Search results for: gender specific data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31821

Search results for: gender specific data

26121 Marginalized Two-Part Joint Models for Generalized Gamma Family of Distributions

Authors: Mohadeseh Shojaei Shahrokhabadi, Ding-Geng (Din) Chen

Abstract:

Positive continuous outcomes with a substantial number of zero values and incomplete longitudinal follow-up are quite common in medical cost data. To jointly model semi-continuous longitudinal cost data and survival data and to provide marginalized covariate effect estimates, a marginalized two-part joint model (MTJM) has been developed for outcome variables with lognormal distributions. In this paper, we propose MTJM models for outcome variables from a generalized gamma (GG) family of distributions. The GG distribution constitutes a general family that includes approximately all of the most frequently used distributions like the Gamma, Exponential, Weibull, and Log Normal. In the proposed MTJM-GG model, the conditional mean from a conventional two-part model with a three-parameter GG distribution is parameterized to provide the marginal interpretation for regression coefficients. In addition, MTJM-gamma and MTJM-Weibull are developed as special cases of MTJM-GG. To illustrate the applicability of the MTJM-GG, we applied the model to a set of real electronic health record data recently collected in Iran, and we provided SAS code for application. The simulation results showed that when the outcome distribution is unknown or misspecified, which is usually the case in real data sets, the MTJM-GG consistently outperforms other models. The GG family of distribution facilitates estimating a model with improved fit over the MTJM-gamma, standard Weibull, or Log-Normal distributions.

Keywords: marginalized two-part model, zero-inflated, right-skewed, semi-continuous, generalized gamma

Procedia PDF Downloads 184
26120 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 161
26119 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 131
26118 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods

Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana

Abstract:

Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.

Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management

Procedia PDF Downloads 201
26117 Augmented Reality to Support the Design of Innovative Agroforestry Systems

Authors: Laetitia Lemiere, Marie Gosme, Gerard Subsol, Marc Jaeger

Abstract:

Agroforestry is recognized as a way of developing sustainable and resilient agriculture that can fight against climate change. However, the number of species combinations, spatial configurations, and management options for trees and crops is vast. These choices must be adapted to the pedoclimatic and socio-economic contexts and to the objectives of the farmer, who therefore needs support in designing his system. Participative design workshops are a good way to integrate the knowledge of several experts in order to design such complex systems. The design of agroforestry systems should take into account both spatial aspects (e.g., spacing of trees within the lines and between lines, tree line orientation, tree-crop distance, species spatial patterns) and temporal aspects (e.g., crop rotations, tree thinning and pruning, tree planting in the case of successional agroforestry). Furthermore, the interactions between trees and crops evolve as the trees grow. However, agroforestry design workshops generally emphasize the spatial aspect only through the use of static tokens to represent the different species when designing the spatial configuration of the system. Augmented reality (AR) may overcome this limitation, allowing to visualize dynamic representations of trees and crops, and also their interactions, while at the same time retaining the possibility to physically interact with the system being designed (i.e., move trees, add or remove species, etc.). We propose an ergonomic digital solution capable of assisting a group of agroforestry experts to design an agroforestry system and to represent it. We investigated the use of web-based marker-based AR that does not require specific hardware and does not require specific installation so that all users could use their own smartphones right out of the pocket. We developed a prototype mobilizing the AR.js, ArToolKit.js, and Three.js open source libraries. In our implementation, we gradually build a virtual agroforestry system pattern scene from the users' interactions. A specific set of markers initialize the scene properties, and the various plant species are added and located during the workshop design session. The full virtual scene, including the trees positions with their neighborhood, are saved for further uses, such as virtual, augmented instantiation in the farmer fields. The number of tree species available in the application is gradually increasing; we mobilize 3D digital models for walnut, poplar, wild cherry, and other popular species used in agroforestry systems. The prototype allows shadow computations and the representation of trees at various growth stages, as well as different tree generations, and is thus able to visualize the dynamics of the system over time. Future work will focus on i) the design of complex patterns mobilizing several tree/shrub organizations, not restricted to lines; ii) the design of interfaces related to cultural practices, such as clearing or pruning; iii) the representation of tree-crop interactions. Beside tree shade (light competition), our objective is to represent also below-ground competitions (water, nitrogen) or other variables of interest for the design of agroforestry systems (e.g., predicted crop yield).

