Search results for: time history response analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 44041

Search results for: time history response analysis

38371 Exploratory Factor Analysis of Natural Disaster Preparedness Awareness of Thai Citizens

Authors: Chaiyaset Promsri

Abstract:

Based on the synthesis of related literatures, this research found thirteen related dimensions that involved the development of natural disaster preparedness awareness including hazard knowledge, hazard attitude, training for disaster preparedness, rehearsal and practice for disaster preparedness, cultural development for preparedness, public relations and communication, storytelling, disaster awareness game, simulation, past experience to natural disaster, information sharing with family members, and commitment to the community (time of living).  The 40-item of natural disaster preparedness awareness questionnaire was developed based on these thirteen dimensions. Data were collected from 595 participants in Bangkok metropolitan and vicinity. Cronbach's alpha was used to examine the internal consistency for this instrument. Reliability coefficient was 97, which was highly acceptable.  Exploratory Factor Analysis where principal axis factor analysis was employed. The Kaiser-Meyer-Olkin index of sampling adequacy was .973, indicating that the data represented a homogeneous collection of variables suitable for factor analysis. Bartlett's test of Sphericity was significant for the sample as Chi-Square = 23168.657, df = 780, and p-value < .0001, which indicated that the set of correlations in the correlation matrix was significantly different and acceptable for utilizing EFA. Factor extraction was done to determine the number of factors by using principal component analysis and varimax.  The result revealed that four factors had Eigen value greater than 1 with more than 60% cumulative of variance. Factor #1 had Eigen value of 22.270, and factor loadings ranged from 0.626-0.760. This factor was named as "Knowledge and Attitude of Natural Disaster Preparedness".  Factor #2 had Eigen value of 2.491, and factor loadings ranged from 0.596-0.696. This factor was named as "Training and Development". Factor #3 had Eigen value of 1.821, and factor loadings ranged from 0.643-0.777. This factor was named as "Building Experiences about Disaster Preparedness".  Factor #4 had Eigen value of 1.365, and factor loadings ranged from 0.657-0.760. This was named as "Family and Community". The results of this study provided support for the reliability and construct validity of natural disaster preparedness awareness for utilizing with populations similar to sample employed.

Keywords: natural disaster, disaster preparedness, disaster awareness, Thai citizens

Procedia PDF Downloads 382
38370 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data

Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan

Abstract:

Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.

Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data

Procedia PDF Downloads 446
38369 Remote Observation of Environmental Parameters on the Surface of the Maricunga Salt Flat, Atacama Region, Chile

Authors: Lican Guzmán, José Manuel Lattus, Mariana Cervetto, Mauricio Calderón

Abstract:

Today the estimation of effects produced by climate change in high Andean wetland environments is confronted by big challenges. This study provides a way to an analysis by remote sensing how some Ambiental aspects have evolved on the Maricunga salt flat in the last 30 years, divided into the summer and winter seasons, and if global warming is conditioning these changes. The first step to achieve this goal was the recompilation of geological, hydrological, and morphometric antecedents to ensure an adequate contextualization of its environmental parameters. After this, software processing and analysis of Landsat 5,7 and 8 satellite imagery was required to get the vegetation, water, surface temperature, and soil moisture indexes (NDVI, NDWI, LST, and SMI) in order to see how their spatial-temporal conditions have evolved in the area of study during recent decades. Results show a tendency of regular increase in surface temperature and disponibility of water during both seasons but with slight drought periods during summer. Soil moisture factor behaves as a constant during the dry season and with a tendency to increase during wintertime. Vegetation analysis shows an areal and quality increase of its surface sustained through time that is consistent with the increase of water supply and temperature in the basin mentioned before. Roughly, the effects of climate change can be described as positive for the Maricunga salt flat; however, the lack of exact correlation in dates of the imagery available to remote sensing analysis could be a factor for misleading in the interpretation of results.

Keywords: global warming, geology, SIG, Atacama Desert, Salar de Maricunga, environmental geology, NDVI, SMI, LST, NDWI, Landsat

Procedia PDF Downloads 85
38368 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis

Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab

Abstract:

Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.

