Search results for: solar thermal energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11261

Search results for: solar thermal energy

5441 X-Ray and DFT Electrostatics Parameters Determination of a Coumarin Derivative Compound C17H13NO3

Authors: Y. Megrous, A. Chouaih, F. Hamzaoui

Abstract:

The crystal structure of 4-Methyl-7-(salicylideneamino)coumarin C17H13NO3has been determined using X-ray diffraction to establish the configuration and stereochemistry of the molecule. This crystal is characterized by its nolinear activity. The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment in-crystal have been determined in order to understand the nature of inter-and intramolecular charge transfer. The study present the thermal motion and the structural analysis obtained from the least-square refinement on F2,this study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound.

Keywords: electron charge density, net atomic charge, molecular dipole moment, X-ray diffraction

Procedia PDF Downloads 463
5440 Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger

Authors: A.Kouidri, B.Madani

Abstract:

The present work deals with the study of the heat transfer in a rectangular channel equipped with a metallic foam. The tested metallic foam sample is made from copper with 20 PPI (Pore per Inch Linear) and 93% of porosity and the working fluid used is the n-pentane. In the present work the independent variables are the velocity in the range from 0.02 to 0.06 m/s and a boiling heat flux rate varying between 30 and 70 kW/m2. The heat transfer coefficient is presented versus boiling heat flux, vapor quality and superheat ΔTsat. The thermal results are compared to those found for a plain tube for the same conditions. The comparison with the plain tube shows that the insert of a metallic foam enhances the heat transfer coefficient by a factor between 1.3 and 3.

Keywords: boiling, metallic foam, heat transfer, plate heat exchanger

Procedia PDF Downloads 479
5439 Integrated Planning, Designing, Development and Management of Eco-Friendly Human Settlements for Sustainable Development of Environment, Economic, Peace and Society of All Economies

Authors: Indra Bahadur Chand

Abstract:

This paper will focus on the need for development and application of global protocols and policy in planning, designing, development, and management of systems of eco-towns and eco-villages so that sustainable development will be assured from the perspective of environmental, economical, peace, and harmonized social dynamics. This perspective is essential for the development of civilized and eco-friendly human settlements in the town and rural areas of the nation that will be a milestone for developing a happy and sustainable lifestyle of rural and urban communities of the nation. The urban population of most of the town of developing economies has been tremendously increasing, whereas rural people have been tremendously migrating for the past three decades. Consequently, the urban lifestyle in most towns has stressed in terms of environmental pollution, water crisis, congested traffic, energy crisis, food crisis, and unemployment. Eco-towns and villages should be developed where lifestyle of all residents is sustainable and happy. Built up environment of settlement should reduce and minimize the problems of non ecological CO2 emissions, unbalanced utilization of natural resources, environmental degradation, natural calamities, ecological imbalance, energy crisis, water scarcity, waste management, food crisis, unemployment, deterioration of cultural heritage, social, the ratio among the public and private land ownership, ratio of land covered with vegetation and area of settlement, the ratio of people in the vehicles and foot, the ratio of people employed outside of town and village, ratio of resources recycling of waste materials, water consumption level, the ratio of people and vehicles, ratio of the length of the road network and area of town/villages, a ratio of renewable energy consumption with total energy, a ratio of religious/recreational area out of the total built-up area, the ratio of annual suicide case out of total people, a ratio of annual injured and death out of total people from a traffic accident, a ratio of production of agro foods within town out of total food consumption will be used to assist in designing and monitoring of each eco-towns and villages. An eco-town and villages should be planned and developed to offer sustainable infrastructure and utilities that maintain CO2 level in individual homes and settlements, home energy use, transport, food and consumer goods, water supply, waste management, conservation of historical heritages, healthy neighborhood, conservation of natural landscape, conserving bio-diversity and developing green infrastructures. Eco-towns and villages should be developed on the basis of master planning and architecture that affect and define the settlement and its form. Master planning and engineering should focus in delivering the sustainability criteria of eco towns and eco village. This will involve working with specific landscape and natural resources of locality.

