Search results for: feature learning
2574 The Report of Co-Construction into a Trans-National Education Teaching Team
Authors: Juliette MacDonald, Jun Li, Wenji Xiang, Mingwei Zhao
Abstract:
Shanghai International College of Fashion and Innovation (SCF) was created as a result of a collaborative partnership agreement between the University of Edinburgh and Donghua University. The College provides two programmes: Fashion Innovation and Fashion Interior Design and the overarching curriculum has the intention of developing innovation and creativity within an international learning, teaching, knowledge exchange and research context. The research problem presented here focuses on the multi-national/cultural faculty in the team, the challenges arising from difficulties in communication and the associated limitations of management frameworks. The teaching faculty at SCF are drawn from China, Finland, Korea, Singapore and the UK with input from Flying Faculty from Fashion and Interior Design, Edinburgh College of Art (ECA), for 5 weeks each semester. Rather than fully replicating the administrative and pedagogical style of one or other of the institutions within this joint partnership the aim from the outset was to create a third way which acknowledges the quality assurance requirements of both Donghua and Edinburgh, the academic and technical needs of the students and provides relevant development and support for all the SCF-based staff and Flying Academics. It has been well acknowledged by those who are involved in teaching across cultures that there is often a culture shock associated with transnational education but that the experience of being involved in the delivery of a curriculum at a Joint Institution can also be very rewarding for staff and students. It became clear at SCF that if a third way might be achieved which encourages innovative approaches to fashion education whilst balancing the expectations of Chinese and western concepts of education and the aims of two institutions, then it was going to be necessary to construct a framework which developed close working relationships for the entire teaching team, so not only between academics and students but also between technicians and administrators at ECA and SCF. The attempts at co-construction and integration are built on the sharing of cultural and educational experiences and knowledge as well as provision of opportunities for reflection on the pedagogical purpose of the curriculum and its delivery. Methods on evaluating the effectiveness of these aims include a series of surveys and interviews and analysis of data drawn from teaching projects delivered to the students along with graduate successes from the last five years, since SCF first opened its doors. This paper will provide examples of best practice developed by SCF which have helped guide the faculty and embed common core values and aims of co-construction regulations and management, whilst building a pro-active TNE (Trans-National Education) team which enhances the learning experience for staff and students alike.Keywords: cultural co-construction, educational team management, multi-cultural challenges, TNE integration for teaching teams
Procedia PDF Downloads 1182573 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition
Authors: A. Degale Desta, Tamirat Kebamo
Abstract:
Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition
Procedia PDF Downloads 72572 Representations of Wolves (Canis lupus) in Feature Films: The Detailed Analysis of the Text and Picture in the Chosen Movies
Authors: Barbara Klimek
Abstract:
Wolves are one of the most misrepresented species in literature and the media. They’re often portrayed as vicious, man-eating beasts whose main life goal is to hunt and kill people. Many movie directors use wolves as their main characters in different types of films, especially horror, thriller and science fiction movies to create gore and fear. This, in turn, results in people being afraid of wolves and wanting to destroy them. Such cultural creations caused wolves being stalked, abused and killed by people and in many areas they were completely destroyed. This paper analyzes the representations of wolves in the chosen films in the four main portrayed aspects: 1. the overall picture – true versus false, positive versus negative, based on stereotypes or realistic, displaying wolf behavior typical of the species or fake 2. subjectivity – how humans treat and talk about the animals – as subjects or as objects 3. animal welfare – how humans treat wolves and nature, are the human – animal relations positive and appropriate or negative and abusive 4. empathy – are human characters shown to co-feel the suffering with the wolves, do they display signs of empathy towards the animals, do the animals empathize with humans? The detailed analysis of the text and pictures presented in the chosen films concludes that wolves are especially misrepresented in the movies. Their behavior is shown as fake and negative, based on stereotypes and myths, the human – animal relations are shown mainly as negative where people fear the animals and hunt them and wolves stalk, follow, attack and kill humans. It shows that people do not understand the needs of these animals and are unable to show empathy towards them. The article will discuss the above-mentioned study results in detail and will present many examples. Animal representations in cultural creations, including film have a great impact on how people treat particular species of animals. The media shape people’s attitudes, what in turn results in people either respecting and protecting the animals or fearing, disliking and destroying the particular species.Keywords: film, movies, representations, wolves
