Search results for: composite overwrapped pressure vessel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6180

Search results for: composite overwrapped pressure vessel

360 Integrating Computational Modeling and Analysis with in Vivo Observations for Enhanced Hemodynamics Diagnostics and Prognosis

Authors: Shreyas S. Hegde, Anindya Deb, Suresh Nagesh

Abstract:

Computational bio-mechanics is developing rapidly as a non-invasive tool to assist the medical fraternity to help in both diagnosis and prognosis of human body related issues such as injuries, cardio-vascular dysfunction, atherosclerotic plaque etc. Any system that would help either properly diagnose such problems or assist prognosis would be a boon to the doctors and medical society in general. Recently a lot of work is being focused in this direction which includes but not limited to various finite element analysis related to dental implants, skull injuries, orthopedic problems involving bones and joints etc. Such numerical solutions are helping medical practitioners to come up with alternate solutions for such problems and in most cases have also reduced the trauma on the patients. Some work also has been done in the area related to the use of computational fluid mechanics to understand the flow of blood through the human body, an area of hemodynamics. Since cardio-vascular diseases are one of the main causes of loss of human life, understanding of the blood flow with and without constraints (such as blockages), providing alternate methods of prognosis and further solutions to take care of issues related to blood flow would help save valuable life of such patients. This project is an attempt to use computational fluid dynamics (CFD) to solve specific problems related to hemodynamics. The hemodynamics simulation is used to gain a better understanding of functional, diagnostic and theoretical aspects of the blood flow. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. In this project the mathematical modeling of the blood flow in the arteries in the presence of successive blockages has been analyzed using CFD technique. Different cases of blockages in terms of percentages have been modeled using commercial software CATIA V5R20 and simulated using commercial software ANSYS 15.0 to study the effect of varying wall shear stress (WSS) values and also other parameters like the effect of increase in Reynolds number. The concept of fluid structure interaction (FSI) has been used to solve such problems. The model simulation results were validated using in vivo measurement data from existing literature

Keywords: computational fluid dynamics, hemodynamics, blood flow, results validation, arteries

Procedia PDF Downloads 403
359 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator

Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur

Abstract:

Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.

Keywords: air distribution, CFD, DOE, energy consumption, experimental, larder cabinet, refrigeration, uniform temperature

Procedia PDF Downloads 108
358 Optimizing Weight Loss with AI (GenAISᵀᴹ): A Randomized Trial of Dietary Supplement Prescriptions in Obese Patients

Authors: Evgeny Pokushalov, Andrey Ponomarenko, John Smith, Michael Johnson, Claire Garcia, Inessa Pak, Evgenya Shrainer, Dmitry Kudlay, Sevda Bayramova, Richard Miller

Abstract:

Background: Obesity is a complex, multifactorial chronic disease that poses significant health risks. Recent advancements in artificial intelligence (AI) offer the potential for more personalized and effective dietary supplement (DS) regimens to promote weight loss. This study aimed to evaluate the efficacy of AI-guided DS prescriptions compared to standard physician-guided DS prescriptions in obese patients. Methods: This randomized, parallel-group pilot study enrolled 60 individuals aged 40 to 60 years with a body mass index (BMI) of 25 or greater. Participants were randomized to receive either AI-guided DS prescriptions (n = 30) or physician-guided DS prescriptions (n = 30) for 180 days. The primary endpoints were the percentage change in body weight and the proportion of participants achieving a ≥5% weight reduction. Secondary endpoints included changes in BMI, fat mass, visceral fat rating, systolic and diastolic blood pressure, lipid profiles, fasting plasma glucose, hsCRP levels, and postprandial appetite ratings. Adverse events were monitored throughout the study. Results: Both groups were well balanced in terms of baseline characteristics. Significant weight loss was observed in the AI-guided group, with a mean reduction of -12.3% (95% CI: -13.1 to -11.5%) compared to -7.2% (95% CI: -8.1 to -6.3%) in the physician-guided group, resulting in a treatment difference of -5.1% (95% CI: -6.4 to -3.8%; p < 0.01). At day 180, 84.7% of the AI-guided group achieved a weight reduction of ≥5%, compared to 54.5% in the physician-guided group (Odds Ratio: 4.3; 95% CI: 3.1 to 5.9; p < 0.01). Significant improvements were also observed in BMI, fat mass, and visceral fat rating in the AI-guided group (p < 0.01 for all). Postprandial appetite suppression was greater in the AI-guided group, with significant reductions in hunger and prospective food consumption, and increases in fullness and satiety (p < 0.01 for all). Adverse events were generally mild-to-moderate, with higher incidences of gastrointestinal symptoms in the AI-guided group, but these were manageable and did not impact adherence. Conclusion: The AI-guided dietary supplement regimen was more effective in promoting weight loss, improving body composition, and suppressing appetite compared to the physician-guided regimen. These findings suggest that AI-guided, personalized supplement prescriptions could offer a more effective approach to managing obesity. Further research with larger sample sizes is warranted to confirm these results and optimize AI-based interventions for weight loss.

Keywords: obesity, AI-guided, dietary supplements, weight loss, personalized medicine, metabolic health, appetite suppression

Procedia PDF Downloads 4
357 The Relationship between Anthropometric Obesity Indices and Insulin in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The number of indices developed for the evaluation of obesity both in adults and pediatric population is ever increasing. These indices are also used in cases with metabolic syndrome (MetS), mostly the ultimate form of morbid obesity. Aside from anthropometric measurements, formulas constituted using these parameters also find clinical use. These formulas can be listed as two groups; being weight-dependent and –independent. Some are extremely sophisticated equations and their clinical utility is questionable in routine clinical practice. The aim of this study is to compare presently available obesity indices and find the most practical one. Their associations with MetS components were also investigated to determine their capacities in differential diagnosis of morbid obesity with and without MetS. Children with normal body mass index (N-BMI) and morbid obesity were recruited for this study. Three groups were constituted. Age- and sex- dependent BMI percentiles for morbid obese (MO) children were above 99 according to World Health Organization tables. Of them, those with MetS findings were evaluated as MetS group. Children, whose values were between 85 and 15 were included in N-BMI group. The study protocol was approved by the Ethics Committee of the Institution. Parents filled out informed consent forms to participate in the study. Anthropometric measurements and blood pressure values were recorded. Body mass index, hip index (HI), conicity index (CI), triponderal mass index (TPMI), body adiposity index (BAI), body shape index (ABSI), body roundness index (BRI), abdominal volume index (AVI), waist-to-hip ratio (WHR) and waist circumference+hip circumference/2 ((WC+HC)/2) were the formulas examined within the scope of this study. Routine biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) were performed. Statistical package program SPSS was used for the evaluation of study data. p<0.05 was accepted as the statistical significance degree. Hip index did not differ among the groups. A statistically significant difference was noted between N-BMI and MetS groups in terms of ABSI. All the other indices were capable of making discrimination between N-BMI-MO, N-BMI- MetS and MO-MetS groups. No correlation was found between FBG and any obesity indices in any groups. The same was true for INS in N-BMI group. Insulin was correlated with BAI, TPMI, CI, BRI, AVI and (WC+HC)/2 in MO group without MetS findings. In MetS group, the only index, which was correlated with INS was (WC+HC)/2. These findings have pointed out that complicated formulas may not be required for the evaluation of the alterations among N-BMI and various obesity groups including MetS. The simple easily computable weight-independent index, (WC+HC)/2, was unique, because it was the only index, which exhibits a valuable association with INS in MetS group. It did not exhibit any correlation with other obesity indices showing associations with INS in MO group. It was concluded that (WC+HC)/2 was pretty valuable practicable index for the discrimination of MO children with and without MetS findings.

