 156577 The Preventive Effect of Metformin on Paclitaxel-Induced Peripheral Neuropathy
Authors: AliAkbar Hafezi, Jamshid Abedi, Jalal Taherian, Behnam Kadkhodaei, Mahsa Elahi
Abstract:
Background. Peripheral neuropathy is a common side effect of the administration of neurotoxic chemotherapy agents. This adverse effect is a major dose-limiting factor of many commonly used chemotherapy drugs. Currently, there are no Food and Drug Administration (FDA) approved medications for the prevention or treatment of chemotherapy-induced peripheral neuropathy. Therefore, this study was performed to investigate the efficacy and safety of metformin on paclitaxel-induced peripheral neuropathy (PIPN). Methods. In this randomized clinical trial, cancer patients who were candidates for chemotherapy with paclitaxel referred to the radiation oncology departments in Iran from 2022 to 2023 were studied. Patients were randomly divided into two groups; 1- Case group (n = 30) received metformin 500 mg orally twice a day after meals during chemotherapy with paclitaxel, and 2- Control group (30 people) received chemotherapy without metformin or any additional medication. Patients were visited in terms of numbness or other neurological symptoms two weeks before chemotherapy, 1-2 days before and weekly during chemotherapy, and at the end of the study. They were assessed by nerve conduction study (NCS) before intervention and one week after the end of chemotherapy. The primary outcome was the efficacy in reducing PIPN and the secondary outcome was adverse effects. Eventually, the outcomes were compared between the two groups of patients. Results. A total of 60 female cancer patients receiving chemotherapy with paclitaxel were evaluated in two groups. The groups were matched in terms of age, body mass index, fasting blood sugar, smoking, pathologic stage, and creatinine levels. The results showed that 18 patients (60.0 %) in the case group and 23 patients (76.6 %) in the control group had PIPN clinically (P = 0.267), and NCS showed 11 patients (36.6 %) in the case group and 15 patients (50.0 %) in the control group suffered from PIPN which no significant difference was observed between the two groups (P = 0.435). Diarrhea (n = 3; 10.0 %) and nausea (n = 3; 10.0 %) were the most common side effects of metformin in the case group and no serious side effects (lactic acidosis and anemia) were found in these patients. Conclusion. This study indicated that metformin did not significantly prevent PIPN in cancer patients receiving chemotherapy, although the frequency of peripheral neuropathy in the case group was lower than in the control group. The use of metformin in the patients had acceptable safety and no serious side effects were reported.Keywords: peripheral neuropathy, chemotherapy, paclitaxel, metformin
Procedia PDF Downloads 48576 The Diurnal and Seasonal Relationships of Pedestrian Injuries Secondary to Motor Vehicles in Young People
Authors: Amina Akhtar, Rory O'Connor
Abstract:
Introduction: There remains significant morbidity and mortality in young pedestrians hit by motor vehicles, even in the era of pedestrian crossings and speed limits. The aim of this study was to compare incidence and injury severity of motor vehicle-related pedestrian trauma according to time of day and season in a young population, based on the supposition that injuries would be more prevalent during dusk and dawn and during autumn and winter. Methods: Data was retrieved for patients between 10-25 years old from the National Trauma Audit and Research Network (TARN) database who had been involved as pedestrians in motor vehicle accidents between 2015-2020. The incidence of injuries, their severity (using the Injury Severity Score [ISS]), hospital transfer time, and mortality were analysed according to the hours of daylight, darkness, and season. Results: The study identified a seasonal pattern, showing that autumn was the predominant season and led to 34.9% of injuries, with a further 25.4% in winter in comparison to spring and summer, with 21.4% and 18.3% of injuries, respectively. However, visibility alone was not a sufficient factor as 49.5% of injuries occurred during the time of darkness, while 50.5% occurred during daylight. Importantly, the greatest injury rate (number of injuries/hour) occurred between 1500-1630, correlating to school pick-up times. A further significant relationship between injury severity score (ISS) and daylight was demonstrated (p-value= 0.0124), with moderate injuries (ISS 9-14) occurring most commonly during the day (72.7%) and more severe injuries (ISS>15) occurred during the night (55.8%). Conclusion: We have identified a relationship between time of day and the frequency and severity of pedestrian trauma in young people. In addition, particular time groupings correspond to the greatest injury rate, suggesting that reduced visibility coupled with school pick-up times may play a significant role. This could be addressed through a targeted public health approach to implementing change. We recommend targeted public health measures to improve road safety that focus on these times and that increase the visibility of children combined with education for drivers.Keywords: major trauma, paediatric trauma, road traffic accidents, diurnal pattern
Procedia PDF Downloads 105575 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach
Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi
Abstract:
Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems
Procedia PDF Downloads 294574 Regulatory and Economic Challenges of AI Integration in Cyber Insurance
Authors: Shreyas Kumar, Mili Shangari
Abstract:
Integrating artificial intelligence (AI) in the cyber insurance sector represents a significant advancement, offering the potential to revolutionize risk assessment, fraud detection, and claims processing. However, this integration introduces a range of regulatory and economic challenges that must be addressed to ensure responsible and effective deployment of AI technologies. This paper examines the multifaceted regulatory landscape governing AI in cyber insurance and explores the economic implications of compliance, innovation, and market dynamics. AI's capabilities in processing vast amounts of data and identifying patterns make it an invaluable tool for insurers in managing cyber risks. Yet, the application of AI in this domain is subject to stringent regulatory scrutiny aimed at safeguarding data privacy, ensuring algorithmic transparency, and preventing biases. Regulatory bodies, such as the European Union with its General Data Protection Regulation (GDPR), mandate strict compliance requirements that can significantly impact the deployment of AI systems. These regulations necessitate robust data protection measures, ethical AI practices, and clear accountability frameworks, all of which entail substantial compliance costs for insurers. The economic implications of these regulatory requirements are profound. Insurers must invest heavily in upgrading their IT infrastructure, implementing robust data governance frameworks, and training personnel to handle AI systems ethically and effectively. These investments, while essential for regulatory compliance, can strain financial resources, particularly for smaller insurers, potentially leading to market consolidation. Furthermore, the cost of regulatory compliance can translate into higher premiums for policyholders, affecting the overall affordability and accessibility of cyber insurance. Despite these challenges, the potential economic benefits of AI integration in cyber insurance are significant. AI-enhanced risk assessment models can provide more accurate pricing, reduce the incidence of fraudulent claims, and expedite claims processing, leading to overall cost savings and increased efficiency. These efficiencies can improve the competitiveness of insurers and drive innovation in product offerings. However, balancing these benefits with regulatory compliance is crucial to avoid legal penalties and reputational damage. The paper also explores the potential risks associated with AI integration, such as algorithmic biases that could lead to unfair discrimination in policy underwriting and claims adjudication. Regulatory frameworks need to evolve to address these issues, promoting fairness and transparency in AI applications. Policymakers play a critical role in creating a balanced regulatory environment that fosters innovation while protecting consumer rights and ensuring market stability. In conclusion, the integration of AI in cyber insurance presents both regulatory and economic challenges that require a coordinated approach involving regulators, insurers, and other stakeholders. By navigating these challenges effectively, the industry can harness the transformative potential of AI, driving advancements in risk management and enhancing the resilience of the cyber insurance market. This paper provides insights and recommendations for policymakers and industry leaders to achieve a balanced and sustainable integration of AI technologies in cyber insurance.Keywords: artificial intelligence (AI), cyber insurance, regulatory compliance, economic impact, risk assessment, fraud detection, cyber liability insurance, risk management, ransomware
Procedia PDF Downloads 37573 Effect of a Chatbot-Assisted Adoption of Self-Regulated Spaced Practice on Students' Vocabulary Acquisition and Cognitive Load
Authors: Ngoc-Nguyen Nguyen, Hsiu-Ling Chen, Thanh-Truc Lai Huynh
Abstract:
In foreign language learning, vocabulary acquisition has consistently posed challenges to learners, especially for those at lower levels. Conventional approaches often fail to promote vocabulary learning and ensure engaging experiences alike. The emergence of mobile learning, particularly the integration of chatbot systems, has offered alternative ways to facilitate this practice. Chatbots have proven effective in educational contexts by offering interactive learning experiences in a constructivist manner. These tools have caught attention in the field of mobile-assisted language learning (MALL) in recent years. This research is conducted in an English for Specific Purposes (ESP) course at the A2 level of the CEFR, designed for non-English majors. Participants are first-year Vietnamese students aged 18 to 20 at a university. This quasi-experimental study follows a pretest-posttest control group design over five weeks, with two classes randomly assigned as the experimental and control groups. The experimental group engages in chatbot-assisted spaced practice with SRL components, while the control group uses the same spaced practice without SRL. The two classes are taught by the same lecturer. Data are collected through pre- and post-tests, cognitive load surveys, and semi-structured interviews. The combination of self-regulated learning (SRL) and distributed practice, grounded in the spacing effect, forms