Keywords: agroforestry system design, augmented reality, marker-based AR, participative design, web-based AR

Procedia PDF Downloads 182
26116 A Performance Study of Fixed, Single-Axis and Dual-Axis Photovoltaic Systems in Kuwait

Authors: A. Al-Rashidi, A. El-Hamalawi

Abstract:

In this paper, a performance study was conducted to investigate single and dual-axis PV systems to generate electricity in five different sites in Kuwait. Relevant data were obtained by using two sources for validation purposes. A commercial software, PVsyst, was used to analyse the data, such as metrological data and other input parameters, and compute the performance parameters such as capacity factor (CF) and final yield (YF). The results indicated that single and dual-axis PV systems would be very beneficial to electricity generation in Kuwait as an alternative source to conventional power plants, especially with the increased demand over time. The ranges were also found to be competitive in comparison to leading countries using similar systems. A significant increase in CF and YF values around 24% and 28.8% was achieved related to the use of single and dual systems, respectively.

Keywords: single-axis and dual-axis photovoltaic systems, capacity factor, final yield, Kuwait

Procedia PDF Downloads 298
26115 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP

Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang

Abstract:

Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.

Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species

Procedia PDF Downloads 69
26114 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: active contour, Bayesian, echocardiographic image, feature vector

Procedia PDF Downloads 450
26113 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning

Authors: Janet Holland

Abstract:

Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.

Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation

Procedia PDF Downloads 136
26112 A Proposed Mechanism for Skewing Symmetric Distributions

Authors: M. T. Alodat

Abstract:

In this paper, we propose a mechanism for skewing any symmetric distribution. The new distribution is called the deflation-inflation distribution (DID). We discuss some statistical properties of the DID such moments, stochastic representation, log-concavity. Also we fit the distribution to real data and we compare it to normal distribution and Azzlaini's skew normal distribution. Numerical results show that the DID fits the the tree ring data better than the other two distributions.

Keywords: normal distribution, moments, Fisher information, symmetric distributions

Procedia PDF Downloads 661
26111 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance

Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu

Abstract:

Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.

Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance

Procedia PDF Downloads 136
26110 Reviving Customs: Examining the Vernacular Habitus in Modern Marathi Film via the Tamasha Genre

Authors: Amar Ramesh Wayal

Abstract:

Marathi cinema, an integral part of India’s diverse film industry, has significantly evolved in its storytelling and aesthetics, with the Tamasha genre being central to this evolution. Tamasha, a traditional form of Marathi theatre, features vibrant dance and music, especially the rhythmic and often suggestive musical genre, lavani. It gained cinematic prominence in the 1960s with Anant Mane’s Sangtye Aika (1959), which brought and popularized Tamasha to the silver screen, and V. Shantaram’s Pinjra (1972), an iconic Tamasha drama. Despite early success, Tamasha films declined in popularity until Natarang (2010) revitalized interest in this traditional form. This study examines the relevance and evolution of the Tamasha genre in Marathi cinema through contemporary films like Ek Hota Vidushak by Jabbar Patel (1992), Natarang (2010) by Ravi Jadhav, and Tamasha Live (2022) by Sanjay Jadhav. The selection of the films is based on their significant roles in the evolution of the Tamasha in Marathi cinema. Ek Hota Vidushak explores socio-political themes through Tamasha, Natarang depicts the struggles and emotional depth of Tamasha performers, and Tamasha Live integrates traditional Tamasha into modern cinema. By analysing films from different periods, this study highlights the genre’s reinterpretation and adaptation over time. The study employs a qualitative approach, utilizing textual analysis and cultural critique to examine the portrayal and evolution of Tamasha in selected films. It aims to illuminate the complex relationship between tradition and modernity in Marathi cinema through Foucauldian discourse analysis and Pierre Bourdieu’s concept of “vernacular habitus,” which refers to local, indigenous cultural spaces that shape people’s perceptions and expressions. By analyzing these films, the study seeks to understand how traditional cultural forms are integrated into contemporary cinematic narratives. However, this method has limitations, such as subjectivity in interpretation and the need for extensive contextual knowledge. Qualitative research can be subject to researcher bias, affecting analysis and conclusions. To mitigate this, this study maintains rigorous reflexivity and transparency regarding the researcher’s positionality. Furthermore, findings from specific film analyses may not be universally applicable to all Tamasha films or broader Marathi cinema. To enhance the study’s robustness, future research could incorporate comparative or quantitative data to complement qualitative insights. Despite these challenges, qualitative research is crucial for exploring cultural artifacts and their significance within specific contexts. By triangulating qualitative findings with diverse perspectives and acknowledging limitations, this study aims to provide a nuanced understanding of how Tamasha cinema preserves and revitalizes Maharashtra’s folk traditions while adapting them to contemporary contexts. Analyzing films by Jabbar Patel, Ravi Jadhav, and Sanjay Jadhav shows how these filmmakers balance traditional aesthetics with modern storytelling, bridging historical continuity with contemporary relevance. This study offers insights into how indigenous traditions like Tamasha continue to shape and define cinematic narratives in Maharashtra.

Keywords: Marathi cinema, Tamasha genre, vernacular habitus, discourse analysis, cultural evolution

Procedia PDF Downloads 38
26109 Short Life Cycle Time Series Forecasting

Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar

Abstract:

The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.

Keywords: forecast, short life cycle product, structured judgement, time series

Procedia PDF Downloads 362
26108 Emotional Intelligence and Its Relation to the Stressors of Life among King Saud University Students

Authors: Abdullah Ahmed Alzahrani

Abstract:

The aim of current study is to identify more life stressors, and the dimensions of emotional intelligence prevalent from the point of view of male and female students at King Saud University. Also, it comes to identify the relationship between emotional intelligence and the nature of life stressors faced by students at King Saud University. The Study tries to identify the differences in emotional intelligence and life stressors for students of King Saud University, which attributed to sex, age, grade point average, and the type of study scientific, literary The study sample consisted of 426 male and female students at King Saud University. The results shows that there are significant differences between emotional intelligence and life stressors faced by students at King Saud University. It turns out that there are differences in emotional intelligence between males and females in favor of females; While there are no differences in both the type of study and age. Finally, the study shows that there are differences of stressors in a lifetime for the age group between 19-25; While there are no differences in both type the type of study.

Keywords: emotional intelligence, life stressors, gender, students

Procedia PDF Downloads 494
26107 Design and Implement a Remote Control Robot Controlled by Zigbee Wireless Network

Authors: Sinan Alsaadi, Mustafa Merdan

Abstract:

Communication and access systems can be made with many methods in today’s world. These systems are such standards as Wifi, Wimax, Bluetooth, GPS and GPRS. Devices which use these standards also use system resources excessively in direct proportion to their transmission speed. However, large-scale data communication is not always needed. In such cases, a technology which will use system resources as little as possible and support smart network topologies has been needed in order to enable the transmissions of such small packet data and provide the control for this kind of devices. IEEE issued 802.15.4 standard upon this necessity and enabled the production of Zigbee protocol which takes these standards as its basis and devices which support this protocol. In our project, this communication protocol was preferred. The aim of this study is to provide the immediate data transmission of our robot from the field within the scope of the project. In addition, making the communication with the robot through Zigbee Protocol has also been aimed. While sitting on the computer, obtaining the desired data from the region where the robot is located has been taken as the basis. Arduino Uno R3 microcontroller which provides the control mechanism, 1298 shield as the motor driver.