Keywords: children, insulin, metabolic syndrome, obesity indices

Procedia PDF Downloads 75
356 Conserving Naubad Karez Cultural Landscape – a Multi-Criteria Approach to Urban Planning

Authors: Valliyil Govindankutty

Abstract:

Human civilizations across the globe stand testimony to water being one of the major interaction points with nature. The interactions with nature especially in drier areas revolve around water, be it harnessing, transporting, usage and management. Many ingenious ideas were born, nurtured and developed for harnessing, transporting, storing and distributing water through the areas in the drier parts of the world. Many methods of water extraction, collection and management could be found throughout the world, some of which are associated with efficient, sustained use of surface water, ground water and rain water. Karez is one such ingenious method of collection, transportation, storage and distribution of ground water. Most of the Karez systems in India were developed during reign of Muslim dynasties with ruling class descending from Persia or having influential connections and inviting expert engineers from there. Karez have strongly influenced the village socio-economic organisations due to multitude of uses they were brought into. These are masterpiece engineering structures to collect groundwater and direct it, through a subsurface gallery with a gradual slope, to surface canals that provide water to settlements and agricultural fields. This ingenious technology, karez was result of need for harnessing groundwater in arid areas like that of Bidar. The study views this traditional technology in historical perspective linked to sustainable utilization and management of groundwater and above all the immediate environment. The karez system is one of the best available demonstration of human ingenuity and adaptability to situations and locations of water scarcity. Bidar, capital of erstwhile Bahmani sultanate with a history of more than 700 years or more is one of the heritage cities of present Karnataka State. The unique water systems of Bidar along with other historic entities have been listed under World Heritage Watch List by World Monument Fund. The Historical or cultural landscape in Bidar is very closely associated to the natural resources of the region, Karez systems being one of the best examples. The Karez systems were the lifeline of Bidar’s historical period providing potable water, fulfilling domestic and irrigation needs, both within and outside the fort enclosures. These systems are still functional, but under great pressure and threat of rapid and unplanned urbanisation. The change in land use and fragmentation of land are already paving way for irreversible modification of the karez cultural and geographic landscape. The Paper discusses the significance of character defining elements of Naubad Karez Landscape, highlights the importance of conserving cultural heritage and presents a geographical approach to its revival.

Keywords: Karez, groundwater, traditional water harvesting, cultural heritage landscape, urban planning

Procedia PDF Downloads 493
355 The Awareness of Cardiovascular Diseases among General Population in Western Regions of Saudi Arabia

Authors: Ali Saeed Alghamdi, Basel Mazen Alsolami, Basel Saeed Alghamdi, Muhanad Saleh Alzahrani Alamri, Salman Anwar Thabet, Abdulhalim J. Kinsara

Abstract:

Objectives: This study measures the knowledge of the cardiovascular disease among the general population in western regions of Saudi Arabia, and it aimed to increase the level of awareness about cardiovascular diseases among the general population by providing an awareness lecture that included information about the risk factors, major symptoms, and prevention of cardiovascular diseases. The lecture has been attached at the end of the questionnaire. Setting: This study was conducted through an online questionnaire that included our aim and main objectives that targeted the general population in the Western regions of Saudi Arabia (Makkah and Madinah regions). Participants: This study participants were 460 collected through an online questionnaire. Methods: All Saudi citizens and residents who live in the western region of Saudi Arabia aged 18 years and above will be invited to participate voluntarily. A pre-structured questionnaire was designed to collect data on age, gender, marital status, education level, occupation, lifestyle habits, and history of heart diseases, with cardiac symptoms and risk factors sections. Results: The majority of respondents were females (74.8%) and Saudis. The knowledge about cardiovascular disease risk factors was weak. Only (18.5%) scores an excellent response regarding risk factors awareness. Lack of exercise, stress, and obesity were the most known risk factors. Regarding cardiovascular disease symptoms, chest pain scores the highest symptom (87.6%) among other symptoms like dyspnea, syncope, and excessive sweating. Participants revealed a poor awareness regarding cardiovascular disease symptoms also (0.9%). However, preventable factors for cardiovascular diseases were more knowledgeable than others categories in this study (60% fall into excellent knowledge). Smoking cessation, normal cholesterol level, and normal blood pressure score the highest preventable methods (92.2%), (88.6%), and (78.7%) respectively. 83.7% of the participant have attended the awareness lecture, and 99 of the attendees reported that the lecture increased their knowledge about cardiovascular disease. Conclusion: This study discussed the level of community awareness of cardiovascular disease in terms of symptoms, risk factors, and protective factors. We found a huge lack of the participant's level of knowledge about the disease and how to prevent it. Moreover, we measure the prevalence of the comorbidities among our participants (diabetes, hypertension, hypercholesterolemia/ hypertriglyceridemia) and their extent of adherence to their medication. In conclusion, this study not only demonstrates awareness of cardiovascular disease risk factors, symptoms, management, and the association between each domain but also provides educational material. Further educational material and campaigns are required to increase awareness and knowledge about cardiovascular diseases.

Keywords: awareness, cardiovascular diseases, education, prevention, risk factors

Procedia PDF Downloads 129
354 Community Perception towards the Major Drivers for Deforestation and Land Degradation of Choke Afro-alpine and Sub-afro alpine Ecosystem, Northwest Ethiopia

Authors: Zelalem Teshager

Abstract:

The Choke Mountains have several endangered and endemic wildlife species and provide important ecosystem services. Despite their environmental importance, the Choke Mountains are found in dangerous conditions. This raised the need for an evaluation of the community's perception of deforestation and its major drivers and suggested possible solutions in the Choke Mountains of northwestern Ethiopia. For this purpose, household surveys, key informant interviews, and focus group discussions were used. A total sample of 102 informants was used for this survey. A purposive sampling technique was applied to select the participants for in-depth interviews and focus group discussions. Both qualitative and quantitative data analyses were used. Computation of descriptive statistics such as mean, percentages, frequency, tables, figures, and graphs was applied to organize, analyze, and interpret the study. This study assessed smallholder agricultural land expansion, Fuel wood collection, population growth; encroachment, free grazing, high demand of construction wood, unplanned resettlement, unemployment, border conflict, lack of a strong forest protecting system, and drought were the serious causes of forest depletion reported by local communities. Loss of land productivity, Soil erosion, soil fertility decline, increasing wind velocity, rising temperature, and frequency of drought were the most perceived impacts of deforestation. Most of the farmers have a holistic understanding of forest cover change. Strengthening forest protection, improving soil and water conservation, enrichment planting, awareness creation, payment for ecosystem services, and zero grazing campaigns were mentioned as possible solutions to the current state of deforestation. Applications of Intervention measures, such as animal fattening, beekeeping, and fruit production can contribute to decreasing the deforestation causes and improve communities’ livelihood. In addition, concerted efforts of conservation will ensure that the forests’ ecosystems contribute to increased ecosystem services. The major drivers of deforestation should be addressed with government intervention to change dependency on forest resources, income sources of the people, and institutional set-up of the forestry sector. Overall, further reduction in anthropogenic pressure is urgent and crucial for the recovery of the afro-alpine vegetation and the interrelated endangered wildlife in the Choke Mountains.