Keywords: eco-town, ecological habitation, master plan, sustainable development

Procedia PDF Downloads 184
5438 Analysis and Design of Offshore Met Mast Supported on Jacket Substructure

Authors: Manu Manu, Pardha J. Saradhi, Ramana M. V. Murthy

Abstract:

Wind Energy is accepted as one of the most developed, cost effective and proven renewable energy technologies to meet increasing electricity demands in a sustainable manner. Preliminary assessment studies along Indian Coastline by Ministry of New and Renewable Energy have indicated prospects for development of offshore wind power along Tamil Nadu Coast, India. The commercial viability of a wind project mainly depends on wind characteristics on site. Hence, it is internationally recommended to perform site-specific wind resource assessment based on two years’ wind profile as a part of the feasibility study. Conventionally, guy wire met mast are used onshore for the collection of wind profile. Installation of similar structure in offshore requires complex marine spread and are very expensive. In the present study, an attempt is made to develop 120 m long lattice tower supported on the jacket, piled to the seabed at Rameshwaram, Tamil Nadu, India. Offshore met-masts are subjected to combined wind and hydrodynamic loads, and these lateral loads should be safely transferred to soil. The wind loads are estimated based on gust factor method, and the hydrodynamic loads are estimated by Morison’s equation along with suitable wave theory. The soil is modeled as three nonlinear orthogonal springs based on API standards. The structure configuration and optimum member sizes are obtained for extreme cyclone events. The dynamic behavior of mast under coupled wind and wave loads is also studied. The static responses of a mast with jacket type offshore platform have been studied using a frame model in SESAM. It is found from the study that the maximum displacement at the top of the mast for the random wave is 0.003 m and that of the tower for wind is 0.08 m during the steady state. The dynamic analysis results indicate that the structure is safe against coupled wind and wave loading.

Keywords: offshore wind, mast, static, aerodynamic load, hydrodynamic load

Procedia PDF Downloads 220
5437 Simulation of Low Cycle Fatigue Behaviour of Nickel-Based Alloy at Elevated Temperatures

Authors: Harish Ramesh Babu, Marco Böcker, Mario Raddatz, Sebastian Henkel, Horst Biermann, Uwe Gampe

Abstract:

Thermal power machines are subjected to cyclic loading conditions under elevated temperatures. At these extreme conditions, the durability of the components has a significant influence. The material mechanical behaviour has to be known in detail for a failsafe construction. For this study a nickel-based alloy is considered, the deformation and fatigue behaviour of the material is analysed under cyclic loading. A viscoplastic model is used for calculating the deformation behaviour as well as to simulate the rate-dependent and cyclic plasticity effects. Finally, the cyclic deformation results of the finite element simulations are compared with low cycle fatigue (LCF) experiments.

Keywords: complex low cycle fatigue, elevated temperature, fe-simulation, viscoplastic

Procedia PDF Downloads 240
5436 Integrated Process Modelling of a Thermophilic Biogas Plant

Authors: Obiora E. Anisiji, Jeremiah L. Chukwuneke, Chinonso H. Achebe, Paul C. Okolie

Abstract:

This work developed a mathematical model of a biogas plant from a mechanistic point of view, for urban area clean energy requirement. It aimed at integrating thermodynamics; which deals with the direction in which a process occurs and Biochemical kinetics; which gives the understanding of the rates of biochemical reaction. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analysis were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500m3 biogas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of biogas production is essentially a function of enthalpy ratio, the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.