Procedia PDF Downloads 2122571 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines
Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl
Abstract:
Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.Keywords: dynamic behavior, lightweight, machine tool, pose-dependency
Procedia PDF Downloads 4572570 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 1362569 Bilingual Books in British Sign Language and English: The Development of E-Book
Authors: Katherine O'Grady-Bray
Abstract:
For some deaf children, reading books can be a challenge. Frank Barnes School (FBS) provides guided reading time with Teachers of the Deaf, in which they read books with deaf children using a bilingual approach. The vocabulary and context of the story is explained to deaf children in BSL so they develop skills bridging English and BSL languages. However, the success of this practice is only achieved if the person is fluent in both languages. FBS piloted a scheme to convert an Oxford Reading Tree (ORT) book into an e-book that can be read using tablets. Deaf readers at FBS have access to both languages (BSL and English) during lessons and outside the classroom. The pupils receive guided reading sessions with a Teacher of the Deaf every morning, these one to one sessions give pupils the opportunity to learn how to bridge both languages e.g. how to translate English to BSL and vice versa. Generally, due to our pupils’ lack of access to incidental learning, gaining new information about the world around them is limited. This highlights the importance of quality time to scaffold their language development. In some cases, there is a shortfall of parental support at home due to poor communication skills or an unawareness of how to interact with deaf children. Some families have a limited knowledge of sign language or simply don’t have the required learning environment and strategies needed for language development with deaf children. As the majority of our pupils’ preferred language is BSL we use that to teach reading and writing English. If this is not mirrored at home, there is limited opportunity for joint reading sessions. Development of the e-Book required planning and technical development. The overall production took time as video footage needed to be shot and then edited individually for each page. There were various technical considerations such as having an appropriate background colour so not to draw attention away from the signer. Appointing a signer with the required high level of BSL was essential. The language and pace of the sign language was an important consideration as it was required to match the age and reading level of the book. When translating English text to BSL, careful consideration was given to the nonlinear nature of BSL and the differences in language structure and syntax. The e-book was produced using Apple’s ‘iBook Author’ software which allowed video footage of the signer to be embedded on pages opposite the text and illustration. This enabled BSL translation of the content of the text and inferences of the story. An interpreter was used to directly ‘voice over’ the signer rather than the actual text. The aim behind the structure and layout of the e-book is to allow parents to ‘read’ with their deaf child which helps to develop both languages. From observations, the use of e-books has given pupils confidence and motivation with their reading, developing skills bridging both BSL and English languages and more effective reading time with parents.Keywords: bilingual book, e-book, BSL and English, bilingual e-book
Procedia PDF Downloads 1662568 Corporate Governance and Minority Shareholders Protection in the United Kingdom
Authors: Meltem Karatepe Kaya
Abstract:
The concept of corporate governance is not new but, due to the recent international financial crisis, it has become prominent in contemporary business, accounting and legal debates. There is a wealth of anecdotal evidence which shows that protection of minority shareholders is an important issue in the corporate governance literature. Minority shareholders typically hold low amounts of stocks, so the benefits gained from their participation in shareholder meetings are very asymmetric to the cost. Therefore, the presence of a good corporate governance structure is the proper protection of and respect for the rights and interests of shareholders, particularly those of minority shareholders. The research will attempt to find answers to the following questions: Why minority shareholders’ rights should be protected? How minority shareholders’ rights could be improved? Does the legal framework in the United Kingdom provide adequate protection for minority shareholders? This study will assess regulations about the legal protections of minority shareholders and try to find answer this question: ’Why is it inevitable for company law to treat in a successful way the problems arising from minority shareholders' conflict