Keywords: choke afro-alpine, deforestation, drivers, intervention measures, perceptions

Procedia PDF Downloads 53
353 Vagal Nerve Stimulator as a Treatment Approach in CHARGE Syndrome: A Case Report

Authors: Roya Vakili, Lekaa Elhajjmoussa, Barzin Omidi-Shal, Kim Blake

Abstract:

Objective: The purpose of this case report is to highlight the successful treatment of a patient with Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness, (CHARGE syndrome) using a vagal nerve stimulator (VNS). Background: This is the first documented case report, to the authors' best knowledge, for a patient with CHARGE syndrome, epilepsy, autism, and postural orthostatic tachycardia syndrome (POTS) that was successfully treated with an implanted VNS therapeutic device. Methodology: The study is a case report. Results: This is the case of a 24-year-old female patient with CHARGE syndrome (non-random association of anomalies Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness) and several other comorbidities including refractory epilepsy, Patent Ductus Arteriosus (PDA) and POTS who had significant improvement of her symptoms after VNS implantation. She was a VNS candidate given her longstanding history of drug-resistant epilepsy and current disposition secondary to CHARGE syndrome. Prior to VNS implantation, she experienced three generalized seizures a year and daily POTS-related symptoms. She was having frequent lightheadedness and syncope spells due to a rapid heart rate and low blood pressure. The VNS device was set to detect a rapid heart rate and send appropriate stimulation anytime the heart rate exceeded 20% of the patient’s normal baseline. The VNS device demonstrated frequent elevated heart rates and concurrent VNS release every 8 minutes in addition to the programmed events. Following VNS installation, the patient became more active, alert, and communicative and was able to verbally communicate with words she was unable to say prior. Her GI symptoms also improved, as she was able to tolerate food better orally in addition to her G and J tube, likely another result of the vagal nerve stimulation. Additionally, the patient’s seizures and POTS-related cardiac events appeared to be well controlled. She had prolonged electroencephalogram (EEG) testing, showing no significant change in epileptiform activity. Improvements in the patient’s disposition are believed to be secondary to parasympathetic stimulation, adequate heart rate control, and GI stimulation, in addition to behavioral changes and other benefits via her implanted VNS. Conclusion: VNS showed promising results in improving the patient's quality of life and managing her diverse symptoms, including dysautonomia, POTs, gastrointestinal mobility, cognitive functioning as well seizure control.

Keywords: autism, POTs, CHARGE, VNS

Procedia PDF Downloads 84
352 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying

Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber

Abstract:

Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.

Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor

Procedia PDF Downloads 280
351 Migrant Entrepreneurs and Their Spark for Entrepreneurial Exploration

Authors: Adesuwa Omorede, Karin Axelsson

Abstract:

The war and violence around the world today has brought a mass increase of forcibly displaced individuals to seek refuge in the European Union, where they have to leave their homes and restart a new life built on other cultural, social, economic and legal premises than they are used to. Since 2014, the EU has accepted to help with the crisis by providing protection and refuge, and countries like Germany, Hungary, Austria, and Sweden accepted around two-thirds of EU’s asylum seekers. In 2015 for instance, Sweden harbored large numbers of refugees, which lead to a drastic rise in population. This drastic rise brought an overwhelming challenge to Sweden since they needed to find quick and suitable solutions to accommodate these thousands of refugees. Further, it posed a challenge for Sweden to immediately tackle the problem of integrating the new arrivals in the labor market. With an unstable societal integration and little or no skills to connect to the workforce, these immigrants faced a shaky beginning, as they had to struggle with not just integrating into a new society but also to get suitable jobs. These uncertainties brought pressure on the immigrants, which drove a number of them to move from city to city seeking for a place and alternatives for their well-being, safe haven, and self-provision. As a result, they brought in their own skills, experiences, and cultural orientation into exploring and exploiting new opportunities and filling the gaps in their new environment. In so doing, immigrants contributing with multidisciplinary collaborations, insights, international relations and national growth through the exploitation of entrepreneurial opportunities. The study, seek to understand how these uncertainties led migrant entrepreneurs towards entrepreneurial activities. Furthermore, it contributes to understanding their processes towards exploring and exploiting opportunities for entrepreneurship as well as their role in contributing to local and national growth. To reach these aims, an inductive qualitative study was conducted using semi-structured interviews of several migrant entrepreneurs – both female and male – that took part in two different entrepreneurial projects in mid-Sweden. The first project was a business program for African women; the other was an entrepreneurship hub for immigrants. Both were focused on inspiring and coaching immigrants during their entrepreneurial process. An integrated part was to work with the participants’ entrepreneurial skills and abilities. In addition, archival documents were collected. The data was analyzed using content analysis for qualitative research. The study aims to contribute to the entrepreneurship literature by understanding the influences of cognitive and environmental factors towards entrepreneurial activities. This study also provides several suggestions for policymakers on how they can better integrate migrants into becoming contributors to the society.

Keywords: entrepreneurial intentions, entrepreneurial processes, migrant entrepreneurship, uncertainty

Procedia PDF Downloads 197
350 Comparative Evaluation of Ultrasound Guided Internal Jugular Vein Cannulation Using Measured Guided Needle and Conventional Size Needle for Success and Complication of Cannulation

Authors: Devendra Gupta, Vikash Arya, Prabhat K. Singh

Abstract:

Background: Ultrasound guidance could be beneficial in placing central venous catheters by improving the success rate, reducing the number of needle passes, and decreasing complications. Central venous cannulation set has a single puncture needle of a fixed length of 6.4 cm. However, the average distance of midpoint of IJV to the skin is around 1 cm to 2 cm. The long length needle has tendency to go in depth more than required and this is very common during learning period of any individual. Therefore, we devised a long needle with a guard which can be adjusted according to the required length. Methods: After approval from the institute ethics committee and patient’s written informed consent, a prospective, randomized, single-blinded controlled study was conducted. Adult patient aged of both sexes with ASA grade 1-2 undergoing surgery requiring internal jugular venous (IJV) access was included. After intubation, the head was rotated to the contralateral side at 30 degree head rotation on the position of the right IJV. The transducer probe a 6.5 to 13-MHz linear transducer (Sonosite, USA) had been placed at the apex of triangle with minimal pressure to avoid IJV compression. The distance from skin to midpoint of the right IJV and skin to anterior wall of Common Carotid Artery (CCA) had been done using B-mode duplex sonography with a 6.5 to 13-MHz linear transducer. Depending upon the results of randomization 420 patients had been divided into two groups of equal numbers (n=210). Group 1. USG guided right sided IJV cannulation was done with conventional (6.4 cm) needle; and Group 2. USG guided right sided IJV cannulation was done with conventional (6.4 cm) needle with guard fixed to a required length (length between skin and midpoint of IJV) by an experienced anesthesiologist. Independent observer has noted the number of attempts and occurrence of complications (CCA puncture, pneumothorax or adjacent tissue damage). Results: Demographic data were similar in both the group. The groups were comparable when considered for relationship of IJV to CCA. There was no significant difference between groups as regard to distance of midpoint of IJV to the skin (p<0.05). IJV cannulation was successfully done in single attempts in 180 (85.7%), in two attempts in 27 (12.9%) and three attempts in 3 (1.4%) in group I, whereas in single attempt in 207 (98.6%) and second attempts in 3 (1.4%) in group II (p <0.000). Incidence of carotid artery puncture was significantly more in group I (7.1%) compared to group II (0%) (p<0.000). Incidence of adjacent tissue puncture was significantly more in group I (8.6%) compared to group II (0%) (p<0.000). Conclusion: Therefore IJV catheterization using guard over the needle at predefined length with the help of real-time ultrasound results in better success rates and lower immediate complications.