Keywords: anaerobic digestion, biogas plant, biogas production, bio-reactor, energy, fermentation, rate of production, temperature, therm

Procedia PDF Downloads 439
5435 Hohmann Transfer and Bi-Elliptic Hohmann Transfer in TRAPPIST-1 System

Authors: Jorge L. Nisperuza, Wilson Sandoval, Edward. A. Gil, Johan A. Jimenez

Abstract:

In orbital mechanics, an active research topic is the calculation of interplanetary trajectories efficient in terms of energy and time. In this sense, this work concerns the calculation of the orbital elements for sending interplanetary probes in the extrasolar system TRAPPIST-1. Specifically, using the mathematical expressions of the circular and elliptical trajectory parameters, expressions for the flight time and the orbital transfer rate increase between orbits, the orbital parameters and the graphs of the trajectories of Hohmann and Hohmann bi-elliptic for sending a probe from the innermost planet to all the other planets of the studied system, are obtained. The relationship between the orbital transfer rate increments and the relationship between the flight times for the two transfer types is found. The results show that, for all cases under consideration, the Hohmann transfer results to be the least energy and temporary cost, a result according to the theory associated with Hohmann and Hohmann bi-elliptic transfers. Saving in the increase of the speed reaches up to 87% was found, and it happens for the transference between the two innermost planets, whereas the time of flight increases by a factor of up to 6.6 if one makes use of the bi-elliptic transfer, this for the case of sending a probe from the innermost planet to the outermost.

Keywords: bi-elliptic Hohmann transfer, exoplanet, extrasolar system, Hohmann transfer, TRAPPIST-1

Procedia PDF Downloads 196
5434 Simulations of Cryogenic Cavitation of Low Temperature Fluids with Thermodynamics Effects

Authors: A. Alhelfi, B. Sunden

Abstract:

Cavitation in cryogenic liquids is widely present in contemporary science. In the current study, we re-examine a previously validated acoustic cavitation model which was developed for a gas bubble in liquid water. Furthermore, simulations of cryogenic fluids including the thermal effect, the effect of acoustic pressure amplitude and the frequency of sound field on the bubble dynamics are presented. A gas bubble (Helium) in liquids Nitrogen, Oxygen and Hydrogen in an acoustic field at ambient pressure and low temperature is investigated numerically. The results reveal that the oscillation of the bubble in liquid Hydrogen fluctuates more than in liquids Oxygen and Nitrogen. The oscillation of the bubble in liquids Oxygen and Nitrogen is approximately similar.

Keywords: cryogenic liquids, cavitation, rocket engineering, ultrasound

Procedia PDF Downloads 323
5433 A Machining Method of Cross-Shape Nano Channel and Experiments for Silicon Substrate

Authors: Zone-Ching Lin, Hao-Yuan Jheng, Zih-Wun Jhang

Abstract:

The paper innovatively proposes using the concept of specific down force energy (SDFE) and AFM machine to establish a machining method of cross-shape nanochannel on single-crystal silicon substrate. As for machining a cross-shape nanochannel by AFM machine, the paper develop a method of machining cross-shape nanochannel groove at a fixed down force by using SDFE theory and combining the planned cutting path of cross-shape nanochannel up to 5th machining layer it finally achieves a cross-shape nanochannel at a cutting depth of around 20nm. Since there may be standing burr at the machined cross-shape nanochannel edge, the paper uses a smaller down force to cut the edge of the cross-shape nanochannel in order to lower the height of standing burr and converge the height of standing burr at the edge to below 0.54nm as set by the paper. Finally, the paper conducts experiments of machining cross-shape nanochannel groove on single-crystal silicon by AFM probe, and compares the simulation and experimental results. It is proved that this proposed machining method of cross-shape nanochannel is feasible.