with other shareholders of a company?’The protection of minority shareholders is not only a corporate governance objective in its own right but also has added importance particularly in developing countries. In the United Kingdom(UK) and the United States of America(USA), there are diffused ownership structures so that any shareholders do not influence the management of the company. This is in stark contrast to companies in developing countries such as Turkey where controlling shareholders and related insiders are a well-known feature of ownership structures, and where companies are often governed and managed by controlling shareholders such as family firms and associated companies through cross-shareholdings and pyramiding ownership structures. In Turkey, the agency problem is not between shareholders and management. Rather it gives rise to another dimension of the agency problem – a conflict of interest between majority shareholders (controlling) and minority shareholders. This research will make a particularly useful contribution to knowledge-based information and understanding of company law in the UK, particularly minority shareholders' remedies. It will not only give information about law and regulations of minority shareholders' remedies but also it will provide some knowledge about doctrinal discussions and relevant cases. The major contribution to study will be in the knowledge of law and regulation in the legal protections of minority shareholders in the United Kingdom and Turkey. In this study, the recommendations will be given for the development of the legal framework and practices of protections for minority shareholders and small investors.Keywords: controlling shareholders, corporate governance, derivative actions, minority shareholders
Procedia PDF Downloads 1732567 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection
Procedia PDF Downloads 4542566 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser
Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett
Abstract:
Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser
Procedia PDF Downloads 1552565 The Cultural and Semantic Danger of English Transparent Words Translated from English into Arabic
Authors: Abdullah Khuwaileh
Abstract:
While teaching and translating vocabulary is no longer a neglected area in ELT in general and in translation in particular, the psychology of its acquisition has been a neglected area. Our paper aims at exploring some of the learning and translating conditions under which vocabulary is acquired and translated properly. To achieve this objective, two teaching methods (experiments) were applied on 4 translators to measure their acquisition of a number of transparent vocabulary items. Some of these items were knowingly chosen from 'deceptively transparent words'. All the data, sample, etc., were taken from Jordan University of Science and Technology (JUST) and Yarmouk University, where the researcher is employed. The study showed that translators might translate transparent words inaccurately, particularly if these words are uncontextualised. It was also shown that the morphological structures of words may lead translators or even EFL learners to misinterpretations of meaning.Keywords: english, transparent, word, processing, translation
Procedia PDF Downloads 702564 Association of Brain Derived Neurotrophic Factor with Iron as well as Vitamin D, Folate and Cobalamin in Pediatric Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
The impact of metabolic syndrome (MetS) on cognition and functions of the brain is being investigated. Iron deficiency and deficiencies of B9 (folate) as well as B12 (cobalamin) vitamins are best-known nutritional anemias. They are associated with cognitive disorders and learning difficulties. The antidepressant effects of vitamin D are known and the deficiency state affects mental functions negatively. The aim of this study is to investigate possible correlations of MetS with serum brain-derived neurotrophic factor (BDNF), iron, folate, cobalamin and vitamin D in pediatric patients. 30 children, whose age- and sex-dependent body mass index (BMI) percentiles vary between 85 and 15, 60 morbid obese children with above 99th percentiles constituted the study population. Anthropometric measurements were taken. BMI values were calculated. Age- and sex-dependent BMI percentile values were obtained using the appropriate tables prepared by the World Health Organization (WHO). Obesity classification was performed according to WHO criteria. Those with MetS were evaluated according to MetS criteria. Serum BDNF was determined by enzyme-linked immunosorbent assay. Serum folate was analyzed by an immunoassay analyzer. Serum cobalamin concentrations were measured using electrochemiluminescence immunoassay. Vitamin D status was determined by the measurement of 25-hydroxycholecalciferol [25-hydroxy vitamin D3, 25(OH)D] using high performance liquid chromatography. Statistical evaluations were performed using SPSS for Windows, version 16. The p values less than 0.05 were accepted as statistically significant. Although statistically insignificant, lower folate and cobalamin values were found in MO children compared to those observed for children with normal BMI. For iron and BDNF values, no alterations were detected among the groups. Significantly decreased