Keywords: ultrasound guided, internal jugular vein cannulation, measured guided needle, common carotid artery puncture

Procedia PDF Downloads 220
349 Selective Conversion of Biodiesel Derived Glycerol to 1,2-Propanediol over Highly Efficient γ-Al2O3 Supported Bimetallic Cu-Ni Catalyst

Authors: Smita Mondal, Dinesh Kumar Pandey, Prakash Biswas

Abstract:

During past two decades, considerable attention has been given to the value addition of biodiesel derived glycerol (~10wt.%) to make the biodiesel industry economically viable. Among the various glycerol value-addition methods, hydrogenolysis of glycerol to 1,2-propanediol is one of the attractive and promising routes. In this study, highly active and selective γ-Al₂O₃ supported bimetallic Cu-Ni catalyst was developed for selective hydrogenolysis of glycerol to 1,2-propanediol in the liquid phase. The catalytic performance was evaluated in a high-pressure autoclave reactor. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. Experimental results demonstrated that bimetallic copper-nickel catalyst was more active and selective to 1,2-PDO as compared to monometallic catalysts due to bifunctional behavior. To verify the effect of calcination temperature on the formation of Cu-Ni mixed oxide phase, the calcination temperature of 20wt.% Cu:Ni(1:1)/Al₂O₃ catalyst was varied from 300°C-550°C. The physicochemical properties of the catalysts were characterized by various techniques such as specific surface area (BET), X-ray diffraction study (XRD), temperature programmed reduction (TPR), and temperature programmed desorption (TPD). The BET surface area and pore volume of the catalysts were in the range of 71-78 m²g⁻¹, and 0.12-0.15 cm³g⁻¹, respectively. The peaks at the 2θ range of 43.3°-45.5° and 50.4°-52°, was corresponded to the copper-nickel mixed oxidephase [JCPDS: 78-1602]. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. The crystallite size decreased with increasing the calcination temperature up to 450°C. Further, the crystallite size was increased due to agglomeration. Smaller crystallite size of 16.5 nm was obtained for the catalyst calcined at 400°C. Total acidic sites of the catalysts were determined by NH₃-TPD, and the maximum total acidic of 0.609 mmol NH₃ gcat⁻¹ was obtained over the catalyst calcined at 400°C. TPR data suggested the maximum of 75% degree of reduction of catalyst calcined at 400°C among all others. Further, 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst calcined at 400°C exhibited highest catalytic activity ( > 70%) and 1,2-PDO selectivity ( > 85%) at mild reaction condition due to highest acidity, highest degree of reduction, smallest crystallite size. Further, the modified Power law kinetic model was developed to understand the true kinetic behaviour of hydrogenolysis of glycerol over 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst. Rate equations obtained from the model was solved by ode23 using MATLAB coupled with Genetic Algorithm. Results demonstrated that the model predicted data were very well fitted with the experimental data. The activation energy of the formation of 1,2-PDO was found to be 45 kJ mol⁻¹.

Keywords: glycerol, 1, 2-PDO, calcination, kinetic

Procedia PDF Downloads 142
348 Design of a Low-Cost, Portable, Sensor Device for Longitudinal, At-Home Analysis of Gait and Balance

Authors: Claudia Norambuena, Myissa Weiss, Maria Ruiz Maya, Matthew Straley, Elijah Hammond, Benjamin Chesebrough, David Grow

Abstract:

The purpose of this project is to develop a low-cost, portable sensor device that can be used at home for long-term analysis of gait and balance abnormalities. One area of particular concern involves the asymmetries in movement and balance that can accompany certain types of injuries and/or the associated devices used in the repair and rehabilitation process (e.g. the use of splints and casts) which can often increase chances of falls and additional injuries. This device has the capacity to monitor a patient during the rehabilitation process after injury or operation, increasing the patient’s access to healthcare while decreasing the number of visits to the patient’s clinician. The sensor device may thereby improve the quality of the patient’s care, particularly in rural areas where access to the clinician could be limited, while simultaneously decreasing the overall cost associated with the patient’s care. The device consists of nine interconnected accelerometer/ gyroscope/compass chips (9-DOF IMU, Adafruit, New York, NY). The sensors attach to and are used to determine the orientation and acceleration of the patient’s lower abdomen, C7 vertebra (lower neck), L1 vertebra (middle back), anterior side of each thigh and tibia, and dorsal side of each foot. In addition, pressure sensors are embedded in shoe inserts with one sensor (ESS301, Tekscan, Boston, MA) beneath the heel and three sensors (Interlink 402, Interlink Electronics, Westlake Village, CA) beneath the metatarsal bones of each foot. These sensors measure the distribution of the weight applied to each foot as well as stride duration. A small microntroller (Arduino Mega, Arduino, Ivrea, Italy) is used to collect data from these sensors in a CSV file. MATLAB is then used to analyze the data and output the hip, knee, ankle, and trunk angles projected on the sagittal plane. An open-source program Processing is then used to generate an animation of the patient’s gait. The accuracy of the sensors was validated through comparison to goniometric measurements (±2° error). The sensor device was also shown to have sufficient sensitivity to observe various gait abnormalities. Several patients used the sensor device, and the data collected from each represented the patient’s movements. Further, the sensors were found to have the ability to observe gait abnormalities caused by the addition of a small amount of weight (4.5 - 9.1 kg) to one side of the patient. The user-friendly interface and portability of the sensor device will help to construct a bridge between patients and their clinicians with fewer necessary inpatient visits.

Keywords: biomedical sensing, gait analysis, outpatient, rehabilitation

Procedia PDF Downloads 286
347 Digital Transformation of Lean Production: Systematic Approach for the Determination of Digitally Pervasive Value Chains

Authors: Peter Burggräf, Matthias Dannapfel, Hanno Voet, Patrick-Benjamin Bök, Jérôme Uelpenich, Julian Hoppe

Abstract:

The increasing digitalization of value chains can help companies to handle rising complexity in their processes and thereby reduce the steadily increasing planning and control effort in order to raise performance limits. Due to technological advances, companies face the challenge of smart value chains for the purpose of improvements in productivity, handling the increasing time and cost pressure and the need of individualized production. Therefore, companies need to ensure quick and flexible decisions to create self-optimizing processes and, consequently, to make their production more efficient. Lean production, as the most commonly used paradigm for complexity reduction, reaches its limits when it comes to variant flexible production and constantly changing market and environmental conditions. To lift performance limits, which are inbuilt in current value chains, new methods and tools must be applied. Digitalization provides the potential to derive these new methods and tools. However, companies lack the experience to harmonize different digital technologies. There is no practicable framework, which instructs the transformation of current value chains into digital pervasive value chains. Current research shows that a connection between lean production and digitalization exists. This link is based on factors such as people, technology and organization. In this paper, the introduced method for the determination of digitally pervasive value chains takes the factors people, technology and organization into account and extends existing approaches by a new dimension. It is the first systematic approach for the digital transformation of lean production and consists of four steps: The first step of ‘target definition’ describes the target situation and defines the depth of the analysis with regards to the inspection area and the level of detail. The second step of ‘analysis of the value chain’ verifies the lean-ability of processes and lies in a special focus on the integration capacity of digital technologies in order to raise the limits of lean production. Furthermore, the ‘digital evaluation process’ ensures the usefulness of digital adaptions regarding their practicability and their integrability into the existing production system. Finally, the method defines actions to be performed based on the evaluation process and in accordance with the target situation. As a result, the validation and optimization of the proposed method in a German company from the electronics industry shows that the digital transformation of current value chains based on lean production achieves a raise of their inbuilt performance limits.