the basis of the present study. SRL elements, which concern goal setting and strategy planning, are integrated into the system. The spaced practice method, similar to those used in widely recognized learning platforms like Duolingo and Anki flashcards, spreads out learning over multiple sessions. This study’s design features quizzes progressively increasing in difficulty. These quizzes are aimed at targeting both the Recognition-Recall and Comprehension-Use dimensions for a comprehensive acquisition of vocabulary. The mobile-based chatbot system is built using Golang, an open-source programming language developed by Google. It follows a structured flow that guides learners through a series of 4 quizzes in each week of teacher-led learning. The quizzes start with less cognitively demanding tasks, such as multiple-choice questions, before moving on to more complex exercises. The integration of SRL elements allows students to self-evaluate the difficulty level of vocabulary items, predict scores achieved, and choose appropriate strategy. This research is part one of a two-part project. The initial findings will determine the development of an upgraded chatbot system in part two, where adaptive features in response to the integration of SRL components will be introduced. The research objectives are to assess the effectiveness of the chatbot-assisted approach, based on the combination of spaced practice and SRL, in improving vocabulary acquisition and managing cognitive load, as well as to understand students' perceptions of this learning tool. The insights from this study will contribute to the growing body of research on mobile-assisted language learning and offer practical implications for integrating chatbot systems with spaced practice into educational settings to enhance vocabulary learning.Keywords: mobile learning, mobile-assisted language learning, MALL, chatbots, vocabulary learning, spaced practice, spacing effect, self-regulated learning, SRL, self-regulation, EFL, cognitive load
Procedia PDF Downloads 26572 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce
Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya
Abstract:
Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews
Procedia PDF Downloads 201571 Learners' Perception of Digitalization of Medical Education in a Low Middle-Income Country – A Case Study of the Lecturio Platform
Authors: Naomi Nathan
Abstract:
Introduction Digitalization of medical education can revolutionize how medical students learn and interact with the medical curriculum across contexts. With the increasing availability of the internet and mobile connectivity in LMICs, online medical education platforms and digital learning tools are becoming more widely available, providing new opportunities for learners to access high-quality medical education and training. However, the adoption and integration of digital technologies in medical education in LMICs is a complex process influenced by various factors, including learners' perceptions and attitudes toward digital learning. In Ethiopia, the adoption of digital platforms for medical education has been slow, with traditional face-to-face teaching methods still being the norm. However, as access to technology improves and more universities adopt digital platforms, it is crucial to understand how medical students perceive this shift. Methodology This study investigated medical students' perception of the digitalization of medical education in relation to their access to the Lecturio Digital Medical Education Platform through a capacity-building project. 740 medical students from over 20 medical universities participated in the study. The students were surveyed using a questionnaire that included their attitudes toward the digitalization of medical education, their frequency of use of the digital platform, and their perceived benefits and challenges. Results The study results showed that most medical students had a positive attitude toward digitalizing medical education. The most commonly cited benefit was the convenience and flexibility of accessing course material/curriculum online. Many students also reported that they found the platform more interactive and engaging, leading to a more meaningful learning experience. The study also identified several challenges medical students faced when using the platform. The most commonly reported challenge was the need for more reliable internet access, which made it difficult for students to access content consistently. Overall, the results of this study suggest that medical students in Ethiopia have a positive perception of the digitalization of medical education. Over 97% of students continuously expressed a need for access to the Lecturio platform throughout their studies. Conclusion Significant challenges still need to be addressed to fully realize the Lecturio digital platform's benefits. Universities, relevant ministries, and various stakeholders must work together to address these challenges to ensure that medical students fully participate in and benefit from digitalized medical education - sustainably and effectively.Keywords: digital medical education, EdTech, LMICs, e-learning
Procedia PDF Downloads 95570 Effects of School Culture and Curriculum on Gifted Adolescent Moral, Social, and Emotional Development: A Longitudinal Study of Urban Charter Gifted and Talented Programs
Authors: Rebekah Granger Ellis, Pat J. Austin, Marc P. Bonis, Richard B. Speaker, Jr.
