Search results for: multisensory learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7203

Search results for: multisensory learning

1503 Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants

Authors: Lamis Naddaf, Yuval Tabach

Abstract:

In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races.

Keywords: comparative genomics, machine learning, cancer resistance, cancer-protecting alleles

Procedia PDF Downloads 95
1502 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 445
1501 Experiences and Aspirations of Hearing Impaired Learners in Inclusive Classrooms

Authors: Raymon P. Española

Abstract:

Hearing impaired students are admitted to regular high schools in the context of inclusive education. In this setting, several academic difficulties and social struggles are disregarded by many educators. The study aimed to describe the aspirations and lived experiences in mainstream classrooms of hearing impaired students. In the research process, the participants were interviewed using sign language. Thematic analysis of interview responses was done, supplemented by interviews with teachers and classroom observations. The study revealed four patterns of experiences: academic difficulties, coping mechanisms, identification with hearing peers, and impression management. This means that these learners were struggling in inclusive classrooms, where identification with and modeling the positive qualities of hearing peers were done to cope with academic difficulties and alter negative impressions about them. By implication, these learners tended to socially immerse themselves rather than resort to isolation. Along with this tendency was the aspiration for achievement as they were eager to finish post-secondary technical-vocational education. This means aspiring for continuing social immersion into the mainstream. All these findings provide insights to K-12 educators to increase the use of collaborative techniques and experiential learning strategies, as well as to adequately address the special educational needs of these students.

Keywords: descriptive, experiences and aspirations of hearing impaired learners, inclusive classrooms, Surigao City Philippines

Procedia PDF Downloads 408
1500 Automated Human Balance Assessment Using Contactless Sensors

Authors: Justin Tang

Abstract:

Balance tests are frequently used to diagnose concussions on the sidelines of sporting events. Manual scoring, however, is labor intensive and subjective, and many concussions go undetected. This study institutes a novel approach to conducting the Balance Error Scoring System (BESS) more quantitatively using Microsoft’s gaming system Kinect, which uses a contactless sensor and several cameras to receive data and estimate body limb positions. Using a machine learning approach, Visual Gesture Builder, and a deterministic approach, MATLAB, we tested whether the Kinect can differentiate between “correct” and erroneous stances of the BESS. We created the two separate solutions by recording test videos to teach the Kinect correct stances and by developing a code using Java. Twenty-two subjects were asked to perform a series of BESS tests while the Kinect was collecting data. The Kinect recorded the subjects and mapped key joints onto their bodies to obtain angles and measurements that are interpreted by the software. Through VGB and MATLAB, the videos are analyzed to enumerate the number of errors committed during testing. The resulting statistics demonstrate a high correlation between manual scoring and the Kinect approaches, indicating the viability of the use of remote tracking devices in conducting concussion tests.

Keywords: automated, concussion detection, contactless sensors, microsoft kinect

Procedia PDF Downloads 316
1499 The Relationship between Organizational Silence and Voice with the Quality of Work Life among Employees of the Youth and Sports Departments of Tehran Province

Authors: Soodabeh Dehghan, Siavash Hamidzadeh, Naqshbandi Seyyed Salahedin, Ali Mohammad Safania

Abstract:

The present research with the aim of the relationship between organizational silence and organizational voice with quality of work-life among employees of the sport and youth departments of Tehran Province was done. The statistical population of this research includes all employees of the sport and youth departments of Tehran province, and considering the not very large number of society, the sample and society were considered to be the same, and the sample was considered as the whole number. To measure each of these variables, a questionnaire was used. The research questionnaire was presented in four sections. The results showed that, since the extension of the process of organizational silence is usually done by managers, their attitude and attitudes toward this phenomenon are prioritized and also because silence reduces learning due to lack of knowledge sharing, makes it less effective and makes changes more difficult, it is necessary to take steps to break the silence and to further urge the staff (employees) to express their beliefs (organizational voices) and to share them in the organization's fate individuals, whose beliefs are respected and so called taken into account in the organization, would be dependent on the organization and feel obliged to remain with the organization during the hardships. This affects employees' quality of work life and their satisfaction too much.