Keywords: digitalization, digital transformation, Industrie 4.0, lean production, value chain

Procedia PDF Downloads 311
346 Caribbean Universities and the Global Educational Market: An Examination of Entrepreneurship and Leadership in an Era of Change

Authors: Paulette Henry

Abstract:

If Caribbean Universities wish to remain sustainable in the global education market they must meet the new demands of the 21st Centuries learners. This means preparing the teaching and learning environment with the human and material and resources so that the University can blossom out into the entrepreneurial University. The entrepreneurial University prepares the learner to become a global citizen, one who is innovative and a critical thinker and has the competencies to create jobs. Entrepreneurship education provides more equitable access to university education building capacity for the local and global economy. The entrepreneurial thinking, the mindset, must therefore be among academic and support staff as well as students. In developing countries where resources are scarce, Universities are grappling with a myriad of financial and non-financial issues. These include increasing costs, Union demands for increased remuneration for staff and reduced subvention from governments which has become the norm. In addition, there is the political pressure against increasing tuition fees and the perceptions on the moral responsibilities of universities in national development. The question is how do small universities carve out their niche, meet both political and consumer demands for a high quality, low lost education, fulfil their development mandate and still remain not only viable but competitive. Themes which are central to this discourse on the transitions necessary for the entrepreneurial university are leadership, governance and staff well-being. This paper therefore presents a case study of a Caribbean University to show how transformational leadership and the change management framework propels change towards an entrepreneurial institution seeking to have a competitive advantage despite its low resourced context. Important to this discourse are the transformational approaches used by the University to prepare staff to move from their traditional psyche to embracing an entrepreneurial mindset whilst equipping students within the same mode to become work ready and creative global citizens. Using the mixed methods approach, opinions were garnered from both members of the University community as well as external stakeholder groups on their perception of the role of the University in the business arena and as a primary stakeholder in national development. One of the critical concepts emanating from the discourse was the need to change the mindset of the those in university governance as well as how national stakeholders engage the university. This paper shows how multiple non-financial factors can contribute to change. A combination of transformational and servant leadership, strengthened institutional structures and developing new ones, rebuilding institutional trust and pride have been among the strategies employed within the change management framework. The university is no longer limited by borders but through international linkages has transcended into a transnational stakeholder.

Keywords: competitiveness, context, entrepreneurial, leadership

Procedia PDF Downloads 208
345 Spray Nebulisation Drying: Alternative Method to Produce Microparticulated Proteins

Authors: Josef Drahorad, Milos Beran, Ondrej Vltavsky, Marian Urban, Martin Fronek, Jiri Sova

Abstract:

Engineering efforts of researchers of the Food research institute Prague and the Czech Technical University in spray drying technologies led to the introduction of a demonstrator ATOMIZER and a new technology of Carbon Dioxide-Assisted Spray Nebulization Drying (CASND). The equipment combines the spray drying technology, when the liquid to be dried is atomized by a rotary atomizer, with Carbon Dioxide Assisted Nebulization - Bubble Dryer (CAN-BD) process in an original way. A solution, emulsion or suspension is saturated by carbon dioxide at pressure up to 80 bar before the drying process. The atomization process takes place in two steps. In the first step, primary droplets are produced at the outlet of the rotary atomizer of special construction. In the second step, the primary droplets are divided in secondary droplets by the CO2 expansion from the inside of primary droplets. The secondary droplets, usually in the form of microbubbles, are rapidly dried by warm air stream at temperatures up to 60ºC and solid particles are formed in a drying chamber. Powder particles are separated from the drying air stream in a high efficiency fine powder separator. The product is frequently in the form of submicron hollow spheres. The CASND technology has been used to produce microparticulated protein concentrates for human nutrition from alternative plant sources - hemp and canola seed filtration cakes. Alkali extraction was used to extract the proteins from the filtration cakes. The protein solutions after the alkali extractions were dried with the demonstrator ATOMIZER. Aerosol particle size distribution and concentration in the draying chamber were determined by two different on-line aerosol spectrometers SMPS (Scanning Mobility Particle Sizer) and APS (Aerodynamic Particle Sizer). The protein powders were in form of hollow spheres with average particle diameter about 600 nm. The particles were characterized by the SEM method. The functional properties of the microparticulated protein concentrates were compared with the same protein concentrates dried by the conventional spray drying process. Microparticulated protein has been proven to have improved foaming and emulsifying properties, water and oil absorption capacities and formed long-term stable water dispersions. This work was supported by the research grants TH03010019 of the Technology Agency of the Czech Republic.

Keywords: carbon dioxide-assisted spray nebulization drying, canola seed, hemp seed, microparticulated proteins

Procedia PDF Downloads 164
344 The Association of Southeast Asian Nations (ASEAN) and the Dynamics of Resistance to Sovereignty Violation: The Case of East Timor (1975-1999)

Authors: Laura Southgate

Abstract:

The Association of Southeast Asian Nations (ASEAN), as well as much of the scholarship on the organisation, celebrates its ability to uphold the principle of regional autonomy, understood as upholding the norm of non-intervention by external powers in regional affairs. Yet, in practice, this has been repeatedly violated. This dichotomy between rhetoric and practice suggests an interesting avenue for further study. The East Timor crisis (1975-1999) has been selected as a case-study to test the dynamics of ASEAN state resistance to sovereignty violation in two distinct timeframes: Indonesia’s initial invasion of the territory in 1975, and the ensuing humanitarian crisis in 1999 which resulted in a UN-mandated, Australian-led peacekeeping intervention force. These time-periods demonstrate variation on the dependent variable. It is necessary to observe covariation in order to derive observations in support of a causal theory. To establish covariation, my independent variable is therefore a continuous variable characterised by variation in convergence of interest. Change of this variable should change the value of the dependent variable, thus establishing causal direction. This paper investigates the history of ASEAN’s relationship to the norm of non-intervention. It offers an alternative understanding of ASEAN’s history, written in terms of the relationship between a key ASEAN state, which I call a ‘vanguard state’, and selected external powers. This paper will consider when ASEAN resistance to sovereignty violation has succeeded, and when it has failed. It will contend that variation in outcomes associated with vanguard state resistance to sovereignty violation can be best explained by levels of interest convergence between the ASEAN vanguard state and designated external actors. Evidence will be provided to support the hypothesis that in 1999, ASEAN’s failure to resist violations to the sovereignty of Indonesia was a consequence of low interest convergence between Indonesia and the external powers. Conversely, in 1975, ASEAN’s ability to resist violations to the sovereignty of Indonesia was a consequence of high interest convergence between Indonesia and the external powers. As the vanguard state, Indonesia was able to apply pressure on the ASEAN states and obtain unanimous support for Indonesia’s East Timor policy in 1975 and 1999. However, the key factor explaining the variance in outcomes in both time periods resides in the critical role played by external actors. This view represents a serious challenge to much of the existing scholarship that emphasises ASEAN’s ability to defend regional autonomy. As these cases attempt to show, ASEAN autonomy is much more contingent than portrayed in the existing literature.

Keywords: ASEAN, east timor, intervention, sovereignty

Procedia PDF Downloads 357
343 Neuropsychiatric Outcomes of Intensive Music Therapy in Stroke Rehabilitation A Premilitary Investigation

Authors: Honey Bryant, Elvina Chu

Abstract:

Stroke is the leading cause of disability in adults in Canada and directly related to depression, anxiety, and sleep disorders; with an estimated annual cost of $50 billion in health care. Strokes not only impact the individual but society as a whole. Current stroke rehabilitation does not include Music Therapy, although it has success in clinical research in the use of stroke rehabilitation. This study examines the use of neurologic music therapy (NMT) in conjunction with stroke rehabilitation to improve sleep quality, reduce stress levels, and promote neurogenesis. Existing research on NMT in stroke is limited, which means any conclusive information gathered during this study will be significant. My novel hypotheses are a.) stroke patients will become less depressed and less anxious with improved sleep following NMT. b.) NMT will reduce stress levels and promote neurogenesis in stroke patients admitted for rehabilitation. c.) Beneficial effects of NMT will be sustained at least short-term following treatment. Participants were recruited from the in-patient stroke rehabilitation program at Providence Care Hospital in Kingston, Ontario, Canada. All participants-maintained stroke rehabilitation treatment as normal. The study was spilt into two groups, the first being Passive Music Listening (PML) and the second Neurologic Music Therapy (NMT). Each group underwent 10 sessions of intensive music therapy lasting 45 minutes for 10 consecutive days, excluding weekends. Psychiatric Assessments, Epworth Sleepiness Scale (ESS), Hospital Anxiety & Depression Rating Scale (HADS), and Music Engagement Questionnaire (MusEQ), were completed, followed by a general feedback interview. Physiological markers of stress were measured through blood pressure measurements and heart rate variability. Serum collections reviewed neurogenesis via Brain-derived neurotrophic factor (BDNF) and stress markers of cortisol levels. As this study is still on-going, a formal analysis of data has not been fully completed, although trends are following our hypotheses. A decrease in sleepiness and anxiety is seen upon the first cohort of PML. Feedback interviews have indicated most participants subjectively felt more relaxed and thought PML was useful in their recovery. If the hypothesis is supported, larger external funding which will allow for greater investigation of the use of NMT in stroke rehabilitation. As we know, NMT is not covered under Ontario Health Insurance Plan (OHIP), so there is limited scientific data surrounding its uses as a clinical tool. This research will provide detailed findings of the treatment of neuropsychiatric aspects of stroke. Concurrently, a passive music listening study is being designed to further review the use of PML in rehabilitation as well.