Keywords: ZigBee, wireless network, remote monitoring, smart home, agricultural industry

Procedia PDF Downloads 281
26106 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning

Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga

Abstract:

Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.

Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter

Procedia PDF Downloads 214
26105 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: multi-agent system, safety analysis, safety model, integration map

Procedia PDF Downloads 422
26104 Phylogenetic Differential Separation of Environmental Samples

Authors: Amber C. W. Vandepoele, Michael A. Marciano

Abstract:

Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.

Keywords: DNA isolation, geolocation, non-human, phylogenetic separation

Procedia PDF Downloads 117
26103 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform

Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis

Abstract:

For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.

Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring

Procedia PDF Downloads 147
26102 The Constitutional Rights of a Child to a Clean and Healthy Environment: A Case Study in the Vaal Triangle Region

Authors: Christiena Van Der Bank, Marjone Van Der Bank, Ronelle Prinsloo

Abstract:

The constitutional right to a healthy environment and the constitutional duty imposed on the state actively to protect the environment fulfill the specific duties to prevent pollution and ecological degradation and to promote conservation. The aim of this paper is to draw attention to the relationship between child rights and the environment. The focus is to analyse government’s responses as mandated with section 24 of the Bill of Rights for ensuring the right to a clean and healthy environment. The principle of sustainability of the environment encompasses the notion of equity and the harm to the environment affects the present as well as future generations. Section 24 obliges the state to ensure that the legacy of future generations is protected, an obligation that has been said to be part of the common law. The environment is an elusive and wide concept that can mean different things to different people depending on the context in which it is used for example clean drinking water or safe food. An extensive interpretation of the term environment would include almost everything that may positively or negatively influence the quality of human life. The analysis will include assessing policy measures, legislation, budgetary measures and other measures taken by the government in order to progressively meet its constitutional obligation. The opportunity of the child to grow up in a healthy and safe environment is extremely unjustly distributed. Without a realignment of political, legal and economic conditions this situation will not fundamentally change. South Africa as a developing country that needs to meet the demand of social transformation and economic growth whilst at the same time expediting its ability to compete in global markets, the country will inevitably embark on developmental programmes as a measure for sustainable development. The courts would have to inquire into the reasonableness of those measures. Environmental threats to children’s rights must be identified, taking into account children’s specific needs and vulnerabilities, their dependence and marginalisation. Obligations of states and violations of rights must be made more visible to the general public.

Keywords: environment, children rights, pollution, healthy, violation

Procedia PDF Downloads 178
26101 Examining How the Institutional Policies Affect LGBT Residents Living in Long-Term Care

Authors: Peter Brink

Abstract:

Much of the research examining sexuality in long-term care focus on individual experiences, specifically their past, present, and future lived experiences. We know little about long-term care home policies, how they relate to the LGBT community, or how accommodating long-term care homes are to the LGBT+ community. In many ways, residents who identify as LGBT+ have been invisible in long-term care homes. Up until the not-to-distant past, homosexuality was illegal, and discrimination was acceptable. Canada’s LGBT population has also suffered because of the HIV/AIDS epidemic. For these and other reasons, members of the LGBT community might resist entering long-term care or attempt to keep their sexuality secret. The goal of any long-term care home is to be a welcoming place, to display signs of inclusion, and to help residents and staff feel that they are embraced. From the perspective of the long-term care home, it is possible that many of these facilities do not necessarily see the need to mention gender identity or sexual orientation in their welcoming materials. However, from the perspective of the invisible minority, it may be important that these homes be more than just welcoming. This study examined the role of institutional policies in long-term care for residents who identify as LGBT.