Abstract:
Using two psychometric instruments, this study examined social and emotional intelligence and moral judgment levels of more than 300 gifted and talented high school students enrolled in arts-integrated, academic acceleration, and creative arts charter schools in an ethnically diverse large city in the southeastern United States. Gifted and talented individuals possess distinguishable characteristics; these frequently appear as strengths, but often serious problems accompany them. Although many gifted adolescents thrive in their environments, some struggle in their school and community due to emotional intensity, motivation and achievement issues, lack of peers and isolation, identification problems, sensitivity to expectations and feelings, perfectionism, and other difficulties. These gifted students endure and survive in school rather than flourish. Gifted adolescents face special intrapersonal, interpersonal, and environmental problems. Furthermore, they experience greater levels of stress, disaffection, and isolation than non-gifted individuals due to their advanced cognitive abilities. Therefore, it is important to examine the long-term effects of participation in various gifted and talented programs on the socio-affective development of these adolescents. Numerous studies have researched moral, social, and emotional development in the areas of cognitive-developmental, psychoanalytic, and behavioral learning; however, in almost all cases, these three facets have been studied separately leading to many divergent theories. Additionally, various frameworks and models purporting to encourage the different socio-affective branches of development have been debated in curriculum theory, yet research is inconclusive on the effectiveness of these programs. Most often studied is the socio-affective domain, which includes development and regulation of emotions; empathy development; interpersonal relations and social behaviors; personal and gender identity construction; and moral development, thinking, and judgment. Examining development in these domains can provide insight into why some gifted and talented adolescents are not always successful in adulthood despite advanced IQ scores. Particularly whether emotional, social and moral capabilities of gifted and talented individuals are as advanced as their intellectual abilities and how these are related to each other. This mixed methods longitudinal study examined students in urban gifted and talented charter schools for (1) socio-affective development levels and (2) whether a particular environment encourages developmental growth. Research questions guiding the study: (1) How do academically and artistically gifted 10th and 11th grade students perform on psychological scales of social and emotional intelligence and moral judgment? Do they differ from the normative sample? Do gender differences exist among gifted students? (2) Do adolescents who attend distinctive gifted charter schools differ in developmental profiles? Students’ performances on psychometric instruments were compared over time and by program type. Assessing moral judgment (DIT-2) and socio-emotional intelligence (BarOn EQ-I: YV), participants took pre-, mid-, and post-tests during one academic school year. Quantitative differences in growth on these psychological scales (individuals and school-wide) were examined. If a school showed change, qualitative artifacts (culture, curricula, instructional methodology, stakeholder interviews) provided insight for environmental correlation.Keywords: gifted and talented programs, moral judgment, social and emotional intelligence, socio-affective education
Procedia PDF Downloads 198569 Advances in Health Risk Assessment of Mycotoxins in Africa
Authors: Wilfred A. Abiaa, Chibundu N. Ezekiel, Benedikt Warth, Michael Sulyok, Paul C. Turner, Rudolf Krska, Paul F. Moundipa
Abstract:
Mycotoxins are a wide range of toxic secondary metabolites of fungi that contaminate various food commodities worldwide especially in sub-Saharan Africa (SSA). Such contamination seriously compromises food safety and quality posing a serious problem for human health as well as to trade and the economy. Their concentrations depend on various factors, such as the commodity itself, climatic conditions, storage conditions, seasonal variances, and processing methods. When humans consume foods contaminated by mycotoxins, they exert toxic effects to their health through various modes of actions. Rural populations in sub-Saharan Africa, are exposed to dietary mycotoxins, but it is supposed that exposure levels and health risks associated with mycotoxins between SSA countries may vary. Dietary exposures and health risk assessment