Keywords: organizational silence, organizational voice, quality of work life, the sports and youth departments of Tehran province

Procedia PDF Downloads 146
1498 Predicting Destination Station Based on Public Transit Passenger Profiling

Authors: Xuyang Song, Jun Yin

Abstract:

The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.

Keywords: travel behavior, destination prediction, public transit, passenger profiling

Procedia PDF Downloads 18
1497 Learn Better to Earn Better: Importance of CPD in Dentistry

Authors: Junaid Ahmed, Nandita Shenoy

Abstract:

Maintaining lifelong knowledge and skills is essential for safe clinical practice. Continuing Professional Development (CPD) is an established method that can facilitate lifelong learning. It focuses on maintaining or developing knowledge, skills and relationships to ensure competent practice.To date, relatively little has been done to comprehensively and systematically synthesize evidence to identify subjects of interest among practising dentist. Hence the aim of our study was to identify areas in clinical practice that would be favourable for continuing professional dental education amongst practicing dentists. Participants of this study consisted of the practicing dental surgeons of Mangalore, a city in Dakshina Kannada, Karnataka. 95% of our practitioners felt that regular updating as a one day program once in 3-6 months is required, to keep them abreast in clinical practice. 60% of subjects feel that CPD programs enrich their theoretical knowledge and helps in patient care. 27% of them felt that CPD programs should be related to general dentistry. Most of them felt that CPD programs should not be charged nominally between one to two thousand rupees. The acronym ‘CPD’ should be seen in a broader view in which professionals continuously enhance not only their knowledge and skills, but also their thinking,understanding and maturity; they grow not only as professionals, but also as persons; their development is not restricted to their work roles, but may also extend to new roles and responsibilities.

Keywords: continuing professional development, competent practice, dental education, practising dentist

Procedia PDF Downloads 259
1496 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 68
1495 Demotivation-Reducing Strategies Employed by Turkish EFL Learners in L2 Writing

Authors: kaveh Jalilzadeh, Maryam Rastgari

Abstract:

Motivation for learning a foreign language is needed for learners of any foreign language to effectively learn language skills. However, there are some factors that lead to the learners’ demotivation. Therefore, teachers of foreign languages, most notably English language which turned out to be an international language for academic and business purposes, need to be well aware of the demotivation sources and know how to reduce learners’ demotivation. This study is an attempt to explore demotivation-reducing strategies employed by Turkish EFL learners in L2 writing. The researchers used a qualitative case study and employed semi-structured interviews to collect data. The informants recruited in this study were 20 English writing lecturers who were selected through purposive sampling among university lecturers/instructors at the state and non-state universities in Istanbul and Ankara. Interviews were transcribed verbatim, and MAXQDA software (version 2022) was used for performing coding and thematic analysis of the data. Findings revealed that Turkish EFL teachers use 18 strategies to reduce language learners’ demotivation. The most frequently reported strategies were: writing in a group, writing about interesting topics, writing about new topics, writing about familiar topics, writing about simple topics, and writing about relevant topics. The findings have practical implications for writing teachers and learners of the English language.

Keywords: phenomenological study, emotional vulnerability, motivation, digital Settings

Procedia PDF Downloads 69
1494 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 433
1493 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 14
1492 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning

Authors: Zhanna Dedovets

Abstract:

Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.

Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.

Procedia PDF Downloads 45
1491 Importance of Positive Education: A Focus on the Importance of Character Strength Building

Authors: Hajra Hussain

Abstract:

Positive education, the inclusion of social, emotional and intellectual skills across a curriculum, is fundamental to the optimal functioning of young people in any society because it combines the best teaching practices with the principles of positive psychology. While learning institutions foster academic skills, little attention is being paid to the identification and development of character strengths and their integration into teaching. There is an increasing recognition of the important role education plays in equipping today’s youth with 21st century social skills. For youth to succeed in this highly competitive environment, there is a need for positive education that is focused on character strengths such as the growth of social, emotional and intellectual skills that promote the flourishing of well-rounded individuals. Character strength programs and awareness are a necessity if the human capital within a region is to be competitive, productive and happy. The Counselling & Wellbeing Centre at Amity University Dubai has consistently implemented Character Strength awareness workshops and has found that such workshops have increased student life satisfaction due to individual awareness of signature strengths. A positive education/positive psychology framework with its key focus on the development of character strengths can be fundamental to individual's confidence and self-awareness; thus allowing both optimum flourishing and functioning.