Keywords: deep neural network, foot disorder, plantar pressure, support vector machine

Procedia PDF Downloads 361
38367 Nature Writing in Margaret Atwood’s 'The Testaments'

Authors: Natalia Fontes De Oliveira

Abstract:

Nature and women have a long age association that has persisted throughout history, cultures, literature, and arts. Women’s physiological functions of reproduction and childbearing are viewed as closer to nature as a binary opposition to men, who have metaphorically and historically been associated with culture. To liberate from strictures of phallogocentric rhetoric, a radical critique of the categories of nature and culture must be undertaken. This paper proposes that nature writing in Margaret Atwood’s The Testaments is used subversively as a form of rebellion to disrupt the metaphorical relationship between women and nature. In tune with ecofeminist concerns, the imagery rewrites patriarchal paradigms of binary oppositions as the protagonists narrate a complex and plural relationship between nature and women.

Keywords: ecofeminism, Margaret Atwood, nature writing, women's writing

Procedia PDF Downloads 170
38366 Heightening Pre-Service Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology: Pre-Service Science Teachers’ Perspective

Authors: Abiodun Ezekiel Adesina, Ijeoma Ginikanwa Akubugwo

Abstract:

Information and Communication Technology, ICT can heighten pre-service teachers’ attitudes toward learning and metacognitive learning; however, there is a dearth of literature on the perception of the pre-service teachers on heightening their attitude toward learning and metacognitive learning. Thus, this study investigates the perception of pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT. Two research questions and four hypotheses guided the research. A mixed methods research was adopted for the study in concurrent triangulation type of integrating qualitative and quantitative approaches to the study. The cluster random sampling technique was adopted to select 250 pre-service science teachers in Oyo township. Two self-constructed instruments: Heightening Pre-service Science Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology Scale (HPALMIS, r=.73), and an unstructured interview were used for data collection. Thematic analysis, frequency counts and percentages, t-tests, and analysis of variance were used for data analysis. The perception level of the pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT is above average, with the majority perceiving that ICT can enhance their thinking about their learning. The perception was significant (mean=92.68, SD=10.86, df=249, t=134.91, p<.05). The perception was significantly differentiated by gender (t=2.10, df= 248, p<.05) in favour of the female pre-service teachers and based on the first time of ICTs use (F(5,244)= 9.586, p<.05). Lecturers of science and science related courses should therefore imbibe the use of ICTs in heightening pre-service teachers’ attitude towards learning and metacognitive learning. Government should organize workshops, seminars, lectures, and symposia along with professional bodies for the science education lecturers to keep abreast of the trending ICT.

Keywords: pre-service teachers’ attitude towards learning, metacognitive learning, ICT, pre-service teachers’ perspectives

Procedia PDF Downloads 104
38365 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering

Authors: Liu Linxin

Abstract:

As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.

Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs

Procedia PDF Downloads 37
38364 A Real Time Ultra-Wideband Location System for Smart Healthcare

Authors: Mingyang Sun, Guozheng Yan, Dasheng Liu, Lei Yang

Abstract:

Driven by the demand of intelligent monitoring in rehabilitation centers or hospitals, a high accuracy real-time location system based on UWB (ultra-wideband) technology was proposed. The system measures precise location of a specific person, traces his movement and visualizes his trajectory on the screen for doctors or administrators. Therefore, doctors could view the position of the patient at any time and find them immediately and exactly when something emergent happens. In our design process, different algorithms were discussed, and their errors were analyzed. In addition, we discussed about a , simple but effective way of correcting the antenna delay error, which turned out to be effective. By choosing the best algorithm and correcting errors with corresponding methods, the system attained a good accuracy. Experiments indicated that the ranging error of the system is lower than 7 cm, the locating error is lower than 20 cm, and the refresh rate exceeds 5 times per second. In future works, by embedding the system in wearable IoT (Internet of Things) devices, it could provide not only physical parameters, but also the activity status of the patient, which would help doctors a lot in performing healthcare.

Keywords: intelligent monitoring, ultra-wideband technology, real-time location, IoT devices, smart healthcare

Procedia PDF Downloads 143
38363 How to Modernise the European Competition Network (ECN)

Authors: Dorota Galeza

Abstract:

This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such a structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonisation of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures.

Keywords: antitrust, competition, networks, path dependence

Procedia PDF Downloads 320
38362 Development of an IoT System for Smart Crop Production

Authors: Oyenike M. Olanrewaju, Faith O. Echobu, Aderemi G. Adesoji, Emmy Danny Ajik, Joseph Nda Ndabula, Stephen Lucas

Abstract:

Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrients uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. But these replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good but it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil test by the common farmer. Internet of things test kit was developed to fill in the gaps created by wet soil analysis, as it can test for N, P, K, soil temperature and soil moisture in a given soil at the time of test. In this implementation, sample test was carried out within 0.2 hectares of land divided into smaller plots. The kits perform adequately well as the range of values obtained across the segments were within a very close range.