Keywords: atomic force microscopy (AFM), cross-shape nanochannel, silicon substrate, specific down force energy (SDFE)

Procedia PDF Downloads 377
5432 Effect of Thermal Annealing Used in the Hydrothermal Synthesis of Titanium Dioxide on Its Electrochemical Properties As Li-Ion Electrode

Authors: Gabouze Nourredine, Saloua Merazga

Abstract:

Due to their exceptional durability, low-cost, high-power density, and reliability, cathodes based on titanium dioxide, and more specifically spinel LTO (Li4Ti5O12), present an attractive alternative to conventional lithium cathode materials for multiple applications. The aim of this work is to synthesize and characterize the nanopowders of titanium dioxide (TiO₂) and lithium titanate (Li₄Ti5O₁₂) by the hydrothermal method and to use them as a cathode in a lithium-ion battery. The structural and morphological characterizations of the synthesized powders were performed by XRD, SEM, EDS, and FTIR-ATR. Nevertheless, the study of the electrochemical performances of the elaborated electrode materials was carried out by: cyclic voltametry (CV) and galvanostatic charge/discharge (CDG). The prepared electrode by the powder annealed at 800 °C has a good specific capacity of about 173 mAh/g and a good cyclic stability

Keywords: lithuim-ion, battery, LTO, tio2, capacity

Procedia PDF Downloads 89
5431 Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application

Authors: Špela Hajduk, Sean P. Berglund, Matejka Podlogar, Goran Dražić, Fatwa F. Abdi, Zorica C. Orel, Menny Shalom

Abstract:

Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS).

Keywords: carbon nitride, photoanode, solar water splitting, zinc oxide

Procedia PDF Downloads 197
5430 Analysis of Cannabinol and Cannabidiol affinity with GBRA1

Authors: Hamid Hossein Khezri, Afsaneh Javdani-Mallak

Abstract:

Fast inhibitory neurotransmission in the mammalian nervous system is largely mediated by GABAA receptors, chloride-selective members of the superfamily of pentameric Cys-loop receptors. Cannabidiol (CBD) is one of the members of cannabinoid compounds found in cannabis. CBD and Cannabinol (CBN), as the other extract of plant Cannabis were able to reduce myofascial pain in rats with immunosuppressive and anti-inflammatory activities. In this study, we accomplished protein-protein BLAST, and the sequence was found to be for Gamma-aminobutyric acid receptor subunit alpha-1 (GBRA1) chain A and its 3D structure was subsequently downloaded from Protein Data Bank. The structures of the ligands, cannabinol, and cannabidiol, were obtained from PubChem. After the necessary process of the obtained files, AutoDock Vina was used to perform molecular docking. Docking between the ligands and GBRA1 chain A revealed that cannabinol has a higher affinity to GBRA1 (binding energy = -7.5 kcal/mol) compared to cannabidiol (binding energy = -6.5 kcal/mol). Furthermore, cannabinol seems to be able to interact with 10 residues of the protein, out of which 3 are in the neurotransmitter-gated ion-channel transmembrane domain of GBRA1, whereas cannabidiol interacts with two other residues. Although the results of this project do not indicate the activating /or inhibitory capability of the studied compounds, it suggests that cannabinol can act as a relatively strong ligand for GBRA1.

Keywords: protein-ligand docking, cannabinol, cannabidiol, GBRA1

Procedia PDF Downloads 114
5429 Optimization of the Self-Recognition Direct Digital Radiology Technology by Applying the Density Detector Sensors

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

In 2020, the technology was introduced to solve some of the deficiencies of direct digital radiology. SDDR is an invention that is capable of capturing dental images without human intervention, and it was invented by the authors of this paper. Adjusting the radiology wave dose is a part of the dentists, radiologists, and dental nurses’ tasks during the radiology photography process. In this paper, an improvement will be added to enable SDDR to set the suitable radiology wave dose according to the density and age of the patients automatically. The separate sensors will be included in the sensors’ package to use the ultrasonic wave to detect the density of the teeth and change the wave dose. It facilitates the process of dental photography in terms of time and enhances the accuracy of choosing the correct wave dose for each patient separately. Since the radiology waves are well known to trigger off other diseases such as cancer, choosing the most suitable wave dose can be helpful to decrease the side effect of that for human health. In other words, it decreases the exposure time for the patients. On the other hand, due to saving time, less energy will be consumed, and saving energy can be beneficial to decrease the environmental impact as well.