Keywords: music therapy, psychotherapy, neurologic music therapy, passive music listening, neuropsychiatry, counselling, behavioural, stroke, stroke rehabilitation, rehabilitation, neuroscience

Procedia PDF Downloads 112
342 Evolutionary Advantages of Loneliness with an Agent-Based Model

Authors: David Gottlieb, Jason Yoder

Abstract:

The feeling of loneliness is not uncommon in modern society, and yet, there is a fundamental lack of understanding in its origins and purpose in nature. One interpretation of loneliness is that it is a subjective experience that punishes a lack of social behavior, and thus its emergence in human evolution is seemingly tied to the survival of early human tribes. Still, a common counterintuitive response to loneliness is a state of hypervigilance, resulting in social withdrawal, which may appear maladaptive to modern society. So far, no computational model of loneliness’ effect during evolution yet exists; however, agent-based models (ABM) can be used to investigate social behavior, and applying evolution to agents’ behaviors can demonstrate selective advantages for particular behaviors. We propose an ABM where each agent contains four social behaviors, and one goal-seeking behavior, letting evolution select the best behavioral patterns for resource allocation. In our paper, we use an algorithm similar to the boid model to guide the behavior of agents, but expand the set of rules that govern their behavior. While we use cohesion, separation, and alignment for simple social movement, our expanded model adds goal-oriented behavior, which is inspired by particle swarm optimization, such that agents move relative to their personal best position. Since agents are given the ability to form connections by interacting with each other, our final behavior guides agent movement toward its social connections. Finally, we introduce a mechanism to represent a state of loneliness, which engages when an agent's perceived social involvement does not meet its expected social involvement. This enables us to investigate a minimal model of loneliness, and using evolution we attempt to elucidate its value in human survival. Agents are placed in an environment in which they must acquire resources, as their fitness is based on the total resource collected. With these rules in place, we are able to run evolution under various conditions, including resource-rich environments, and when disease is present. Our simulations indicate that there is strong selection pressure for social behavior under circumstances where there is a clear discrepancy between initial resource locations, and against social behavior when disease is present, mirroring hypervigilance. This not only provides an explanation for the emergence of loneliness, but also reflects the diversity of response to loneliness in the real world. In addition, there is evidence of a richness of social behavior when loneliness was present. By introducing just two resource locations, we observed a divergence in social motivation after agents became lonely, where one agent learned to move to the other, who was in a better resource position. The results and ongoing work from this project show that it is possible to glean insight into the evolutionary advantages of even simple mechanisms of loneliness. The model we developed has produced unexpected results and has led to more questions, such as the impact loneliness would have at a larger scale, or the effect of creating a set of rules governing interaction beyond adjacency.

Keywords: agent-based, behavior, evolution, loneliness, social

Procedia PDF Downloads 94
341 Biotechnological Methods for the Grouting of the Tunneling Space

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Different biotechnological methods for the production of construction materials and for the performance of construction processes in situ are developing within a new scientific discipline of Construction Biotechnology. The aim of this research was to develop and test new biotechnologies and biotechnological grouts for the minimization of the hydraulic conductivity of the fractured rocks and porous soil. This problem is essential to minimize flow rate of groundwater into the construction sites, the tunneling space before and after excavation, inside levies, as well as to stop water seepage from the aquaculture ponds, agricultural channels, radioactive waste or toxic chemicals storage sites, from the landfills or from the soil-polluted sites. The conventional fine or ultrafine cement grouts or chemical grouts have such restrictions as high cost, viscosity, sometime toxicity but the biogrouts, which are based on microbial or enzymatic activities and some not expensive inorganic reagents, could be more suitable in many cases because of lower cost and low or zero toxicity. Due to these advantages, development of biotechnologies for biogrouting is going exponentially. However, most popular at present biogrout, which is based on activity of urease- producing bacteria initiating crystallization of calcium carbonate from calcium salt has such disadvantages as production of toxic ammonium/ammonia and development of high pH. Therefore, the aim of our studies was development and testing of new biogrouts that are environmentally friendly and have low cost suitable for large scale geotechnical, construction, and environmental applications. New microbial biotechnologies have been studied and tested in the sand columns, fissured rock samples, in 1 m3 tank with sand, and in the pack of stone sheets that were the models of the porous soil and fractured rocks. Several biotechnological methods showed positive results: 1) biogrouting using sequential desaturation of sand by injection of denitrifying bacteria and medium following with biocementation using urease-producing bacteria, urea and calcium salt decreased hydraulic conductivity of sand to 2×10-7 ms-1 after 17 days of treatment and consumed almost three times less reagents than conventional calcium-and urea-based biogrouting; 2) biogrouting using slime-producing bacteria decreased hydraulic conductivity of sand to 1x10-6 ms-1 after 15 days of treatment; 3) biogrouting of the rocks with the width of the fissures 65×10-6 m using calcium bicarbonate solution, that was produced from CaCO3 and CO2 under 30 bars pressure, decreased hydraulic conductivity of the fissured rocks to 2×10-7 ms-1 after 5 days of treatment. These bioclogging technologies could have a lot of advantages over conventional construction materials and processes and can be used in geotechnical engineering, agriculture and aquaculture, and for the environmental protection.

Keywords: biocementation, bioclogging, biogrouting, fractured rocks, porous soil, tunneling space

Procedia PDF Downloads 207
340 Diagenesis of the Permian Ecca Sandstones and Mudstones, in the Eastern Cape Province, South Africa: Implications for the Shale Gas Potential of the Karoo Basin

Authors: Temitope L. Baiyegunhi, Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Diagenesis is the most important factor that affects or impact the reservoir property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known of the diagenesis of the potentially feasible shales and sandstones of the Ecca Group. The study aims to provide a general account of the diagenesis of sandstones and mudstone of the Ecca Group. Twenty-five diagenetic textures and structures are identified and grouped into three regimes or stages that include eogenesis, mesogenesis and telogenesis. Clay minerals are the most common cementing materials in the Ecca sandstones and mudstones. Smectite, kaolinite and illite are the major clay minerals that act as pore lining rims and pore-filling cement. Most of the clay minerals and detrital grains were seriously attacked and replaced by calcite. Calcite precipitates locally in pore spaces and partly or completely replaced feldspar and quartz grains, mostly at their margins. Precipitation of cements and formation of pyrite and authigenic minerals as well as little lithification occurred during the eogenesis. This regime was followed by mesogenesis which brought about an increase in tightness of grain packing, loss of pore spaces and thinning of beds due to weight of overlying sediments and selective dissolution of framework grains. Compaction, mineral overgrowths, mineral replacement, clay-mineral authigenesis, deformation and pressure solution structures occurred during mesogenesis. During rocks were uplifted, weathered and unroofed by erosion, this resulted in additional grain fracturing, decementation and oxidation of iron-rich volcanic fragments and ferromagnesian minerals. The rocks of Ecca Group were subjected to moderate-intense mechanical and chemical compaction during its progressive burial. Intergranular pores, matrix micro pores, secondary intragranular, dissolution and fractured pores are the observed pores. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pores makes them unfavourable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their quality, which may contribute to the reduction of risks involved in their exploration.