Keywords: Internet of Things, soil nutrients, test kit, soil temperature

Procedia PDF Downloads 83
38361 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 92
38360 Investigating the Status of Black Women in Brazil: Beyond Housekeepers and Samba Dancers

Authors: Sandra Maria Cerqueira Da Silva

Abstract:

The construction of the material world involves a series of social power relations. These relations, in a way, can dictate, shape, judge and drive the profiles of so-called ‘ideal’ individuals. Gender relations, as power relations, are defined based on hierarchies, obediences and inequalities, and male domination seems, with few exceptions, to be rooted in every society around the world. The profile of the Brazilian woman, beyond patriarchal and market determinations, is strongly subjected to media products. Women are, numerically, the majority in Brazilian society. The social indicators point to slight advances in terms of years of study and professional qualification, as well as access to the job market; yet, differences in opportunity and conditions — often explained though the ‘unquestionable’ cultural rancidness argument — still hinder women’s ability to reach and keep job positions. These unequalities are also visible in everyday interactions and in gender relations, and they become greater once race is added to the analysis. For a black woman, her racial origins may play a part in determining the construction of her gender roles. In these terms, there is need to investigate the racial character of the sexual differences within a larger social proccess of naturalization and justification of cultural hierarchies. Thus, the goal of this study is to identify and discuss the media-built image of black women in Brazil. Furthermore, it is necessary to seek views different than those of the ruling classes. The study uses a qualitative approach based on the feminist standpoint, which intends to hold women’s experiences as central. The body of the research — images taken from the Internet — was treated through critical content analysis. The results show that in Brazil the profile of black women, beyond the machist and sexist generalizations, objectifies them or sees them as servants, always at the disposal of non-blacks. It is necessary to overcome the history of this nation, always considering the contribution of these women to the growth and development of places and societies. This can be done through the acknowledgement and highlighting of the few black women who were able to overcome the many barriers in their path and reach leadership position in the country. There are still many important challenges in the way of finding affirmative policies and reaching a more equal society in terms of gender and race; a serious and firm political commitment seems sine qua non.

Keywords: black woman, feminist standpoint, markings, objectification

Procedia PDF Downloads 278
38359 Plasmodium knowlesi Zoonotic Malaria: An Emerging Challenge of Health Problems in Thailand

Authors: Surachart Koyadun

Abstract:

Currently, Plasmodium knowlesi malaria has spread to almost all countries in Southeast Asia. This research aimed to 1) describe the epidemiology of Plasmodium knowlesi malaria, 2) examine the clinical symptoms of P. knowlesi malaria patients 3) analyze the ecology, animal reservoir and entomology of P. knowlesi malaria. 4) summarize the diagnosis, blood parasites, and treatment of P. knowlesi malaria. The study design was a case report combined with retrospective descriptive survey research. A total of 34 study subjects were patients with a confirmed diagnosis of P. knowlesi malaria who received treatment at hospitals and vector-borne disease control units in Songkhla Province during 2021 – 2022. The results of the epidemiological study unveiled the majority of the samples were male, had a history of staying overnight in the forest before becoming sick, the source of the infection was in the forest, and the season during which they were sick was mostly summer. The average length of time from the onset of illness until receiving a blood test was 3.8 days. The average length of hospital stay was 4 days. Patients were treated with Chloroquine Phosphate, Primaquine, Artesunate, Quinine, and Dihydroartemisinin-piperaquine (40 mg DHA-320 mg PPQ). One death was seen in 34 P. knowlesi malaria patients. All remaining patients recovered and responded to treatment. All symptoms improved after drug administration. No treatment failures were found. Analyses of ecological, zoonotic and entomological data revealed an association between infected patients and forested, monkey-hosted and mosquito-transmitted areas. The recommendation from this study was that the Polymerase Chain Reaction (PCR) method should be used in conjunction with the Thick/Thin Film test and blood parasite test (Parasitaemia) for the specificity of the infection, accuracy of diagnosis, leading to treatment of disease in a timely manner and be effective in disease control.