studies have been limited by lack of equipment for the proper assessment of the associated health implications on consumer populations when they eat contaminated agricultural products. As such, mycotoxin research is premature in several SSA nations with product evaluation for mycotoxin loads below/above legislative limits being inadequate. Few nations have health risk assessment reports mainly based on direct quantification of the toxins in foods ('external exposure') and linking food levels with data from food frequency questionnaires. Nonetheless, the assessment of the exposure and health risk to mycotoxins requires more than the traditional approaches. Only a fraction of the mycotoxins in contaminated foods reaches the blood stream and exert toxicity ('internal exposure'). Also, internal exposure is usually smaller than external exposure thus dependence on external exposure alone may induce confounders in risk assessment. Some studies from SSA earlier focused on biomarker analysis mainly on aflatoxins while a few recent studies have concentrated on the multi-biomarker analysis of exposures in urine providing probable associations between observed disease occurrences and dietary mycotoxins levels. As a result, new techniques that could assess the levels of exposures directly in body tissue or fluid, and possibly link them to the disease state of individuals became urgent.Keywords: mycotoxins, biomarkers, exposure assessment, health risk assessment, sub-Saharan Africa
Procedia PDF Downloads 578568 Foot Self-Monitoring Knowledge, Attitude, Practice, and Related Factors among Diabetic Patients: A Descriptive and Correlational Study in a Taiwan Teaching Hospital
Authors: Li-Ching Lin, Yu-Tzu Dai
Abstract:
Recurrent foot ulcers or foot amputation have a major impact on patients with diabetes mellitus (DM), medical professionals, and society. A critical procedure for foot care is foot self-monitoring. Medical professionals’ understanding of patients’ foot self-monitoring knowledge, attitude, and practice is beneficial for raising patients’ disease awareness. This study investigated these and related factors among patients with DM through a descriptive study of the correlations. A scale for measuring the foot self-monitoring knowledge, attitude, and practice of patients with DM was used. Purposive sampling was adopted, and 100 samples were collected from the respondents’ self-reports or from interviews. The statistical methods employed were an independent-sample t-test, one-way analysis of variance, Pearson correlation coefficient, and multivariate regression analysis. The findings were as follows: the respondents scored an average of 12.97 on foot self-monitoring knowledge, and the correct answer rate was 68.26%. The respondents performed relatively lower in foot health screenings and recording, and awareness of neuropathy in the foot. The respondents held a positive attitude toward self-monitoring their feet and a negative attitude toward having others check the soles of their feet. The respondents scored an average of 12.64 on foot self-monitoring practice. Their scores were lower in their frequency of self-monitoring their feet, recording their self-monitoring results, checking their pedal pulse, and examining if their soles were red immediately after taking off their shoes. Significant positive correlations were observed among foot self-monitoring knowledge, attitude, and practice. The correlation coefficient between self-monitoring knowledge and self-monitoring practice was 0.20, and that between self-monitoring attitude and self-monitoring practice was 0.44. Stepwise regression analysis revealed that the main predictive factors of the foot self-monitoring practice in patients with DM were foot self-monitoring attitude, prior experience in foot care, and an educational attainment of college or higher. These factors predicted 33% of the variance. This study concludes that patients with DM lacked foot self-monitoring practice and advises that the patients’ self-monitoring abilities be evaluated first, including whether patients have poor eyesight, difficulties in bending forward due to obesity, and people who can assist them in self-monitoring. In addition, patient education should emphasize self-monitoring knowledge and practice, such as perceptions regarding the symptoms of foot neurovascular lesions, pulse monitoring methods, and new foot self-monitoring equipment. By doing so, new or recurring ulcers may be discovered in their early stages.Keywords: diabetic foot, foot self-monitoring attitude, foot self-monitoring knowledge, foot self-monitoring practice
Procedia PDF Downloads 201567 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects
Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm
Abstract:
Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology
Procedia PDF Downloads 186566 The Association Between CYP2C19 Gene Distribution and Medical Cannabis Treatment
Authors: Vichayada Laohapiboolkul
Abstract:
Introduction: As the legal use of cannabis is being widely accepted throughout the world, medical cannabis has been explored in order to become an alternative cure for patients. Tetrahydrocannabinol (THC) and Cannabidiol (CBD) are natural cannabinoids found in the Cannabis plant which is proved to have positive treatment for various diseases and symptoms such as chronic pain, neuropathic pain, spasticity resulting from multiple sclerosis, reduce cancer-associated pain, autism spectrum disorders (ASD), dementia, cannabis and opioid dependence, psychoses/schizophrenia, general social anxiety, posttraumatic stress disorder, anorexia nervosa, attention-deficit hyperactivity disorder, and Tourette's disorder. Regardless of all the medical benefits, THC, if not metabolized, can lead to mild up to severe adverse drug reactions (ADR). The enzyme CYP2C19 was found to be one of the metabolizers of THC. However, the suballele CYP2C19*2 manifests as a poor metabolizer which could lead to higher levels of THC than usual, possibly leading to various ADRs. Objective: The aim of this study was to investigate the distribution of CYP2C19, specifically CYP2C19*2, genes in Thai patients treated with medical cannabis along with adverse drug reactions. Materials and Methods: Clinical data and EDTA whole blood for DNA extraction and genotyping were collected from patients for this study. CYP2C19*2 (681G>A, rs4244285) genotyping was conducted using the Real-time PCR (ABI, Foster City, CA, USA). Results: There were 42 medical cannabis-induced ADRs cases and 18 medical cannabis tolerance controls who were included in this study. A total of 60 patients were observed where 38 (63.3%) patients were female and 22 (36.7%) were male, with a range of age approximately 19 - 87 years. The most apparent ADRs for medical cannabis treatment were dry mouth/dry throat (76.7%), followed by tachycardia (70%), nausea (30%) and a few arrhythmias (10%). In the total of 27 cases, we found a frequency of 18 CYP2C19*1/*1 alleles (normal metabolizers, 66.7%), 8 CYP2C19*1/*2 alleles (intermediate metabolizers, 29.6%) and 1 CYP2C19*2/*2 alleles (poor metabolizers, 3.7%). Meanwhile, 63.6% of CYP2C19*1/*1, 36.3% and 0% of CYP2C19*1/*2 and *2/*2 in the tolerance controls group, respectively. Conclusions: This is the first study to confirm the distribution of CYP2C19*2 allele and the prevalence of poor metabolizer genes in Thai patients who received medical cannabis for treatment. Thus, CYP2C19 allele might serve as a pharmacogenetics marker for screening before initiating treatment.Keywords: medical cannabis, adverse drug reactions, CYP2C19, tetrahydrocannabinol, poor metabolizer
Procedia PDF Downloads 105565 Implementation of Inclusive Education in DepEd-Dasmarinas: Basis for Inclusion Program Framework
Authors: Manuela S. Tolentino, John G. Nepomuceno
Abstract:
The purpose of this investigation was to assess the implementation of inclusive education (IE) in 6 elementary and 5 secondary public schools in the City Schools Division of Dasmarinas. Participants in this study were 11 school heads, 73 teachers, 22 parents and 22 students (regular and with special needs) who were selected using purposive sampling. A 30-item questionnaire was used to gather data on the extent of the implementation of IE in the division while focus group discussion (FGD) was used to gather insights on what facilitate and hinder the implementation of the IE program. This study assessed the following variables: school culture and environment, inclusive education policy implementation, and curriculum design and practices. Data were analyzed using frequency count, mean and ranking. Results revealed that participants have similar assessment on the extent of the implementation of IE. School heads rated school culture and environment as highest in terms of implementation while teachers and pupils chose curriculum design and practices. On the other hand, parents felt that inclusive education policies are implemented best. School culture and environment are given high ratings. Participants perceived that the IE program in the division is making everyone feel welcome regardless of age, sex, social status, physical, mental and emotional state; students with or without disability are equally valued, and students help each. However, some aspects of the IE program implementation are given low ratings namely: partnership between staff, parents and caregivers, school’s effort to