vitamin D concentrations were noted in MO children with MetS in comparison with those in children with normal BMI (p ≤ 0.05). The positive correlation observed between iron and BDNF in normal-BMI group was not found in two MO groups. In THE MetS group, the partial correlation among iron, BDNF, folate, cobalamin, vitamin D controlling for waist circumference and BMI was r = -0.501; p ≤ 0.05. None was calculated in MO and normal BMI groups. In conclusion, vitamin D should also be considered during the assessment of pediatric MetS. Waist circumference and BMI should collectively be evaluated during the evaluation of MetS in children. Within this context, BDNF appears to be a key biochemical parameter during the examination of obesity degree in terms of mental functions, cognition and learning capacity. The association observed between iron and BDNF in children with normal BMI was not detected in MO groups possibly due to development of inflammation and other obesity-related pathologies. It was suggested that this finding may contribute to mental function impairments commonly observed among obese children.Keywords: brain-derived neurotrophic factor, iron, vitamin B9, vitamin B12, vitamin D
Procedia PDF Downloads 1202563 Developed Text-Independent Speaker Verification System
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis
Procedia PDF Downloads 562562 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1142561 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands
Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya
Abstract:
Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification
Procedia PDF Downloads 592560 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model
Authors: Si Chen, Quanhong Jiang
Abstract:
In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics
Procedia PDF Downloads 762559 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1432558 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model
Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi
Abstract:
Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models
Procedia PDF Downloads 1242557 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned
Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh
Abstract:
This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two ABC models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.Keywords: activity-based costing, activity-based management, construction, architectural aluminum
Procedia PDF Downloads 1002556 Variation of Litter Chemistry under Intensified Drought: Consequences on Flammability
Authors: E. Ormeno, C. Gutigny, J. Ruffault, J. Madrigal, M. Guijarro, C. Lecareux, C. Ballini
Abstract:
Mediterranean plant species feature numerous metabolic and morpho-physiological responses crucial to survive under both, typical Mediterranean drought conditions and future aggravated drought expected by climate change. Whether these adaptive responses will, in turn, increase the ecosystem perturbation in terms of fire hazard, is an issue that needs to be addressed. The aim of this study was to test whether recurrent and aggravated drought in the Mediterranean area favors the accumulation of waxes in leaf litter, with an eventual increase of litter flammability. The study was conducted in 2017 in a garrigue in Southern France dominated by Quercus coccifera, where two drought treatments were used: a treatment with recurrent aggravated drought consisting of ten rain exclusion structures which withdraw part of the annual precipitation since January 2012, and a natural drought treatment where Q. coccifera stands are free of such structures and thus grow under natural precipitation. Waxes were extracted with organic solvent and analyzed by GC-MS and litter flammability was assessed through measurements of the ignition delay, flame residence time and flame intensity (flame height) using an epiradiator as well as the heat of combustion using an oxygen bomb calorimeter. Results show that after 5 years of rain restriction, wax content in the cuticle of leaf litter increases significantly compared to shrubs growing under natural precipitation, in accordance with the theoretical knowledge which expects increases of cuticle waxes in green leaves in order to limit water evapotranspiration. Wax concentrations were also linearly and positively correlated to litter flammability, a correlation that lies on the high flammability own to the long-chain alkanes (C25-C31) found in leaf litter waxes. This innovative investigation shows that climate change is likely to favor ecosystem fire hazard through accumulation of highly flammable waxes in litter. It also adds valuable information about the types of metabolites that are associated with increasing litter flammability, since so far, within the leaf metabolic profile, only terpene-like compounds had been related to plant flammability.Keywords: cuticular waxes, drought, flammability, litter
Procedia PDF Downloads 1712555 The New World Kirkpatrick Model as an Evaluation Tool for a Publication Writing Programme
Authors: Eleanor Nel
Abstract:
Research output is an indicator of institutional performance (and quality), resulting in increased pressure on academic institutions to perform in the research arena. Research output is further utilised to obtain research funding. Resultantly, academic institutions face significant pressure from governing bodies to provide evidence on the return for research investments. Research output has thus become a substantial discourse within institutions, mainly due to the processes linked to evaluating research output and the associated allocation of research funding. This focus on research outputs often surpasses the development of robust, widely accepted tools to additionally measure research impact at institutions. A publication writing programme, for enhancing research output, was launched at a South African university in 2011. Significant amounts of time, money, and energy have since been invested in the programme. Although participants provided feedback after each session, no formal review was conducted to evaluate the research output directly associated with the programme. Concerns in higher education about training costs, learning results, and the effect on society have increased the focus on value for money and the need to improve training, research performance, and productivity. Furthermore, universities rely on efficient and reliable monitoring and evaluation systems, in addition to the need to demonstrate accountability. While publishing does not occur immediately, achieving a return on investment from the intervention is critical. A multi-method study, guided by the New World Kirkpatrick Model (NWKM), was conducted to determine the impact of the publication writing programme for the period of 2011 to 2018. Quantitative results indicated a total of 314 academics participating in 72 workshops over the study period. To better understand the quantitative results, an open-ended questionnaire and semi-structured interviews were conducted with nine participants from a particular faculty as a convenience sample. The purpose of the research was to collect information to develop a comprehensive framework for impact evaluation that could be used to enhance the current design and delivery of the programme. The qualitative findings highlighted the critical role of a multi-stakeholder strategy in strengthening support before, during, and after a publication writing programme to improve the impact and research outputs. Furthermore, monitoring on-the-job learning is critical to ingrain the new skills academics have learned during the writing workshops and to encourage them to be accountable and empowered. The NWKM additionally provided essential pointers on how to link the results more effectively from publication writing programmes to institutional strategic objectives to improve research performance and quality, as well as what should be included in a comprehensive evaluation framework.Keywords: evaluation, framework, impact, research output
Procedia PDF Downloads 752554 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 2342553 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials
Authors: Marc Sader, Michiel Stock, Bernard De Baets
Abstract:
Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.Keywords: adsorption, predictive modeling, QSAR, random forest
Procedia PDF Downloads 2252552 Generative AI in Higher Education: Pedagogical and Ethical Guidelines for Implementation
Authors: Judit Vilarmau
Abstract:
Generative AI is emerging rapidly and transforming higher education in many ways, occasioning new challenges and disrupting traditional models and methods. The studies and authors explored remark on the impact on the ethics, curriculum, and pedagogical methods. Students are increasingly using generative AI for study, as a virtual tutor, and as a resource for generating works and doing assignments. This point is crucial for educators to make sure that students are using generative AI with ethical considerations. Generative AI also has relevant benefits for educators and can help them personalize learning experiences and promote self-regulation. Educators must seek and explore tools like ChatGPT to innovate without forgetting an ethical and pedagogical perspective. Eighteen studies were systematically reviewed, and the findings provide implementation guidelines with pedagogical and ethical considerations.Keywords: ethics, generative artificial intelligence, guidelines, higher education, pedagogy
Procedia PDF Downloads 862551 Study on the Role of Positive Emotions in Developmental Psychology
Authors: Hee Soo Kim, Ha Young Kyung
Abstract:
This paper examines the role of positive emotions in human psychology. By understanding Fredrickson and Lyubomirsky et al.’s on positive emotions, one can better understand people’s intuitive understanding, mental health and well-being. Fredrickson asserts that positive emotions create positive affects and personal resources, and Lyubomirsky et al. relate such positive resources to the creation of happiness and personal development. This paper finds that positive emotions play a significant role in the learning process, and they are instrumental in creating a long-lasting repertoire of personal resources and play an essential role in the development of the intuitive understanding of life variables, resilience in coping with life challenges, and ability to build more successful lives.Keywords: Positive emotions, positive affects, personal resources, negative emotions, development
Procedia PDF Downloads 3082550 A Systematic Literature Review of the Influence of New Media-Based Interventions on Drug Abuse