Keywords: human malaria, Plasmodium knowlesi, zoonotic disease, diagnosis and treatment, epidemiology, ecology

Procedia PDF Downloads 31
38358 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data

Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.

Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query

Procedia PDF Downloads 167
38357 Effect of Quenching Medium on the Hardness of Dual Phase Steel Heat Treated at a High Temperature

Authors: Tebogo Mabotsa, Tamba Jamiru, David Ibrahim

Abstract:

Dual phase(DP) steel consists essentially of fine grained equiaxial ferrite and a dispersion of martensite. Martensite is the primary precipitate in DP steels, it is the main resistance to dislocation motion within the material. The objective of this paper is to present a relation between the intercritical annealing holding time and the hardness of a dual phase steel. The initial heat treatment involved heating the specimens to 1000oC and holding the sample at that temperature for 30 minutes. After the initial heat treatment, the samples were heated to 770oC and held for a varying amount of time at constant temperature. The samples were held at 30, 60, and 90 minutes respectively. After heating and holding the samples at the austenite-ferrite phase field, the samples were quenched in water, brine, and oil for each holding time. The experimental results proved that an equation for predicting the hardness of a dual phase steel as a function of the intercritical holding time is possible. The relation between intercritical annealing holding time and hardness of a dual phase steel heat treated at high temperatures is parabolic in nature. Theoretically, the model isdependent on the cooling rate because the model differs for each quenching medium; therefore, a universal hardness equation can be derived where the cooling rate is a variable factor.

Keywords: quenching medium, annealing temperature, dual phase steel, martensite

Procedia PDF Downloads 85
38356 Offshore Facilities Load Out: Case Study of Jacket Superstructure Loadout by Strand Jacking Skidding Method

Authors: A. Rahim Baharudin, Nor Arinee binti Mat Saaud, Muhammad Afiq Azman, Farah Adiba A. Sani

Abstract:

Objectives: This paper shares the case study on the engineering analysis, data analysis, and real-time data comparison for qualifying the stand wires' minimum breaking load and safe working load upon loadout operation for a new project and, at the same time, eliminate the risk due to discrepancies and unalignment of COMPANY Technical Standards to Industry Standards and Practices. This paper demonstrates “Lean Construction” for COMPANY’s Project by sustaining fit-for-purpose Technical Requirements of Loadout Strand Wire Factor of Safety (F.S). The case study utilizes historical engineering data from a few loadout operations by skidding methods from different projects. It is also demonstrating and qualifying the skidding wires' minimum breaking load and safe working load used for loadout operation for substructure and other facilities for the future. Methods: Engineering analysis and comparison of data were taken as referred to the international standard and internal COMPANY standard requirements. Data was taken from nine (9) previous projects for both topsides and jacket facilities executed at the several local fabrication yards where load out was conducted by three (3) different service providers with emphasis on four (4) basic elements: i) Industry Standards for Loadout Engineering and Operation Reference: COMPANY internal standard was referred to superseded documents of DNV-OS-H201 and DNV/GL 0013/ND. DNV/GL 0013/ND and DNVGL-ST-N001 do not mention any requirements of Strand Wire F.S of 4.0 for Skidding / Pulling Operations. ii) Reference to past Loadout Engineering and Execution Package: Reference was made to projects delivered by three (3) major offshore facilities operators. Strand Wire F.S observed ranges from 2.0 MBL (Min) to 2.5 MBL (Max). No Loadout Operation using the requirements of 4.0 MBL was sighted from the reference. iii) Strand Jack Equipment Manufacturer Datasheet Reference: Referring to Strand Jack Equipment Manufactured Datasheet by different loadout service providers, it is shown that the Designed F.S for the equipment is also ranging between 2.0 ~ 2.5. Eight (8) Strand Jack Datasheet Model was referred to, ranging from 15 Mt to 850 Mt Capacity; however, there are NO observations of designed F.S 4.0 sighted. iv) Site Monitoring on Actual Loadout Data and Parameter: Max Load on Strand Wire was captured during 2nd Breakout, which is during Static Condition of 12.9 MT / Strand Wire (67.9% Utilization). Max Load on Strand Wire for Dynamic Conditions during Step 8 and Step 12 is 9.4 Mt / Strand Wire (49.5% Utilization). Conclusion: This analysis and study demonstrated the adequacy of strand wires supplied by the service provider were technically sufficient in terms of strength, and via engineering analysis conducted, the minimum breaking load and safe working load utilized and calculated for the projects were satisfied and operated safely for the projects. It is recommended from this study that COMPANY’s technical requirements are to be revised for future projects’ utilization.