Keywords: long-term care, LGBT, HIV/AIDS, policy

Procedia PDF Downloads 120
26100 Super Mario Guide: An Updated Roadmap on Research with Travel Subjective Well-Being

Authors: Wu Hu

Abstract:

There is an increasing amount of research bridging the gap between transportation and subjective well-being (SWB). However, travel SWB research in this area is still sporadic. Therefore, we are in need of a more systematic body of work that examines travel SWB considering various work occupations, working conditions, commuting variabilities, and other related variables, and develops updated qualitative and quantitative methods to inform the transportation design. In this Super Mario Guide, the author reflects on the related elements involved with travel SWB under four categories (having Super Mario as the protagonist): 1. the starting point including variables like living conditions; 2. the commuter including the commuter’s age, gender, occupation, and others; 3. the commuting including commuting environment, vehicles, commuting time, commuting vehicles flexibility and variability and others; 4. destination including the workplace conditions, the corporate culture on working flexibility, the employer supportiveness and others. In addition, with the rise of new vehicles such as auto-driving, this research can play a significant role to better understand travel SWB and to guide the design of more efficient travelling systems so as to improve worker performance and general SWB. The author also shares thoughts on promising areas for future research.

Keywords: transportation, subjective well-being (SWB), commuting, happiness

Procedia PDF Downloads 146
26099 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference

Procedia PDF Downloads 111
26098 Global Experiences in Dealing with Biological Epidemics with an Emphasis on COVID-19 Disease: Approaches and Strategies

Authors: Marziye Hadian, Alireza Jabbari

Abstract:

Background: The World Health Organization has identified COVID-19 as a public health emergency and is urging governments to stop the virus transmission by adopting appropriate policies. In this regard, authorities have taken different approaches to cut the chain or controlling the spread of the disease. Now, the questions we are facing include what these approaches are? What tools should be used to implement each preventive protocol? In addition, what is the impact of each approach? Objective: The aim of this study was to determine the approaches to biological epidemics and related prevention tools with an emphasis on COVID-19 disease. Data sources: Databases including ISI web of science, PubMed, Scopus, Science Direct, Ovid, and ProQuest were employed for data extraction. Furthermore, authentic sources such as the WHO website, the published reports of relevant countries, as well as the Worldometer website were evaluated for gray studies. The time-frame of the study was from 1 December 2019 to 30 May 2020. Methods: The present study was a systematic study of publications related to the prevention strategies for the COVID-19 disease. The study was carried out based on the PRISMA guidelines and CASP for articles and AACODS for grey literature. Results: The study findings showed that in order to confront the COVID-19 epidemic, in general, there are three approaches of "mitigation", "active control" and "suppression" and four strategies of "quarantine", "isolation", "social distance" and "lockdown" in both individual and social dimensions to deal with epidemics. Selection and implementation of each approach requires specific strategies and has different effects when it comes to controlling and inhibiting the disease. Key finding: One possible approach to control the disease is to change individual behavior and lifestyle. In addition to prevention strategies, use of masks, observance of personal hygiene principles such as regular hand washing and non-contact of contaminated hands with the face, as well as an observance of public health principles such as sneezing and coughing etiquettes, safe extermination of personal protective equipment, must be strictly observed. Have not been included in the category of prevention tools. However, it has a great impact on controlling the epidemic, especially the new coronavirus epidemic. Conclusion: Although the use of different approaches to control and inhibit biological epidemics depends on numerous variables, however, despite these requirements, global experience suggests that some of these approaches are ineffective. The use of previous experiences in the world, along with the current experiences of countries, can be very helpful in choosing the accurate approach for each country in accordance with the characteristics of that country and lead to the reduction of possible costs at the national and international levels.