Keywords: dental direct digital imaging, environmental impacts, SDDR technology, wave dose

Procedia PDF Downloads 197
5428 Prevalence and Associated Factors of Protein-Energy Malnutrition Among Children Aged 6-59 Months in Babile Town from April to June 2016

Authors: Tajudin Ahmed

Abstract:

Malnutrition is a significant problem in developing countries, particularly among children, due to inadequate diets, lack of proper care, and unequal distribution of food within households. High rates of malnutrition have been shown in Ethiopia, including stunting, underweight, and wasting. This study aims to assess the prevalence and associated factors of Protein-Energy Malnutrition (PEM) among children aged 6-59 months in Babile Town. The study utilized a community-based cross-sectional design conducted in Babile Town, Eastern Ethiopia. Two kebeles were randomly selected, and a census was conducted to identify eligible households. A total of 391 households with children aged 6-59 months were included in the study. Data was collected using structured questionnaires, and anthropometric measurements were taken to assess the weight and height of the children. The study found that a majority of the mothers (72.34%) and fathers (43%) had no formal education. Among the mothers who could read and write, a small percentage had completed primary (14%) or secondary (14%) education, and even fewer had higher education (2.7%). Similarly, among the fathers who could read and write, a majority had completed primary (46.15%) or secondary (27.22%) education, with smaller percentages completing preparatory (8.4%) or higher education (6.29%). The prevalence of malnutrition in the study area was high, with 38.85% of children experiencing stunting (8.2% severely stunted), 50.13% wasting (9% severely wasted), and 41.43% underweight (6.65% severely underweight). These findings indicate a significant burden of malnutrition in Babile Town, likely exacerbated by the high prevalence of infectious diseases such as diarrhea. The study concludes that the prevalence of malnutrition, particularly stunting, wasting, and underweight, is high in Babile Town. The findings indicate the urgent need for interventions to address malnutrition and improve nutrition and healthcare practices in the study area. These results can serve as a baseline for future studies and inform policymakers and healthcare providers in their efforts to combat childhood malnutrition.

Keywords: protein-energy malnutrition, children 6-59 month age babble town, Marasmus

Procedia PDF Downloads 61
5427 Environmental Corporate Social Responsibility in Industrial Cities: A Collaborative Governance Approach

Authors: Muhlisin, Moh. Sofyan Budiarto

Abstract:

Corporate social responsibility (CSR) initiatives based on charity and philanthropy have not alleviated many sustainable environmental issues, particularly in industrial towns. The collaborative governance strategy is seen to be an option for resolving difficulties of coordination and communication between businesses, the government, and the community so that the goals of urban environmental management can be met via collaborative efforts. The purpose of this research is to identify the different forms of environmental CSR implementation by corporate entities and to create a CSR collaborative governance model in environmental management. This qualitative investigation was carried out in 2020 in Cilegon City, one of Indonesia’s industrial cities. To investigate their support, a total of 20 informants from three stakeholder groups, namely the government, corporate entities, and the community, were questioned. According to the study’s findings, cleaner production, eco-office, energy and natural resource conservation, waste management, renewable energy, climate change adaptation, and environmental education are all examples of CSR application in the environmental sector. The environmental potential of CSR implementation is to create collaborative governance. The role of business entities in providing the beginning circumstances is critical, while the government offers facilitative leadership and the CSR forum launches institutional design. These three factors are crucial to the efficiency of collaborative governance in industrial cities' environmental management.