Keywords: positive psychology, positive education, strengths, youth, happiness

Procedia PDF Downloads 271
1490 Survey of Related Field for Artificial Intelligence Window Development

Authors: Young Kwon Yang, Bo Rang Park, Hyo Eun Lee, Tea Won Kim, Eun Ji Choi, Jin Chul Park

Abstract:

To develop an artificial intelligence based automatic ventilation system, recent research trends were analyzed and analyzed. This research method is as follows. In the field of architecture and window technology, the use of artificial intelligence, the existing study of machine learning model and the theoretical review of the literature were carried out. This paper collected journals such as Journal of Energy and Buildings, Journal of Renewable and Sustainable Energy Reviews, and articles published on Web-sites. The following keywords were searched for articles from 2000 to 2016. We searched for the above keywords mainly in the title, keyword, and abstract. As a result, the global artificial intelligence market is expected to grow at a CAGR of 14.0% from USD127bn in 2015 to USD165bn in 2017. Start-up investments in artificial intelligence increased from the US $ 45 million in 2010 to the US $ 310 million in 2015, and the number of investments increased from 6 to 54. Although AI is making efforts to advance to advanced countries, the level of technology is still in its infant stage. Especially in the field of architecture, artificial intelligence (AI) is very rare. Based on the data of this study, it is expected that the application of artificial intelligence and the application of architectural field will be revitalized through the activation of artificial intelligence in the field of architecture and window.

Keywords: artificial intelligence, window, fine dust, thermal comfort, ventilation system

Procedia PDF Downloads 273
1489 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 278
1488 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter

Procedia PDF Downloads 144
1487 English Language Performance and Emotional Intelligence of Senior High School Students of Pit-Laboratory High School

Authors: Sonia Arradaza-Pajaron

Abstract:

English as a second language is widely spoken in the Philippines. In fact, it is used as a medium of instruction in school. However, Filipino students, in general, are still not proficient in the use of the language. Since it plays a very crucial role in the learning and comprehension of some subjects in the school where important key concepts and in English, it is imperative to look into other factors that may affect such concern. This study may post an answer to the said concern because it aimed to investigate the association between a psychological construct, known as emotional intelligence, and the English language performance of the 55 senior high school students. The study utilized a descriptive correlational method to determine the significant relationship of variables with preliminary data, like GPA in English subject as baseline information of their performance. Results revealed that the respondents had an average GPA in the English subject; however, improving from their first-year high school level to the fourth year. Their English performance resulted to an above average level with a notable higher performance in the speaking test than in the written. Further, a strong correlation between English performance and emotional intelligence was manifested. Based on the findings, it can be concluded that students with higher emotional intelligence their English language performance is expected to be the same. It can be said further that when students’ emotional intelligence (EI components) is facilitated well through various classroom activities, a better English performance would just be spontaneous among them.

Keywords: English language performance, emotional intelligence, EI components, emotional literacy, emotional quotient competence, emotional quotient outcomes, values and beliefs

Procedia PDF Downloads 448
1486 Using the Delphi Method to Determine the Change in Knowledge and Skills of Professional Quantity Surveyors as a Result of COVID-19 Pandemic

Authors: Veronica Kah Jo Wong, Yoke Mui Lim, Nurul Sakina Mokhtar Azizi

Abstract:

The impact on the construction industry in Malaysia is unprecedented, as the government implemented a lockdown to restrict human movement in an effort to stop COVID-19 from spreading. Quantity surveyor (QS), as one of the key construction professionals, found that the working practices and environments for quantity surveyors today have changed due to the current pandemic. The QS profession must deal not only with changes in project issues but also with a different working environment in which most people are required to work from home and follow the standard operating procedures. Therefore, QS should be flexible, agile, and have the capability to adapt to the current working practices by strengthening their competencies. Adapting to the current and recovering environment of COVID-19 may result in the emergence of a new competence such as skill and knowledge for QS in order to maintain the quality of performance in the delivery of their professional services. Thus, this paper's objective is to investigate the changes in knowledge and skills in quantity surveyors. The data will be collected through interviews with registered professional QS to gain better insights that are specific in this industry, and the findings will be verified using the Delphi method. It is hoped that new knowledge and skill will be found from the study and will not only contribute to the betterment of the professional QS but also in guiding higher learning institutions to incorporate the new competencies into their curriculum.