Keywords: construction, load out, minimum breaking load, safe working load, strand jacking, skidding

Procedia PDF Downloads 122
38355 Real-Time Course Recommendation System for Online Learning Platforms

Authors: benabbess anja

Abstract:

This research presents the design and implementation of a real-time course recommendation system for online learning platforms, leveraging user competencies and expertise levels. The system begins by extracting and classifying the complexity levels of courses from Udemy datasets using semantic enrichment techniques and resources such as WordNet and BERT. A predictive model assigns complexity levels to each course, adding columns that represent the course category, sub-category, and complexity level to the existing dataset. Simultaneously, user profiles are constructed through questionnaires capturing their skills, sub-skills, and proficiency levels. The recommendation process involves generating embeddings with BERT, followed by calculating cosine similarity between user profiles and courses. Courses are ranked based on their relevance, with the BERT model delivering the most accurate results. To enable real-time recommendations, Apache Kafka is integrated to track user interactions (clicks, comments, time spent, completed courses, feedback) and update user profiles. The embeddings are regenerated, and similarities with courses are recalculated to reflect users' evolving needs and behaviors, incorporating a progressive weighting of interactions for more personalized suggestions. This approach ensures dynamic and real-time course recommendations tailored to user progress and engagement, providing a more personalized and effective learning experience. This system aims to improve user engagement and optimize learning paths by offering courses that precisely match users' needs and current skill levels.

Keywords: recommendation system, online learning, real-time, user skills, expertise level, personalized recommendations, dynamic suggestions

Procedia PDF Downloads 12
38354 Narrative Function of Public Meeting Places in Uzalo Soap Opera

Authors: Michelle Micah Augustine

Abstract:

Soap opera narrative creates a sense of community. Uzalo is a South African local soap opera television series. It is unique because Uzalo tells the story of black people and their everyday struggle centered in KwaMashu township community, which is an excellent example of how moving image culture has contributed in portraying township community that was once marginalized by the apartheid regime in contemporary South Africa. While soap opera importance and promotion of social change and behaviours have been extensively studied throughout history, little research has examined the importance of space and place in its narrative. This study explored the conventional community space and place, the core elements that drive soap opera narrative. By means of qualitative content analysis, the study investigated the construction of public meeting places in Uzalo, using a purposive sampling technique to collect data by choosing episodes. The result indicates that characters convergence in public meeting places in soap opera creates disequilibrium which drives the narrative; reveals that construction of a public meeting place is an important way of creating a minimum of homogeneousness among disparate characters, gives a sense of unified experience drawing on the notion of the particular characteristics or attitude generated from such place. The result shows that the use of camera angles, movements, editing, music and usual tricks (mise-en-scene) applied in the narrative setting function as a guide for viewers comprehension of emotional responses of the story and to connect with the space in which the narrative is set.

Keywords: community, narrative, place, space, soap opera

Procedia PDF Downloads 150
38353 The Influence of Republican Culture in the Professional Education Reforms in Brazil (1892-1930)

Authors: Milene Magalhães Pinto, Irlen Antônio Gonçalves

Abstract:

This paper is within the area of History of Education in Brazil, having a descriptive and exploratory nature. It has been built on the belief that professional education is organized under political guidelines and solidifies through institutionalized discourses, allowing to know its mission concerning the society in which it operates by studying these speeches. Our purpose is to analyze how the Republican political culture yielded changes in public education through reforms to professional education in the First Republic, based on seven procedures of law that occurred in the Legislature of State of Minas Gerais. The Republican effort to reform the teaching was the result of a conception of society that aspired to advance the country by way of the national worker.