Keywords: novel corona virus, COVID-19, approaches, prevention tools, prevention strategies

Procedia PDF Downloads 131
26097 The Investigation on Pre-Service Teachers' Critical Thinking Dispositions in Terms of Several Variables

Authors: Cüneyit Akar, Mustafa Başaran, Ufuk Uluçınar

Abstract:

The purpose of this research is to examine the critical thinking dispositions of pre-service teachers in terms of several variables. In the line of this aim, we have investigated what their levels of critical thinking dispositions and whether there is any significant different in their critical thinking dispositions. Also, we have examined the relations between their critical thinking dispositions and their parents’ education statues, the number of their siblings, family income levels, and their religiosity level. 202 pre-service teachers who are studying at different departments at faculty of education at Uşak University participated in this research. In study, critical thinking dispositions scale by one of researchers was utilized and its validity and reliability was performed. The findings indicate that the level of their critical thinking dispositions was found to be .376 (arithmetic mean). On the other hand, we found that there is no significant difference in terms of their gender and the department at which they are studying. Furthermore, although there aren’t significant relationships between critical thinking dispositions and their mother education statues, their income levels, their religiosity levels and the number of their siblings; there is any significant positively at low level the relation between thinking dispositions and father educational statues. The findings obtained will be discussed together with literature and other research’ results.

Keywords: preservice teachers, critical thinking dispositions, pedagogy, education

Procedia PDF Downloads 496
26096 Eco-Cities in Challenging Environments: Pollution As A Polylemma in The Uae

Authors: Shaima A. Al Mansoori

Abstract:

Eco-cities have become part of the broader and universal discourse and embrace of sustainable communities. Given the ideals and ‘potential’ benefits of eco-cities for people, the environment and prosperity, hardly can an argument be made against the desirability of eco-cities. Yet, this paper posits that it is necessary for urban scholars, technocrats and policy makers to engage in discussions of the pragmatism of implementing the ideals of eco-cities, for example, from the political, budgetary, cultural and other dimensions. In the context of such discourse, this paper examines the feasibility of one of the cardinal principles and goals of eco-cities, which is the reduction or elimination of pollution through various creative and innovative initiatives, in the UAE. This paper contends and argues that, laudable and desirable as this goal is, it is a polylemma and, therefore, overly ambitious and practically unattainable in the UAE. The paper uses the mixed method research strategy, in which data is sourced from secondary and general sources through desktop research, from public records in governmental agencies, and from the conceptual academic and professional literature. Information from these sources will be used, first, to define and review pollution as a concept and multifaceted phenomenon with multidimensional impacts. Second, the paper will use society’s five goal clusters as a framework to identify key causes and impacts of pollution in the UAE. Third, the paper will identify and analyze specific public policies, programs and projects that make pollution in the UAE a polylemma. Fourth, the paper will argue that the phenomenal rates of population increase, urbanization, economic growth, consumerism and development in the UAE make pollution an inevitable product and burden that society must live with. This ‘reality’ makes the goal and desire of pollution-free cities pursuable but unattainable. The paper will conclude by identifying and advocating creative and innovative initiatives that can be taken by the various stakeholders in the country to reduce and mitigate pollution in the short- and long-term.

Keywords: goal clusters, pollution, polylemma, sustainable communities

Procedia PDF Downloads 389
26095 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: cyclic loading, DEM, numerical modelling, sands

Procedia PDF Downloads 323
26094 Analyzing Consumer Preferences and Brand Differentiation in the Notebook Market via Social Media Insights and Expert Evaluations

Authors: Mohammadreza Bakhtiari, Mehrdad Maghsoudi, Hamidreza Bakhtiari

Abstract:

This study investigates consumer behavior in the notebook computer market by integrating social media sentiment analysis with expert evaluations. The rapid evolution of the notebook industry has intensified competition among manufacturers, necessitating a deeper understanding of consumer priorities. Social media platforms, particularly Twitter, have become valuable sources for capturing real-time user feedback. In this research, sentiment analysis was performed on Twitter data gathered in the last two years, focusing on seven major notebook brands. The PyABSA framework was utilized to extract sentiments associated with various notebook components, including performance, design, battery life, and price. Expert evaluations, conducted using fuzzy logic, were incorporated to assess the impact of these sentiments on purchase behavior. To provide actionable insights, the TOPSIS method was employed to prioritize notebook features based on a combination of consumer sentiments and expert opinions. The findings consistently highlight price, display quality, and core performance components, such as RAM and CPU, as top priorities across brands. However, lower-priority features, such as webcams and cooling fans, present opportunities for manufacturers to innovate and differentiate their products. The analysis also reveals subtle but significant brand-specific variations, offering targeted insights for marketing and product development strategies. For example, Lenovo's strong performance in display quality points to a competitive edge, while Microsoft's lower ranking in battery life indicates a potential area for R&D investment. This hybrid methodology demonstrates the value of combining big data analytics with expert evaluations, offering a comprehensive framework for understanding consumer behavior in the notebook market. The study emphasizes the importance of aligning product development and marketing strategies with evolving consumer preferences, ensuring competitiveness in a dynamic market. It also underscores the potential for innovation in seemingly less important features, providing companies with opportunities to create unique selling points. By bridging the gap between consumer expectations and product offerings, this research equips manufacturers with the tools needed to remain agile in responding to market trends and enhancing customer satisfaction.

Keywords: consumer behavior, customer preferences, laptop industry, notebook computers, social media analytics, TOPSIS

Procedia PDF Downloads 28
26093 Estimation of Desktop E-Wastes in Delhi Using Multivariate Flow Analysis

Authors: Sumay Bhojwani, Ashutosh Chandra, Mamita Devaburman, Akriti Bhogal

Abstract:

This article uses the Material flow analysis for estimating e-wastes in the Delhi/NCR region. The Material flow analysis is based on sales data obtained from various sources. Much of the data available for the sales is unreliable because of the existence of a huge informal sector. The informal sector in India accounts for more than 90%. Therefore, the scope of this study is only limited to the formal one. Also, for projection of the sales data till 2030, we have used regression (linear) to avoid complexity. The actual sales in the years following 2015 may vary non-linearly but we have assumed a basic linear relation. The purpose of this study was to know an approximate quantity of desktop e-wastes that we will have by the year 2030 so that we start preparing ourselves for the ineluctable investment in the treatment of these ever-rising e-wastes. The results of this study can be used to install a treatment plant for e-wastes in Delhi.

Keywords: e-wastes, Delhi, desktops, estimation

Procedia PDF Downloads 262
26092 The Politics of Disruption: Disrupting Polity to Influence Policy in Nigeria

Authors: Okechukwu B. C. Nwankwo

Abstract:

The surge of social protests sweeping through the globe is a contemporary phenomenon. Yet the phenomenon in itself is not new. Thus, various scholars have over the years developed conceptual frameworks for evaluating it. Adopting and adapting some of these frameworks this paper begins from a purely theoretical perspective exploring the concept and content of social protest within the specific context of Nigeria. It proceeds to build a typology of the phenomenon in terms of form, actors, origin, character, organisation, goal, dynamics, outcome and a whole lot of other variables that are context relevant for evaluating it in an operationally useful manner. The centrality of the context in which protest evolves is demonstrated. Adopting Easton’s systems theory, the paper builds on the assumption that protests emerge whenever and wherever political institutions and structures prove unable or unwilling to transform inputs in form of basic demands into outputs in form of responsive policies. It argues that protests in Nigeria are simply the crystallisation of opposition in the streets. Protests are thus extra-institutional politics. This is usually the case, as elsewhere, where there is no functional institutionalised opposition. Noting that protest, disruptive or otherwise, is an influence strategy, it argues that every single protest is a new opportunity for reform, for reorganisation of state capacities, for modifying rights and obligation of citizens and government to each other. Each reform outcome is, however, only a temporal antecedent. Its extensity gives signal for the next similar protest event. Through providing evidence on how protests in Nigeria create opportunity for reform, for more accountable, more effective governance, the paper shows the positive impact of protests and its importance even in the consolidation effort for the nation’s nascent democracy. Data on protest events will be based on media reports, especially print media.

Keywords: democracy, dialectics, social protest, reform

Procedia PDF Downloads 137