Keywords: collaborative governance, CSR forum, environmental CSR, industrial city

Procedia PDF Downloads 91
5426 Approximate Spring Balancing for the Arm of a Humanoid Robot to Reduce Actuator Torque

Authors: Apurva Patil, Ashay Aswale, Akshay Kulkarni, Shubham Bharadiya

Abstract:

The potential benefit of gravity compensation of linkages in mechanisms using springs to reduce actuator requirements is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs with child–parent connections and no auxiliary links. Application of this method to the developed arm of a humanoid robot is presented here. Spring balancing is particularly important in this case because the serial chain of linkages has to work against gravity.This work involves approximate spring balancing of the open-loop chain of linkages using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Reduced actuator torque facilitates the use of lower end actuators which are generally smaller in weight and volume thereby lowering the space requirements and the total weight of the arm. This is particularly important for humanoid robots where the parent actuator has to handle the weight of the subsequent actuators as well. Actuators with lower actuation requirements are more energy efficient, thereby reduce the energy consumption of the mechanism. Lower end actuators are lower in cost and facilitate the development of low-cost devices. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free-length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached to the preceding parent link, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant arm of the humanoid robot is compact. The cost benefits and reduced complexity can be significant advantages in the development of this arm of the humanoid robot.

Keywords: actuator torque, child-parent connections, spring balancing, the arm of a humanoid robot

Procedia PDF Downloads 247
5425 Study of The Ballistic Impact at Low Speed on Angle-Ply Fibrous Structures

Authors: Daniel Barros, Carlos Mota, Raul Fangueiro, Pedro Rosa, Gonçalo Domingos, Alfredo Passanha, Norberto Almeida

Abstract:

The main aim of the work was to compare the ballistic performance of developed composites using different types of fiber woven fabrics [0,90] and different layers orientation (Angle-ply). The ballistic laminate composites were developed using E-glass, S-glass and aramid fabrics impregnated with thermosetting epoxy resin and using different layers orientation (0,0)º and (0,15)º. The idea of the study is to compare the ballistic performance of each laminate produced by studying the velocity loss of the fragment fired into the laminate surface. There are present some mechanical properties for laminates produced using the different types of fiber, where tensile, flexural and impact Charpy properties were studied. Overall, the angle-ply laminates produced using orientations of (0,15)º, despite the slight loss of mechanical properties compared to the (0,0)º orientation, presents better ballistic resistance and dissipation of energy, for lower ballistic impact velocities (under 290 m/s-1). After treatment of ballistic impact results, the S-Glass with (0,15)º laminate presents better ballistic perforce compared to the other combinations studied.

Keywords: ballistic impact, angle-ply, ballistic composite, s-glass fiber, aramid fiber, fabric fiber, energy dissipation, mechanical performance

Procedia PDF Downloads 213
5424 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy

Authors: Erick Pruchnicki, Nikhil Padhye

Abstract:

Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.

Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials

Procedia PDF Downloads 115
5423 Measuring Resource Recovery and Environmental Benefits of Global Waste Management System Using the Zero Waste Index

Authors: Atiq Uz Zaman

Abstract:

Sustainable waste management is one of the major global challenges that we face today. A poor waste management system not only symbolises the inefficiency of our society but also depletes valuable resources and emits pollutions to the environment. Presently, we extract more natural resources than ever before in order to meet the demand for constantly growing resource consumption. It is estimated that around 71 tonnes of ‘upstream’ materials are used for every tonne of MSW. Therefore, resource recovery from waste potentially offsets a significant amount of upstream resource being depleted. This study tries to measure the environmental benefits of global waste management systems by applying a tool called the Zero Waste Index (ZWI). The ZWI measures the waste management performance by accounting for the potential amount of virgin material that can be offset by recovering resources from waste. In addition, the ZWI tool also considers the energy, GHG and water savings by offsetting virgin materials and recovering energy from waste. This study analyses the municipal solid waste management system of 172 countries from all over the globe and the population covers in the study is 3.37 billion. This study indicates that we generated around 1.47 billion tonnes (436kg/cap/year) of municipal solid waste each year and the waste generation is increasing over time. This study also finds a strong and positive correlation (R2=0.29, p = < .001) between income (GDP/capita/year) and amount of waste generated (kg/capita/year). About 84% of the waste is collected globally and only 15% of the collected waste is recycled. The ZWI of the world is measured in this study of 0.12, which means that the current waste management system potentially offsets only 12% of the total virgin material substitution potential from waste. Annually, an average person saved around 219kWh of energy, emitted around 48kg of GHG and saved around 38l of water. Findings of this study are very important to measure the current waste management performance in a global context. In addition, the study also analysed countries waste management performance based on their income level.