Authors: Wen Huei Chou, Te Lung Pan, Tsu Wen Yeh
Abstract:
New media have recently received increasing attention as a new communication form. The COVID-19 outbreak has pushed people’s lifestyles into the digital age, and the drug market has infiltrated formal e-commerce platforms. The self-media boom has fostered growth in online drug myths. To set the record straight, it is imperative to develop new media-based interventions. However, the usefulness of new media on this issue has not yet been fully examined. This study selected 13 articles on the development of new media-based interventions to prevent drug abuse from Airiti Library and Pub-Med as of October 3, 2021. The key conclusions are that (1) new media have a significantly positive influence on skills, self-efficacy, and behavior; (2) most interventions package traditional course learning into new media formats; and (3) new media can create a covert, interactive environment that cannot be replicated offline, which may merit attention in future research.Keywords: drug abuse, interventions, new media, systematic review
Procedia PDF Downloads 1492549 Sympathetic Skin Response and Reaction Times in Chronic Autoimmune Thyroiditis; An Overlooked Electrodiagnostic Study
Authors: Oya Umit Yemisci, Nur Saracgil Cosar, Tubanur Ozturk Sisman, Selin Ozen
Abstract:
Chronic autoimmune thyroiditis (AIT) may result in a wide spectrum of reversible abnormalities in the neuromuscular function. Usually, proximal muscle-related symptoms and neuropathic findings such as mild axonal peripheral neuropathy have been reported. Sympathetic skin responses are useful in evaluating sudomotor activity of the unmyelinated sympathetic fibers of the autonomic nervous system. Neurocognitive impairment may also be a prominent feature of hypothyroidism, particularly in elderly patients. Electromyographic reaction times as a highly sensitive parameter provides. Objective data concerning cognitive and motor functions. The aim of this study was to evaluate peripheral nerve functions, sympathetic skin response and electroneuromyographic (ENMG) reaction times in euthyroid and subclinically hypothyroid patients with a diagnosis of AIT and compare to those of a control group. Thirty-five euthyroid, 19 patients with subclinical hypothyroidism and 35 age and sex-matched healthy subjects were included in the study. Motor and sensory nerve conduction studies, sympathetic skin responses recorded from hand and foot by stimulating contralateral median nerve and simple reaction times by stimulating tibial nerve and recording from extensor indicis proprius muscle were performed to all patients and control group. Only median nerve sensory conduction velocities of the forearm were slower in patients with AIT compared to the control group (p=0.019). Otherwise, nerve conduction studies and sympathetic skin responses showed no significant difference between the patients and the control group. However, reaction times were shorter in the healthy subjects compared to AIT patients. Prolongation in the reaction times may be considered as a parameter reflecting the alterations in the cognitive functions related to the primary disease process in AIT. Combining sympathetic skin responses with more quantitative tests such as cardiovascular tests and sudomotor axon reflex testing may allow us to determine higher rates of involvement of the autonomic nervous system in AIT.Keywords: sympathetic skin response, simple reaction time, chronic autoimmune thyroiditis
Procedia PDF Downloads 1452548 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time
Procedia PDF Downloads 3462547 Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions
Authors: Sarayu Vanga, Jorge Galeano-Cabral, Kaya Wei
Abstract:
Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses.Keywords: body temperature regulation, cerebral hypoxia, thermoelectric, blanket design
Procedia PDF Downloads 1542546 The Convergence between Science Practical Work and Scientific Discourse: Lessons Learnt from Using a Practical Activity to Encourage Student Discourse
Authors: Abraham Motlhabane
Abstract:
In most practical-related science lessons, the focus is on completing the experimental procedure as directed by the teacher. However, the scientific discourse among learners themselves and teacher–learner discourse about scientific processes, scientific inquiry and the nature of science should play an important role in the teaching and learning of science. This means the incorporation of inquiry-based activities aimed at sparking debates about scientific concepts. This article analyses a science lesson presented by a teacher to his colleagues acting as learners. Six lessons were presented and transcribed. One of the lessons has been used for this study as the basis for the events as they unfolded during the lesson. Data was obtained through direct observations and the use of a predetermined observation schedule. Field notes were compiled during teacher preparations and the presentation of the lessons.Keywords: discourse, inquiry, practical work, science, scientific
Procedia PDF Downloads 4892545 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets
Authors: Debjit Ray
Abstract:
Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.Keywords: genomics, pathogens, genome assembly, superbugs
Procedia PDF Downloads 196