Keywords: competency, COVID-19 pandemic, Malaysia, quantity surveying

Procedia PDF Downloads 127
1485 The Effects of a Mathematics Remedial Program on Mathematics Success and Achievement among Beginning Mathematics Major Students: A Regression Discontinuity Analysis

Authors: Kuixi Du, Thomas J. Lipscomb

Abstract:

The proficiency in Mathematics skills is fundamental to success in the STEM disciplines. In the US, beginning college students who are placed in remedial/developmental Mathematics courses frequently struggle to achieve academic success. Therefore, Mathematics remediation in college has become an important concern, and providing Mathematics remediation is a prevalent way to help the students who may not be fully prepared for college-level courses. Programs vary, however, and the effectiveness of a particular remedial Mathematics program must be empirically demonstrated. The purpose of this study was to apply the sharp regression discontinuity (RD) technique to determine the effectiveness of the Jack Leaps Summer (JLS) Mathematic remediation program in supporting improved Mathematics learning outcomes among newly admitted Mathematics students in the South Dakota State University. The researchers studied the newly admitted Fall 2019 cohort of Mathematics majors (n=423). The results indicated that students whose pretest score was lower than the cut-off point and who were assigned to the JLS program experienced significantly higher scores on the post-test (Math 101 final score). Based on these results, there is evidence that the JLS program is effective in meeting its primary objective.

Keywords: causal inference, mathematisc remedial program evaluation, quasi-experimental research design, regression discontinuity design, cohort studies

Procedia PDF Downloads 95
1484 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment

Authors: Zahra Hamedani

Abstract:

Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.

Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability

Procedia PDF Downloads 409
1483 Support Provided by Teachers to Learners With Special Education Needs in Selected Amathole West District Primary Schools South Africa

Authors: Toyin Mary Adewumi, Cina Mosito

Abstract:

Part of enabling learners with special education needs (SEN) to succeed is providing them with adequate support. Support is all activities in a school that enhance its capacity to respond to diversity by making learning contexts and lessons accessible to all learners. The paper reports findings of support provided by teachers to learners with SEN and the pockets of good practice found in the support provided by teachers to these learners in schools in the Amathole West District, Eastern Cape. A purposeful sample, comprising eight teachers, eight principals in eight schools, including one provincial and two district education officials, was selected. Thematic analysis was used for analyzing data gathered through semi-structured interviews. The results established that despite the challenges such as lack of qualifications and training in special education needs, learners with SEN received varied support from teachers which include extra exercises, extra time, special attention during break times or after school hours and homework. The study reveals pockets of good practice in some selected primary schools particularly in the poverty-stricken locations in the Amathole West District. This paper recommends adequate training for teachers for the support of learners with SEN.

Keywords: good practice, learner, special education needs, inclusion, support

Procedia PDF Downloads 131
1482 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers

Authors: R. M. Kashim

Abstract:

The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.

Keywords: conceptual knowledge, primary school teachers, procedural knowledge, rational numbers

Procedia PDF Downloads 325
1481 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 48
1480 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 191
1479 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks

Procedia PDF Downloads 283
1478 Teaching and Learning with Picturebooks: Developing Multimodal Literacy with a Community of Primary School Teachers in China

Authors: Fuling Deng

Abstract:

Today’s children are frequently exposed to multimodal texts that adopt diverse modes to communicate myriad meanings within different cultural contexts. To respond to the new textual landscape, scholars have considered new literacy theories which propose picturebooks as important educational resources. Picturebooks are multimodal, with their meaning conveyed through the synchronisation of multiple modes, including linguistic, visual, spatial, and gestural acting as access to multimodal literacy. Picturebooks have been popular reading materials in primary educational settings in China. However, often viewed as “easy” texts directed at the youngest readers, picturebooks remain on the margins of Chinese upper primary classrooms, where they are predominantly used for linguistic tasks, with little value placed on their multimodal affordances. Practices with picturebooks in the upper grades in Chinese primary schools also encounter many challenges associated with the curation of texts for use, designing curriculum, and assessment. To respond to these issues, a qualitative study was conducted with a community of Chinese primary teachers using multi-methods such as interviews, focus groups, and documents. The findings showed the impact of the teachers’ increased awareness of picturebooks' multimodal affordances on their pedagogical decisions in using picturebooks as educational resources in upper primary classrooms.