Keywords: global performance, material substitution; municipal waste, resource recovery, waste management, zero waste index

Procedia PDF Downloads 246
5422 Facility Data Model as Integration and Interoperability Platform

Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes

Abstract:

Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.

Keywords: airport ontology, energy management, facility data model, ontology modeling

Procedia PDF Downloads 453
5421 Influence of Different Light Levels in Amaryllis (Hippeastrum X hybridum Hort.) Development and Flowering

Authors: Regina Maria M. Castilho, Isabela M. Morita, Ana Carolina T. Malavolta, Maximiliano K. Pagliarini

Abstract:

An essential factor for flower production is solar radiation, which is part of plant vital processes. As excess as shortage of light can harm the development of the culture leading to loss in product quality, Unfeasible or decreasing their commercial value. The objective of this research was to evaluate different light levels and their influence on Amaryllis (Hippeastrum X hybridum Hort.) development and flowering. The experiment was conducted at UNESP, São Paulo State, Brazil from August to October 2014. The bulbs were placed in black vases of 1.2 L filled with commercial substrate and divided into 4 different lighting environments (treatments): T1–greenhouse, T2–greenhouse with shade cloth (50%), T3–low lights indoor (until 500 lx) and T4–medium lights indoor (between 500–1000 lx). The used design was completely randomized with ten repetitions and three vessels (bulbs), totalling 30 vessels (bulbs) per treatment. The evaluated characteristics were: Chlorophyll content, number of leaves, length of leaf, number of simultaneous rods, rod length, rod diameter, number of flowers, flowers diameter, beginning of flowering and flowering duration. The results showed that in greenhouse provided Amaryllis better quality plants.

Keywords: açucena, bulbs, light, ornamental plants

Procedia PDF Downloads 458
5420 Study of Natural Convection in Storage Tank of LNG

Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed

Abstract:

Heat transfer by natural convection in storage tanks for LNG is extremely related to heat gains through the walls with thermal insulation is not perfectly efficient. In this paper, we present the study of natural convection in the unsteady regime for natural gas in aware phase using the fluent software. The gas is just on the surface of the liquid phase. The CFD numerical method used to solve the system of equations is based on the finite volume method. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.

Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas

Procedia PDF Downloads 441
5419 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering

Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola

Abstract:

Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.

Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials

Procedia PDF Downloads 80
5418 Predicting Mortality among Acute Burn Patients Using BOBI Score vs. FLAMES Score

Authors: S. Moustafa El Shanawany, I. Labib Salem, F. Mohamed Magdy Badr El Dine, H. Tag El Deen Abd Allah

Abstract:

Thermal injuries remain a global health problem and a common issue encountered in forensic pathology. They are a devastating cause of morbidity and mortality in children and adults especially in developing countries, causing permanent disfigurement, scarring and grievous hurt. Burns have always been a matter of legal concern in cases of suicidal burns, self-inflicted burns for false accusation and homicidal attempts. Assessment of burn injuries as well as rating permanent disabilities and disfigurement following thermal injuries for the benefit of compensation claims represents a challenging problem. This necessitates the development of reliable scoring systems to yield an expected likelihood of permanent disability or fatal outcome following burn injuries. The study was designed to identify the risk factors of mortality in acute burn patients and to evaluate the applicability of FLAMES (Fatality by Longevity, APACHE II score, Measured Extent of burn, and Sex) and BOBI (Belgian Outcome in Burn Injury) model scores in predicting the outcome. The study was conducted on 100 adult patients with acute burn injuries admitted to the Burn Unit of Alexandria Main University Hospital, Egypt from October 2014 to October 2015. Victims were examined after obtaining informed consent and the data were collected in specially designed sheets including demographic data, burn details and any associated inhalation injury. Each burn patient was assessed using both BOBI and FLAMES scoring systems. The results of the study show the mean age of patients was 35.54±12.32 years. Males outnumbered females (55% and 45%, respectively). Most patients were accidently burnt (95%), whereas suicidal burns accounted for the remaining 5%. Flame burn was recorded in 82% of cases. As well, 8% of patients sustained more than 60% of total burn surface area (TBSA) burns, 19% of patients needed mechanical ventilation, and 19% of burnt patients died either from wound sepsis, multi-organ failure or pulmonary embolism. The mean length of hospital stay was 24.91±25.08 days. The mean BOBI score was 1.07±1.27 and that of the FLAMES score was -4.76±2.92. The FLAMES score demonstrated an area under the receiver operating characteristic (ROC) curve of 0.95 which was significantly higher than that of the BOBI score (0.883). A statistically significant association was revealed between both predictive models and the outcome. The study concluded that both scoring systems were beneficial in predicting mortality in acutely burnt patients. However, the FLAMES score could be applied with a higher level of accuracy.

Keywords: BOBI, burns, FLAMES, scoring systems, outcome

Procedia PDF Downloads 340
5417 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: buckling, low yield point steel, plates, steel plate shear walls, yielding

Procedia PDF Downloads 403
5416 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure

Authors: Andrew R. Winters, Gregor J. Gassner

Abstract:

A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.

Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity

Procedia PDF Downloads 346
5415 Healing Environment Design: Emotion, Accessibility and Universal Thermal Climate Index

Authors: Fu Wantong

Abstract:

Emotion is one of the important indicators of healing environment design. This study fills this gap by analyzing sentiment indicators in high-density residential areas in Hong Kong over a period of two months. Firstly, the study obtained climate data and building model information for Hong Kong's West Kowloon district. Then, Rhino and Grasshopper were used to calculate the isovist, emotion, UTCI, and accessibility of the study area. Finally, the study applied multiple linear regression to examine the influencing factor of emotion. The results show that the higher the values of accessibility, UTCI, and building density, the lower the emotion value. However, it’s interesting that in extreme hot weeks, UTCI has a greater effect on emotion than building density.

Keywords: emotion, isovist, microclimate, accessibility index

Procedia PDF Downloads 9
5414 The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power

Authors: Mohammadreza Heydariazad

Abstract:

Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value.

Keywords: wind energy, generator, superconducting inductor, wind turbine power

Procedia PDF Downloads 329
5413 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device

Procedia PDF Downloads 363
5412 C₅₉Pd: A Heterogeneous Catalytic Material for Heck Coupling Reaction

Authors: Manjusha C. Padole, Parag A. Deshpande

Abstract:

Density functional theory calculations were carried out for identification of an active heterogeneous catalyst to carry out Heck coupling reaction which is of pharmaceutical importance. One of the carbonaceous nanomaterials, heterofullerene, was designed for the reaction. Stability and reactivity of the proposed heterofullerenes (C59M, M = Pd/Ni) were established with insights into the metal-carbon bond, electron affinity and chemical potential. Adsorbent potentials of both the heterofullerenes were examined from the adsorption study of four halobenzenes (C6H5F, C6H5Cl, C6H5Br and C6H5I). Oxidative addition activities of all four halobenzenes were investigated by developing free energy landscapes over both the heterofullerenes for rate determining step (oxidative addition). C6H5I showed a good catalytic activity for the rate determining step. Thus, C6H5I was proposed as a suitable halobenzene and complete free energy landscapes for Heck coupling reaction were developed over C59Pd and C59Ni. Smaller activation barriers observed over C59Pd in comparison with C59Ni put us in a position to propose C59Pd to be an efficient heterofullerene for carrying Heck coupling reaction.

Keywords: metal-substituted fullerene, density functional theory, electron affinity, oxidative addition, Heck coupling reaction

Procedia PDF Downloads 228