Keywords: professional education, republican political culture, education reforms, Brazil

Procedia PDF Downloads 500
38352 Children Protection in the Digital Space

Authors: Beverly Komen

Abstract:

Online crimes have been on the rise in the recent days, especially with the hit of the covid-19 pandemic. The coronavirus pandemic has led to an unprecedented rise in screen time, this means more families are relying on technology and digital solutions to keep children learning, spending more time on the virtual platforms can leave children vulnerable to online abuse and exploitation. With ease access of affordable phones, internet, and increased online activities, all children are at risk of being abused online hence making the digital space unsafe for children. With these increased use of technology and its accessibility, children are at risk of facing challenges such as access to inappropriate content, online grooming, identity theft, cyber bullying, among other risks. The big question is; as we enjoy the benefits brought in by technology, how do we ensure that our children are save in this digital space? With the analysis of the current trends, there is a gap in knowledge on people’s understanding on child online protection and safety measures when using the digital space. A survey conducted among 50 parents in Nairobi in Kenya indicated that there is a gap in knowledge on online protection of children and over 50 % of the participants shared that for sure they have no idea on how to protect children online. This paper seeks to address the concept of child protection in the digital space and come up with viable solutions in protecting children from online vices.

Keywords: child protection, digital space, online risks, online grooming, cyber bulying, online child sexual exploitation, and abuse

Procedia PDF Downloads 191
38351 Eating Patterns and Food Coping Strategy for Students of Prof. Dr. Hamka University During Covid-19 Pandemic

Authors: Chica Riska Ashari, Yoli Farradika

Abstract:

Background: Nutritional problems arise due to food security problems in the family, such as the ability of families to obtain food which is common in poor people due to lack of economic access to buy food. For this reason, it is hoped that there will be actions or behaviors that can be taken to fulfill their food or known as the Food Coping Strategy. The purpose of this study is to identify the eating patterns and Food Coping strategies of household students of prof. DR. HAMKA Muhammadiyah University Jakarta during the covid-19 pandemic. Methods: This study is a quantitative observational study with a cross-sectional approach. The dependent variable in this study is food coping strategies and eating patterns. The location of this research is Prof. DR. Hamka Muhammadiyah University. The population in this study were all students of Prof. DR. HAMKA Muhammadiyah University. The sampling technique is purposive sampling. The minimum number of samples in this study is 97 people with a response rate or drop out an estimate of 10%, so the total number of samples was 107 people. Statistical analysis with descriptive analysis. Results: The results showed that most of the food coping strategies were carried out by the students of the household of Prof. DR. HAMKA Muhammadiyah University, were buying the cheaper food (91.6%), then changing the priority of buying food (75.7%) and household members who carry out this food coping strategy are mothers (59.8%) then followed by students themselves (57, 9%). The diet of most students at the Prof. DR. HAMKA Muhammadiyah University in a day was fond of consuming sugar and foods containing sugar (candy, sugar, honey, sweet drinks) (98.1%) then eggs (97.2%). Conclusion: Food coping strategies are mostly used by households students at Prof. DR. HAMKA Muhammadiyah University who were buying the cheaper food and the member who did this behavior the most were the mothers. The diet of most students at Prof. DR. HAMKA Muhammadiyah University in a day was fond of consuming sugar and foods containing sugar (candy, sugar, honey, sweet drinks).

Keywords: behavior, eating patterns, food coping strategies, food security, students

Procedia PDF Downloads 188
38350 Componential Analysis on Defining Sustainable Furniture in Traditional Malay Houses of Melaka

Authors: Nabilah Zainal Abidin, Fawazul Khair Ibrahim, Raja Nafida Raja Shahminan

Abstract:

This paper discusses on how componential analysis is used in architecture, mainly in determining the absence and presence of furniture in Traditional Malay Houses. The house samples were retrieved from the reports archived by the Centre of Built Environment in the Malay World (KALAM) of Universiti Teknologi Malaysia (UTM). Findings from the analysis indicate that furniture available in the spaces of the houses is determined by the culture of the people and the availability of certain furniture is influenced by the activities that are carried out within the space.

Keywords: componential analysis, sustainable furniture, traditional malay house

Procedia PDF Downloads 598
38349 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 75
38348 Experimental Studies of the Response of Single Piles Under Torsional and Vertical Combined Loads in Contaminated Sand

Authors: Ahmed Mohamed Nasr, Waseim Ragab Azzam, Nada Osama Ramadan

Abstract:

Contaminated soil can weaken the stability of buildings and infrastructure, posing serious risks to their structural integrity. Therefore, this study aims to understand how oil contamination affects the torsion behavior of model steel piles at different soil densities. This research is crucial for evaluating the structural integrity and stability of piles in oil-contaminated environments. Clean sand samples and heavy motor oil were mixed in amounts ranging from 0 to 6% of the soil's dry weight. The mixture was thoroughly mixed to ensure uniform distribution of the oil throughout the sandy soil for simulating the field conditions. In these investigations, the relative densities (Dr), pile slenderness ratio (Lp/Dp), oil content (O.C%), and contaminated sand layer thickness (LC) were all different. Also, the paper presents an analysis of piles that are loaded both vertically and torsionally. The findings demonstrated that the pre-applied torsion load led to a decrease in the vertical bearing ability of the pile. Also, at Dr = 80%, the ultimate vertical load under combined load at constant torsional load T = (1/3Tu, 2/3Tu, and Tu) in the cases of (Lc/Lp) = 0.5 and (Lp/Dp) =13.3 was found to be reduced by (1.48, 2.78, and 4.15%) less than piles under independent vertical load, respectively so it is crucial to consider the torsion load during pile design.

Keywords: torsion-vertical load, oil-contaminated sand, twist angle, steel pile

Procedia PDF Downloads 77
38347 Web and Android-Based Applications as a Breakthrough in Preventing Non-System Fault Disturbances Due to Work Errors in the Transmission Unit

Authors: Dhany Irvandy, Ary Gemayel, Mohammad Azhar, Leidenti Dwijayanti, Iif Hafifah

Abstract:

Work safety is among the most important things in work execution. Unsafe conditions and actions are priorities in accident prevention in the world of work, especially in the operation and maintenance of electric power transmission. Considering the scope of work, operational work in the transmission has a very high safety risk. Various efforts have been made to avoid work accidents. However, accidents or disturbances caused by non-conformities in work implementation still often occur. Unsafe conditions or actions can cause these. Along with the development of technology, website-based applications and mobile applications have been widely used as a medium to monitor work in real-time and by more people. This paper explains the use of web and android-based applications to monitor work and work processes in the field to prevent work accidents or non-system fault disturbances caused by non-conformity of work implementation with predetermined work instructions. Because every job is monitored in real-time, recorded in time and documented systemically, this application can reduce the occurrence of possible unsafe actions carried out by job executors that can cause disruption or work accidents.

Keywords: work safety, unsafe action, application, non-system fault, real-time.

Procedia PDF Downloads 52
38346 The Diagnostic Utility and Sensitivity of the Xpert® MTB/RIF Assay in Diagnosing Mycobacterium tuberculosis in Bone Marrow Aspirate Specimens

Authors: Nadhiya N. Subramony, Jenifer Vaughan, Lesley E. Scott

Abstract:

In South Africa, the World Health Organisation estimated 454000 new cases of Mycobacterium tuberculosis (M.tb) infection (MTB) in 2015. Disseminated tuberculosis arises from the haematogenous spread and seeding of the bacilli in extrapulmonary sites. The gold standard for the detection of MTB in bone marrow is TB culture which has an average turnaround time of 6 weeks. Histological examinations of trephine biopsies to diagnose MTB also have a time delay owing mainly to the 5-7 day processing period prior to microscopic examination. Adding to the diagnostic delay is the non-specific nature of granulomatous inflammation which is the hallmark of MTB involvement of the bone marrow. A Ziehl-Neelson stain (which highlights acid-fast bacilli) is therefore mandatory to confirm the diagnosis but can take up to 3 days for processing and evaluation. Owing to this delay in diagnosis, many patients are lost to follow up or remain untreated whilst results are awaited, thus encouraging the spread of undiagnosed TB. The Xpert® MTB/RIF (Cepheid, Sunnyvale, CA) is the molecular test used in the South African national TB program as the initial diagnostic test for pulmonary TB. This study investigates the optimisation and performance of the Xpert® MTB/RIF on bone marrow aspirate specimens (BMA), a first since the introduction of the assay in the diagnosis of extrapulmonary TB. BMA received for immunophenotypic analysis as part of the investigation into disseminated MTB or in the evaluation of cytopenias in immunocompromised patients were used. Processing BMA on the Xpert® MTB/RIF was optimised to ensure bone marrow in EDTA and heparin did not inhibit the PCR reaction. Inactivated M.tb was spiked into the clinical bone marrow specimen and distilled water (as a control). A volume of 500mcl and an incubation time of 15 minutes with sample reagent were investigated as the processing protocol. A total of 135 BMA specimens had sufficient residual volume for Xpert® MTB/RIF testing however 22 specimens (16.3%) were not included in the final statistical analysis as an adequate trephine biopsy and/or TB culture was not available. Xpert® MTB/RIF testing was not affected by BMA material in the presence of heparin or EDTA, but the overall detection of MTB in BMA was low compared to histology and culture. Sensitivity of the Xpert® MTB/RIF compared to both histology and culture was 8.7% (95% confidence interval (CI): 1.07-28.04%) and sensitivity compared to histology only was 11.1% (95% CI: 1.38-34.7%). Specificity of the Xpert® MTB/RIF was 98.9% (95% CI: 93.9-99.7%). Although the Xpert® MTB/RIF generates a faster result than histology and TB culture and is less expensive than culture and drug susceptibility testing, the low sensitivity of the Xpert® MTB/RIF precludes its use for the diagnosis of MTB in bone marrow aspirate specimens and warrants alternative/additional testing to optimise the assay.