Keywords: diagenesis, reservoir quality, Ecca Group, Karoo Supergroup

Procedia PDF Downloads 147
339 The Effect of Social Media Influencer on Boycott Participation through Attitude toward the Offending Country in a Situational Animosity Context

Authors: Hsing-Hua Stella Chang, Mong-Ching Lin, Cher-Min Fong

Abstract:

Using surrogate boycotts as a coercive tactic to force the offending party into changing its approaches has been increasingly significant over the last several decades, and is expected to increase in the future. Research shows that surrogate boycotts are often triggered by controversial international events, and particular foreign countries serve as the offending party in the international marketplace. In other words, multinational corporations are likely to become surrogate boycott targets in overseas markets because of the animosity between their home and host countries. Focusing on the surrogate boycott triggered by a severe situation animosity, this research aims to examine how social media influencers (SMIs) serving as electronic key opinion leaders (EKOLs) in an international crisis facilitate and organize a boycott, and persuade consumers to participate in the boycott. This research suggests that SMIs could be a particularly important information source in a surrogate boycott sparked by a situation of animosity. This research suggests that under such a context, SMIs become a critical information source for individuals to enhance and update their understanding of the event because, unlike traditional media, social media serve as a platform for instant and 24-hour non-stop information access and dissemination. The Xinjiang cotton event was adopted as the research context, which was viewed as an ongoing inter-country conflict, reflecting a crisis, which provokes animosity against the West. Through online panel services, both studies recruited Mainland Chinese nationals to be respondents to the surveys. The findings show that: 1. Social media influencer message is positively related to a negative attitude toward the offending country. 2. Attitude toward the offending country is positively related to boycotting participation. To address the unexplored question – of the effect of social media influencer influence on consumer participation in boycotts, this research presents a finer-grained examination of boycott motivation, with a special focus on a situational animosity context. This research is split into two interrelated parts. In the first part, this research shows that attitudes toward the offending country can be socially constructed by the influence of social media influencers in a situational animosity context. The study results show that consumers perceive different strengths of social pressure related to various levels of influencer messages and thus exhibit different levels of attitude toward the offending country. In the second part, this research further investigates the effect of attitude toward the offending country on boycott participation. The study findings show that such attitude exacerbated the effect of social media influencer messages on boycott participation in a situation of animosity.

Keywords: animosity, social media marketing, boycott, attitude toward the offending country

Procedia PDF Downloads 111
338 A New Index for the Differential Diagnosis of Morbid Obese Children with and without Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Metabolic syndrome (MetS) is a severe health problem which is common among obese individuals. The components of MetS are rather stable in adults compared to the components discussed for children. Due to the ambiguity in this group of the population, how to diagnose MetS in morbid obese (MO) children still constitutes a matter of discussion. For this purpose, a formula, which facilitates the diagnosis of MetS in MO children, was investigated. The aim of this study was to develop a formula which was capable of discriminating MO children with and without MetS findings. Study population comprised MO children. Age and sex-dependent body mass index (BMI) percentiles of the children were above 99. Metabolic syndrome components were also determined. Elevated systolic and diastolic blood pressures (SBP and DBP), elevated fasting blood glucose (FBG), elevated triglycerides (TRG), and/or depressed high density lipoprotein cholesterol (HDL-C) in addition to central obesity were listed as MetS components for each child. Presence of at least two of these components confirmed that the case was MetS. Two groups were constituted. In the first group, there were forty-two MO children without MetS components. Second group was composed of forty-four MO children with at least two MetS components. Anthropometric measurements, including weight, height, waist, and hip circumferences, were performed following physical examination. Body mass index and homeostatic model assessment of insulin resistance values were calculated. Informed consent forms were obtained from the parents of the children. Institutional Non-Interventional Ethics Committee approved the study design. Blood pressure values were recorded. Routine biochemical analysis, including FBG, insulin (INS), TRG, HDL-C were performed. The performance and the clinical utility of the Diagnostic Obesity Notation Model Assessment Metabolic Syndrome Index (DONMA MetS index) [(INS/FBG)/(HDL-C/TRG)*100] was tested. Appropriate statistical tests were applied to the study data. p value smaller than 0.05 was defined as significant. Metabolic syndrome index values were 41.6±5.1 in MO group and 104.4±12.8 in MetS group. Corresponding values for HDL-C values were 54.5±13.2 mg/dl and 44.2±11.5 mg/dl. There were statistically significant differences between the groups (p<0.001). Upon evaluation of the correlations between MetS index and HDL-C values, a much stronger negative correlation was found in MetS group (r=-0.515; p=0.001) in comparison with the correlation detected in MO group (r=-0.371; p=0.016). From these findings, it was concluded that the statistical significance degree of the difference between MO and MetS groups was highly acceptable for this recently introduced MetS index as expected. This was due to the involvement of all of the biochemically defined MetS components into the index. This is particularly important because each of these four parameters used in the formula is cardiac risk factor. Aside from discriminating MO children with and without MetS findings, MetS index introduced in this study is important from the cardiovascular risk point of view in MetS group of children.

Keywords: children, fasting blood glucose, high density lipoprotein cholesterol, index, insulin, metabolic syndrome, morbid obesity, triglycerides.

Procedia PDF Downloads 90
337 Managed Aquifer Recharge (MAR) for the Management of Stormwater on the Cape Flats, Cape Town

Authors: Benjamin Mauck, Kevin Winter

Abstract:

The city of Cape Town in South Africa, has shown consistent economic and population growth in the last few decades and that growth is expected to continue to increase into the future. These projected economic and population growth rates are set to place additional pressure on the city’s already strained water supply system. Thus, given Cape Town’s water scarcity, increasing water demands and stressed water supply system, coupled with global awareness around the issues of sustainable development, environmental protection and climate change, alternative water management strategies are required to ensure water is sustainably managed. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. WSUD employs a wide range of strategies to improve the sustainable management of urban water such as the water reuse, developing alternative available supply sources, sustainable stormwater management and enhancing the aesthetic and recreational value of urban water. Managed Aquifer Recharge (MAR) is one WSUD strategy which has proven to be a successful reuse strategy in a number of places around the world. MAR is the process where an aquifer is intentionally or artificially recharged, which provides a valuable means of water storage while enhancing the aquifers supply potential. This paper investigates the feasibility of implementing MAR in the sandy, unconfined Cape Flats Aquifer (CFA) in Cape Town. The main objective of the study is to assess if MAR is a viable strategy for stormwater management on the Cape Flats, aiding the prevention or mitigation of the seasonal flooding that occurs on the Cape Flats, while also improving the supply potential of the aquifer. This involves the infiltration of stormwater into the CFA during the wet winter months and in turn, abstracting from the CFA during the dry summer months for fit-for-purpose uses in order to optimise the recharge and storage capacity of the CFA. The fully-integrated MIKE SHE model is used in this study to simulate both surface water and groundwater hydrology. This modelling approach enables the testing of various potential recharge and abstraction scenarios required for implementation of MAR on the Cape Flats. Further MIKE SHE scenario analysis under projected future climate scenarios provides insight into the performance of MAR as a stormwater management strategy under climate change conditions. The scenario analysis using an integrated model such as MIKE SHE is a valuable tool for evaluating the feasibility of the MAR as a stormwater management strategy and its potential to contribute towards improving Cape Town’s water security into the future.