Keywords: picturebook education, multimodal literacy, teachers' response to contemporary picturebooks, community of practice

Procedia PDF Downloads 135
1477 Cognitions of Physical Education Supervisors and Teachers for Conceptions of Effective Teaching Related to the Concerns Theory

Authors: Ali M. Alsagheir

Abstract:

Effective teaching is concerned to be one of the research fields of teaching, and its fundamental case is to reach the most successful ways that makes teaching fruitful. Undoubtedly, these methods are common factors between all parties who are concerned with the educational process such as instructors, directors, parents, and others. This study had aimed to recognize the cognitions of physical education supervisors and teachers for conceptions of effective teaching according to the interests theory. A questionnaire was used to collect data of the study; the sample contained 230 teachers and supervisors.The results were ended in: that the average of conceptions of effective teaching expressions for the sample of the study decreases at the progress through stages of teaching development in general. The study showed the absence of statistical indicator between teachers and supervisors at the core of both teaching principals and teaching tasks although the results showed that there are statistical indicators at the core of teaching achievements between supervisors and teachers in favor of supervisors. The study ended in to recommendations which can share in increasing the effectiveness of teaching such as: putting clear and specific standards for the effectiveness of teaching in which teacher's performance is based, constructing practical courses that focus on bringing on both supervisors and teachers with skills and strategies of effectiveness teaching, taking care of children achievement as an important factor and a strong indicator on effectiveness of teaching and learning.

Keywords: concerns theory, effective teaching, physical education, supervisors, teachers

Procedia PDF Downloads 410
1476 Differential Expression of Arc in the Mesocorticolimbic System Is Involved in Drug and Natural Rewarding Behavior in Rats

Authors: Yuhua Wang, Mu Li, Jinggen Liu

Abstract:

Aim: To investigate the different effects of heroin and milk in activating the corticostriatal system that plays a critical role in reward reinforcement learning. Methods: Male SD rats were trained daily for 15 d to self-administer heroin or milk tablets in a classic runway drug self-administration model. Immunohistochemical assay was used to quantify Arc protein expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc), the dorsomedial striatum (DMS) and the ventrolateral striatum (VLS) in response to chronic self-administration of heroin or milk tablets. NMDA receptor antagonist MK801 (0.1 mg/kg) or dopamine D1 receptor antagonist SCH23390 (0.03 mg/kg) were intravenously injected at the same time as heroin was infused intravenously. Results: Runway training with heroin resulted in robust enhancement of Arc expression in the mPFC, the NAc and the DMS on d 1, 7, and 15, and in the VLS on d 1 and d 7. However, runway training with milk led to increased Arc expression in the mPFC, the NAc and the DMS only on d 7 and/or d 15 but not on d 1. Moreover, runway training with milk failed to induce increased Arc protein in the VLS. Both heroin-seeking behavior and Arc protein expression were blocked by MK801 or SCH23390 administration. Conclusion: The VLS is likely to be critically involved in drug-seeking behavior. The NMDA and D1 receptor-dependent Arc expression is important in drug-seeking behavior.