minimize discriminatory practice, and stakeholders sharing the philosophy of inclusion. As regards education policy implementation, indicators with the highest ranks were school’s effort to admit students from the locality especially students with special needs, and the implementation of the child protection policy and anti-bullying policy. The results of the FGD revealed that both school heads and teachers possessed the welcoming gesture to accommodate students with special needs. This can be linked to the increasing enrolment of SNE in the division. However, limitations of the teachers’ knowledge on handling learners, facilities and collaboration among stakeholders hinder the implementation of IE program. Based on the findings, inclusion program framework was developed for program enhancement. This will be the basis for the improvement of the program’s efficiency, the relationship between stakeholders, and formulation of solutions.Keywords: inclusion, inclusive education, framework, special education
Procedia PDF Downloads 175564 Aquaporin-1 as a Differential Marker in Toxicant-Induced Lung Injury
Authors: Ekta Yadav, Sukanta Bhattacharya, Brijesh Yadav, Ariel Hus, Jagjit Yadav
Abstract:
Background and Significance: Respiratory exposure to toxicants (chemicals or particulates) causes disruption of lung homeostasis leading to lung toxicity/injury manifested as pulmonary inflammation, edema, and/or other effects depending on the type and extent of exposure. This emphasizes the need for investigating toxicant type-specific mechanisms to understand therapeutic targets. Aquaporins, aka water channels, are known to play a role in lung homeostasis. Particularly, the two major lung aquaporins AQP5 and AQP1 expressed in alveolar epithelial and vasculature endothelia respectively allow for movement of the fluid between the alveolar air space and the associated vasculature. In view of this, the current study is focused on understanding the regulation of lung aquaporins and other targets during inhalation exposure to toxic chemicals (Cigarette smoke chemicals) versus toxic particles (Carbon nanoparticles) or co-exposures to understand their relevance as markers of injury and intervention. Methodologies: C57BL/6 mice (5-7 weeks old) were used in this study following an approved protocol by the University of Cincinnati Institutional Animal Care and Use Committee (IACUC). The mice were exposed via oropharyngeal aspiration to multiwall carbon nanotube (MWCNT) particles suspension once (33 ugs/mouse) followed by housing for four weeks or to Cigarette smoke Extract (CSE) using a daily dose of 30µl/mouse for four weeks, or to co-exposure using the combined regime. Control groups received vehicles following the same dosing schedule. Lung toxicity/injury was assessed in terms of homeostasis changes in the lung tissue and lumen. Exposed lungs were analyzed for transcriptional expression of specific targets (AQPs, surfactant protein A, Mucin 5b) in relation to tissue homeostasis. Total RNA from lungs extracted using TRIreagent kit was analyzed using qRT-PCR based on gene-specific primers. Total protein in bronchoalveolar lavage (BAL) fluid was determined by the DC protein estimation kit (BioRad). GraphPad Prism 5.0 (La Jolla, CA, USA) was used for all analyses. Major findings: CNT exposure alone or as co-exposure with CSE increased the total protein content in the BAL fluid (lung lumen rinse), implying compromised membrane integrity and cellular infiltration in the lung alveoli. In contrast, CSE showed no significant effect. AQP1, required for water transport across membranes of endothelial cells in lungs, was significantly upregulated in CNT exposure but downregulated in CSE exposure and showed an intermediate level of expression for the co-exposure group. Both CNT and CSE exposures had significant downregulating effects on Muc5b, and SP-A expression and the co-exposure showed either no significant effect (Muc5b) or significant downregulating effect (SP-A), suggesting an increased propensity for infection in the exposed lungs. Conclusions: The current study based on the lung toxicity mouse model showed that both toxicant types, particles (CNT) versus chemicals (CSE), cause similar downregulation of lung innate defense targets (SP-A, Muc5b) and mostly a summative effect when presented as co-exposure. However, the two toxicant types show differential induction of aquaporin-1 coinciding with the corresponding differential damage to alveolar integrity (vascular permeability). Interestingly, this implies the potential of AQP1 as a differential marker of toxicant type-specific lung injury.Keywords: aquaporin, gene expression, lung injury, toxicant exposure
Procedia PDF Downloads 187