Keywords: managed aquifer recharge, stormwater management, cape flats aquifer, MIKE SHE

Procedia PDF Downloads 247
336 Electron Bernstein Wave Heating in the Toroidally Magnetized System

Authors: Johan Buermans, Kristel Crombé, Niek Desmet, Laura Dittrich, Andrei Goriaev, Yurii Kovtun, Daniel López-Rodriguez, Sören Möller, Per Petersson, Maja Verstraeten

Abstract:

The International Thermonuclear Experimental Reactor (ITER) will rely on three sources of external heating to produce and sustain a plasma; Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), and Electron Cyclotron Resonance Heating (ECRH). ECRH is a way to heat the electrons in a plasma by resonant absorption of electromagnetic waves. The energy of the electrons is transferred indirectly to the ions by collisions. The electron cyclotron heating system can be directed to deposit heat in particular regions in the plasma (https://www.iter.org/mach/Heating). Electron Cyclotron Resonance Heating (ECRH) at the fundamental resonance in X-mode is limited by a low cut-off density. Electromagnetic waves cannot propagate in the region between this cut-off and the Upper Hybrid Resonance (UHR) and cannot reach the Electron Cyclotron Resonance (ECR) position. Higher harmonic heating is hence preferred in heating scenarios nowadays to overcome this problem. Additional power deposition mechanisms can occur above this threshold to increase the plasma density. This includes collisional losses in the evanescent region, resonant power coupling at the UHR, tunneling of the X-wave with resonant coupling at the ECR, and conversion to the Electron Bernstein Wave (EBW) with resonant coupling at the ECR. A more profound knowledge of these deposition mechanisms can help determine the optimal plasma production scenarios. Several ECRH experiments are performed on the TOroidally MAgnetized System (TOMAS) to identify the conditions for Electron Bernstein Wave (EBW) heating. Density and temperature profiles are measured with movable Triple Langmuir Probes in the horizontal and vertical directions. Measurements of the forwarded and reflected power allow evaluation of the coupling efficiency. Optical emission spectroscopy and camera images also contribute to plasma characterization. The influence of the injected power, magnetic field, gas pressure, and wave polarization on the different deposition mechanisms is studied, and the contribution of the Electron Bernstein Wave is evaluated. The TOMATOR 1D hydrogen-helium plasma simulator numerically describes the evolution of current less magnetized Radio Frequency plasmas in a tokamak based on Braginskii’s legal continuity and heat balance equations. This code was initially benchmarked with experimental data from TCV to determine the transport coefficients. The code is used to model the plasma parameters and the power deposition profiles. The modeling is compared with the data from the experiments.

Keywords: electron Bernstein wave, Langmuir probe, plasma characterization, TOMAS

Procedia PDF Downloads 94
335 Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics

Authors: Michael Sigruener, Dirk Muscat, Nicole Struebbe

Abstract:

Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete.

Keywords: fiber-matrix interface, polymeric fibers, fiber reinforced concrete, single fiber pull-out test

Procedia PDF Downloads 111
334 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures

Authors: James Forren

Abstract:

This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.

Keywords: augmented reality, cementitious composites, computational form finding, textile structures

Procedia PDF Downloads 175
333 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods

Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo

Abstract:

In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.

Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe

Procedia PDF Downloads 257
332 Architectural Wind Data Maps Using an Array of Wireless Connected Anemometers

Authors: D. Serero, L. Couton, J. D. Parisse, R. Leroy

Abstract:

In urban planning, an increasing number of cities require wind analysis to verify comfort of public spaces and around buildings. These studies are made using computer fluid dynamic simulation (CFD). However, this technique is often based on wind information taken from meteorological stations located at several kilometers of the spot of analysis. The approximated input data on project surroundings produces unprecise results for this type of analysis. They can only be used to get general behavior of wind in a zone but not to evaluate precise wind speed. This paper presents another approach to this problem, based on collecting wind data and generating an urban wind cartography using connected ultrasound anemometers. They are wireless devices that send immediate data on wind to a remote server. Assembled in array, these devices generate geo-localized data on wind such as speed, temperature, pressure and allow us to compare wind behavior on a specific site or building. These Netatmo-type anemometers communicate by wifi with central equipment, which shares data acquired by a wide variety of devices such as wind speed, indoor and outdoor temperature, rainfall, and sunshine. Beside its precision, this method extracts geo-localized data on any type of site that can be feedback looped in the architectural design of a building or a public place. Furthermore, this method allows a precise calibration of a virtual wind tunnel using numerical aeraulic simulations (like STAR CCM + software) and then to develop the complete volumetric model of wind behavior over a roof area or an entire city block. The paper showcases connected ultrasonic anemometers, which were implanted for an 18 months survey on four study sites in the Grand Paris region. This case study focuses on Paris as an urban environment with multiple historical layers whose diversity of typology and buildings allows considering different ways of capturing wind energy. The objective of this approach is to categorize the different types of wind in urban areas. This, particularly the identification of the minimum and maximum wind spectrum, helps define the choice and performance of wind energy capturing devices that could be implanted there. The localization on the roof of a building, the type of wind, the altimetry of the device in relation to the levels of the roofs, the potential nuisances generated. The method allows identifying the characteristics of wind turbines in order to maximize their performance in an urban site with turbulent wind.

Keywords: computer fluid dynamic simulation in urban environment, wind energy harvesting devices, net-zero energy building, urban wind behavior simulation, advanced building skin design methodology

Procedia PDF Downloads 100
331 Numerical Simulation of the Heat Transfer Process in a Double Pipe Heat Exchanger

Authors: J. I. Corcoles, J. D. Moya-Rico, A. Molina, J. F. Belmonte, J. A. Almendros-Ibanez

Abstract:

One of the most common heat exchangers technology in engineering processes is the use of double-pipe heat exchangers (DPHx), mainly in the food industry. To improve the heat transfer performance, several passive geometrical devices can be used, such as the wall corrugation of tubes, which increases the wet perimeter maintaining a constant cross-section area, increasing consequently the convective surface area. It contributes to enhance heat transfer in forced convection, promoting secondary recirculating flows. One of the most extended tools to analyse heat exchangers' efficiency is the use of computational fluid dynamic techniques (CFD), a complementary activity to the experimental studies as well as a previous step for the design of heat exchangers. In this study, a double pipe heat exchanger behaviour with two different inner tubes, smooth and spirally corrugated tube, have been analysed. Hence, experimental analysis and steady 3-D numerical simulations using the commercial code ANSYS Workbench v. 17.0 are carried out to analyse the influence of geometrical parameters for spirally corrugated tubes at turbulent flow. To validate the numerical results, an experimental setup has been used. To heat up or cool down the cold fluid as it passes through the heat exchanger, the installation includes heating and cooling loops served by an electric boiler with a heating capacity of 72 kW and a chiller, with a cooling capacity of 48 kW. Two tests have been carried out for the smooth tube and for the corrugated one. In all the tests, the hot fluid has a constant flowrate of 50 l/min and inlet temperature of 59.5°C. For the cold fluid, the flowrate range from 25 l/min (Test 1) and 30 l/min (Test 2) with an inlet temperature of 22.1°C. The heat exchanger is made of stainless steel, with an external diameter of 35 mm and wall thickness of 1.5 mm. Both inner tubes have an external diameter of 24 mm and 1 mm thickness of stainless steel with a length of 2.8 m. The corrugated tube has a corrugation height (H) of 1.1 mm and helical pitch (P) of 25 mm. It is characterized using three non-dimensional parameters, the ratio of the corrugation shape and the diameter (H/D), the helical pitch (P/D) and the severity index (SI = H²/P x D). The results showed good agreement between the numerical and the experimental results. Hence, the lowest differences were shown for the fluid temperatures. In all the analysed tests and for both analysed tubes, the temperature obtained numerically was slightly higher than the experimental results, with values ranged between 0.1% and 0.7%. Regarding the pressure drop, the maximum differences between the values obtained numerically, and the experimental values were close to 16%. Based on the experimental and the numerical results, for the corrugated tube, it can be highlighted that the temperature difference between the inlet and the outlet of the cold fluid is 42%, higher than the smooth tube.

Keywords: corrugated tube, heat exchanger, heat transfer, numerical simulation

Procedia PDF Downloads 144