Keywords: bone marrow aspirate , extrapulmonary TB, low sensitivity, Xpert® MTB/RIF

Procedia PDF Downloads 175
38345 Quantitative and Qualitative Analysis: Predicting and Improving Students’ Summative Assessment Math Scores at the National College for Nuclear

Authors: Abdelmenen Abobghala, Mahmud Ahmed, Mohamed Alwaheshi, Anwar Fanan, Meftah Mehdawi, Ahmed Abuhatira

Abstract:

This research aims to predict academic performance and identify weak points in students to aid teachers in understanding their learning needs. Both quantitative and qualitative methods are used to identify difficult test items and the factors causing difficulties. The study uses interventions like focus group discussions, interviews, and action plans developed by the students themselves. The research questions explore the predictability of final grades based on mock exams and assignments, the student's response to action plans, and the impact on learning performance. Ethical considerations are followed, respecting student privacy and maintaining anonymity. The research aims to enhance student engagement, motivation, and responsibility for learning.

Keywords: prediction, academic performance, weak points, understanding, learning, quantitative methods, qualitative methods, formative assessments, feedback, emotional responses, intervention, focus group discussion, interview, action plan, student engagement, motivation, responsibility, ethical considerations

Procedia PDF Downloads 74
38344 Comparison of Analgesic Efficacy of Ropivacaine and Levobupivacaine in Labour Analgesia by Dural Puncture Epidural Technique – A Prospective Double-blinded Randomized Trial

Authors: J. Punj, R. K. Pandey, V. Darlong, K. Thangavel

Abstract:

Background: Dural puncture epidural (DPE) technique has been introduced recently for labour analgesia however, no study has compared ropivacaine and levobupivacaine for the same. Methods: The primary aim of the study was to compare time to onset of the Numerical Pain Rating Score (NPRS) ≤ 1 in labour analgesia with both drugs. After obtaining ethics and patient consent, ASA I and ASA II parturient with single foetus in vertex presentation and cervical dilatation <5.0 cm were included. DPE was performed with 16/ 26 G combined spinal epidural (CSE) technique, and parturients randomized into two groups. In Group R ( Ropivacaine) 20 ml 0.125% ropivacaine+ fentanyl 2µg/ml was injected to a maximum of 20 ml in 20 minutes and in Group L (Levobupivacaine), 20 ml 0.125% levobupivacaine + fentanyl 2µg/ml was injected. Outcomes were assessed at 0.5,2,4,6,8,10,12,14,16,18,20 and 30 minutes, then every 90 minutes until delivery. Appropriate statistical analysis was done, and p value of <0.05 was considered statistically significant. Results: The median time to onset of NPRS ≤1 in both groups was comparable (group R= 16 minutes vs group L= 18 minutes (p = 0.076). Volume of drug for NPR ≤1 in both groups was also comparable (Group R 15.95± 2.03 ml vs Group L 16.35 ± 1.34 ml (p=0.47). Conclusion: DPE with 16 G epidural needle and 26 gauge spinal needle with both 0.125% ropivacaine and 0.125% levobupivacaine results in similar efficacy of labour analgesia.

Keywords: dural puncture epidural, labour analgesia, obstetric analgesia, hypotension

Procedia PDF Downloads 94
38343 Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination

Authors: Sabriye Piskin, Sibel Kasap, Muge Sari Yilmaz

Abstract:

Nanocrystalline TiO2 particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO2 particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO2 particles.

Keywords: crystalline TiO2, sonochemical mechanism, sol-gel reaction, XRD

Procedia PDF Downloads 462
38342 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition

Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao

Abstract:

Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.

Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity

Procedia PDF Downloads 82