Keywords: arc, mesocorticolimbic system, drug rewarding behavior, NMDA receptor

Procedia PDF Downloads 387
1475 Language Anxiety and Learner Achievement among University Undergraduates in Sri Lanka: A Case Study of University of Sri Jayewardenepura

Authors: Sujeeva Sebastian Pereira

Abstract:

Language Anxiety (LA) – a distinct psychological construct of self-perceptions and behaviors related to classroom language learning – is perceived as a significant variable highly correlated with Second Language Acquisition (SLA). However, the existing scholarship has inadequately explored the nuances of LA in relation to South Asia, especially in terms of Sri Lankan higher education contexts. Thus, the current study, situated within the broad areas of Psychology of SLA and Applied Linguistics, investigates the impact of competency-based LA and identity-based LA on learner achievement among undergraduates of Sri Lanka. Employing a case study approach to explore the impact of LA, 750 undergraduates of the University of Sri Jayewardenepura, Sri Lanka, thus covering 25% of the student population from all seven faculties of the university, were selected as participants using stratified proportionate sampling in terms of ethnicity, gender, and disciplines. The qualitative and quantitative research inquiry utilized for data collection include a questionnaire consisting a set of structured and unstructured questions, and semi-structured interviews as research instruments. Data analysis includes both descriptive and statistical measures. As per the quantitative measures of data analysis, the study employed Pearson Correlation Coefficient test, Chi-Square test, and Multiple Correspondence Analysis; it used LA as the dependent variable, and two types of independent variables were used: direct and indirect variables. Direct variables encompass the four main language skills- reading, writing, speaking and listening- and test anxiety. These variables were further explored through classroom activities on grammar, vocabulary and individual and group presentations. Indirect variables are identity, gender and cultural stereotypes, discipline, social background, income level, ethnicity, religion and parents’ education level. Learner achievement was measured through final scores the participants have obtained for Compulsory English- a common first-year course unit mandatory for all undergraduates. LA was measured using the FLCAS. In order to increase the validity and reliability of the study, data collected were triangulated through descriptive content analysis. Clearly evident through both the statistical analysis and the qualitative analysis of the results is the significant linear negative correlation between LA and learner achievement, and the significant negative correlation between LA and culturally-operated gender stereotypes which create identity disparities in learners. The study also found that both competency-based LA and identity-based LA are experienced primarily and inescapably due to the apprehensions regarding speaking in English. Most participants who reported high levels of LA were from an urban socio-economic background of lower income families. Findings exemplify the linguistic inequality prevalent in the socio-cultural milieu in Sri Lankan society. This inequality makes learning English a dire need, yet, very much an anxiety provoking process because of many sociolinguistic, cultural and ideological factors related to English as a Second Language (ESL) in Sri Lanka. The findings bring out the intricate interrelatedness of both the dependent variable (LA) and the independent variables stated above, emphasizing that the significant linear negative correlation between LA and learner achievement is connected to the affective, cognitive and sociolinguistic domains of SLA. Thus, the study highlights the promise in linguistic practices such as code-switching, crossing and accommodating hybrid identities as strategies in minimizing LA and maximizing the experience of ESL.

Keywords: language anxiety, identity-based anxiety, competence-based anxiety, TESL, Sri Lanka

Procedia PDF Downloads 189
1474 Prospective Teachers’ Metacognitive Awareness and Goal Orientation as Predictors of Academic Success

Authors: Gidado Lawal Likko

Abstract:

The study examined the relationship of achievement goals, metacognitive awareness and academic success among students of colleges of education in North Western Nigeria. The study was guided by three objectives. The first two were to find out whether students’ achievement goals and metacognitive awareness correlate with their academic success. 358 students comprising 242 males (67.6%) and 116 females (32.4%) were studied. Correlation survey was employed in the conduct of the study. The instruments used to collect data were students’ bio data form, achievement goals inventory (Roedel, Schraw and Plake, 1994), metacognitive awareness inventory (Schraw & Dennison, 1994) and students’ CGPA (NCCE minimum standard, 2013) was used as the index of academic success. Pearson Product Moment and regression analysis were the statistical techniques used to analyze the data. Results of the analysis indicated that students’ achievement goals (r=0.554, p=0.004) and metacognitive awareness (r= 0.67, p=0.001) positively correlated with their academic success. Similarly, significant relationship exists between achievement goals and metacognitive awareness (r=0.77, p=0.000). Part of the recommendations is the need for the management of all colleges of education to have educational interventions aimed at developing students’ metacognitive awareness which will foster purposeful self-regulation of their learning. This could be achieved by periodic assessment of students’ metacognitive awareness which will serve as feedback as they move from one educational level to another.

Keywords: academic success, goal orientation, metacognitive awareness, prospective teachers

Procedia PDF Downloads 225