Search results for: road base material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9512

Search results for: road base material

3842 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density

Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita

Abstract:

Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.

Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite

Procedia PDF Downloads 102
3841 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 316
3840 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression

Authors: Sito Ismanti, Noriyuki Yasufuku

Abstract:

Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.  

Keywords: bamboo chips, permeability, mechanical properties, triaxial compression

Procedia PDF Downloads 328
3839 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite

Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan

Abstract:

Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.

Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation

Procedia PDF Downloads 138
3838 Emerging Issues of Non-Communicable Diseases among Older Persons in India

Authors: Dhananjay W. Bansod, Santosh Phad

Abstract:

Non-Communicable Diseases (NCD) are major contributing factors to the disease burden in the world as well as in India. With a growing proportion of older persons in India gives rise to several challenges. With the advancement of age, elderly is exposed to various kinds of health problems more specifically NCDs. Therefore, an effort has been made to examine the prevalence of NCDs among older persons and its treatment-seeking behaviour, also it is tried to explore the association between the NCDs and its effect on the overall wellbeing of older persons. Data used from “Building Knowledge Base of Population Ageing Survey” conducted in 2011 in seven states of India. Six chronic diseases used (non-communicable diseases) namely Arthritis, Hypertension, Cataract, Diabetes, Asthma and Heart diseases to understand the issues related to NCDs. Also seen the effect of NCDs on the wellbeing of the elderly, the subjective well-being consists of nine questions from which SUBI score generated for mental health status, which ranges from 9 to 27. This Index indicates that lower the score better is the mental health status. Further, this index modified and generated three categories of Better (9-15), Average (16-20) and Worse (21-27). The reliability analysis is carried out with the coefficient (Cronbach’s alpha) of the scale was 0.8884. The result shows that Orthopedic / musculoskeletal ailments involving arthritis, rheumatism and osteoarthritis are the most common type of ailment followed by hypertension. Two-thirds of the elderly reported suffering from at least one chronic ailment. Most chronic illness conditions received some form of treatment and mainly depend on public health facilities. Financial insecurity is the primary obstruction in seeking treatment for most of the chronic ailments which typically require a longer duration of medication and repeated medical consultations, both having significant economic implications. According to SUBI index, only 15 per cent of the elderly are in Better mental health status, and one-third of the elderly are with the worse score. Elderly with the ailments like Cataract, Asthma and Arthritis have worse mental health. It depicts that the burden of disease is more among the elderly and it is directly affecting the overall wellbeing of older persons.

Keywords: NCD, well-being, older person, India

Procedia PDF Downloads 140
3837 Inhibitory Mechanism of Ag and Fe Colloidal Nanoparticles on P. aeruginosa and E.coli Growth

Authors: Fatemeh Moradian, Razieh Ghorbani, Poria Biparva

Abstract:

Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their Nano composites as an alternative. The use of metal nanoparticles to combat bacterial infections is one of the most wide spread applications of nanotechnology in the field of antibacterial. Nanomaterials have unique properties compared to their bulk counterparts. In this report, we demonstrate the antimicrobial activity of zerovalent Iron(ZVI) and Ag(silver) nanoparticles against Gram-negative bacteria E.coli(DH5α) and Pseudomonas aeruginosa. At first ZVI and Ag nanoparticles were synthesized by chemical reduction method and using scanning electron microscopy (SEM) the nanoparticle size determined. Different concentrations of Ag and ZVI nanoparticles were added to bacteria on nutrient agar medium. Minimum inhibitory concentration (MIC) of Ag and Fe nanoparticles for P. aeruginosa were 5µM and 1µg as well as for E.coli were 6µM. and 10 µg, respectively. Among the two nanoparticles, ZVI showed that the greatest antimicrobial activity against E.coli and Ag nanoparticle on P.aeruginosa. Results suggested that the bactericidal effect of metal nanoparticles has been attributed to their small size as well as high surface to volume ratio and NPs could be used as an effective antibacterial material.

Keywords: bactericidal properties, MIC, nanoparticle, SEM

Procedia PDF Downloads 587
3836 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks

Authors: Bachir Chemani, Halima Chemani

Abstract:

The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.

Keywords: clay, coal, resistance to compression, insulating bricks

Procedia PDF Downloads 324
3835 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach

Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday

Abstract:

One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.

Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach

Procedia PDF Downloads 194
3834 Effect of Nickel Coating on Corrosion of Alloys in Molten Salts

Authors: Divya Raghunandanan, Bhavesh D. Gajbhiye, C. S. Sona, Channamallikarjun S. Mathpati

Abstract:

Molten fluoride salts are considered as potential coolants for next generation nuclear plants where the heat can be utilized for production of hydrogen and electricity. Among molten fluoride salts, FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a potential candidate for the coolant due to its superior thermophysical properties such as high temperature stability, boiling point, volumetric heat capacity and thermal conductivity. Major technical challenge in implementation is the selection of structural material which can withstand corrosive nature of FLiNaK. Corrosion study of alloys SS 316L, Hastelloy B, Ni-201 was performed in molten FLiNaK at 650°C. Nickel was found to be more resistant to corrosive attack in molten fluoride medium. Corrosion experiments were performed to study the effect of nickel coating on corrosion of alloys SS 316L and Hastelloy B. Weight loss of the alloys due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloys was analyzed by Scanning Electron Microscopy.

Keywords: corrosion, FLiNaK, hastelloy, weight loss

Procedia PDF Downloads 437
3833 Termite Brick Temperature and Relative Humidity by Continuous Monitoring Technique

Authors: Khalid Abdullah Alshuhail, Syrif Junidi, Ideisan Abu-Abdoum, Abdulsalam Aldawoud

Abstract:

For the intention of reducing energy consumption, a proposed construction brick was made of imitation termite mound soil referred here as termite brick (TB). To calculate the thermal performance, a real case model was constructed by using this biomimetic brick for testing purposes. This paper aims at investigating the thermal performance of this brick during different climatic months. Its thermal behaviour was thoroughly studied over the course of four months by using continuous method (CMm). The main parameters were focused on temperature and relative humidity. It was found that the TB does not perform similarly in all four months and/or in all orientations. Each four-month model study was deeply analyzed. By using the CMm method, the model was also examined. The measuring period shows generally that internal temperature and internal humidity are higher in the roof within 2 degrees and lowest at north wall orientation. The relative humidity was also investigated systematically. The paper reveals more interesting findings.

Keywords: building material, continious monitoring, orientation, wall, temprature

Procedia PDF Downloads 118
3832 Nanostructural Analysis of the Polylactic Acid (PLA) Fibers Functionalized by RF Plasma Treatment

Authors: J. H. O. Nascimento, F. R. Oliveira, K. K. O. S. Silva, J. Neves, V. Teixeira, J. Carneiro

Abstract:

These the aliphatic polyesters such as Polylactic Acid (PLA) in the form of fibers, nanofibers or plastic films, generally possess chemically inert surfaces, free porosity, and surface free energy (ΔG) lesser than 32 mN/m. It is therefore considered a low surface energy material, consequently has a low work of adhesion. For this reason, the products manufactured using these polymers are often subjected to surface treatments in order to change its physic-chemical surface, improving their wettability and the Work of Adhesion (WA). Plasma Radio Frequency low pressure (RF) treatment was performed in order to improve the Work of Adhesion (WA) on PLA fibers. Different parameters, such as, power, ratio of working gas (Argon/Oxygen) and treatment time were used to optimize the plasma conditions to modify the PLA surface properties. With plasma treatment, a significant increase in the work of adhesion on PLA fiber surface was observed. The analysis performed by XPS showed an increase in polar functional groups and the SEM and AFM image revealed a considerable increase in roughness.

Keywords: RF plasma, surface modification, PLA fabric, atomic force macroscopic, Nanotechnology

Procedia PDF Downloads 527
3831 Transformer Design Optimization Using Artificial Intelligence Techniques

Authors: Zakir Husain

Abstract:

Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.

Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)

Procedia PDF Downloads 572
3830 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate

Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco

Abstract:

The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.

Keywords: environmental impact, geotechnics, PET, silty clay soil

Procedia PDF Downloads 232
3829 Hydrogel Based on Cellulose Acetate Used as Scaffold for Cell Growth

Authors: A. Maria G. Melero, A. M. Senna, J. A. Domingues, M. A. Hausen, E. Aparecida R. Duek, V. R. Botaro

Abstract:

A hydrogel from cellulose acetate cross linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) was synthesized by our research group, and submitted to characterization and biological tests. Cytocompatibility analysis was performed by confocal microscopy using human adipocyte derived stem cells (ASCs). The FTIR analysis showed characteristic bands of cellulose acetate and hydroxyl groups and the tensile tests evidence that HAC-EDTA present a Young’s modulus of 643.7 MPa. The confocal analysis revealed that there was cell growth at the surface of HAC-EDTA. After one day of culture the cells presented spherical morphology, which may be caused by stress of the sequestration of Ca2+ and Mg2+ ions at the cell medium by HAC-EDTA, as demonstrated by ICP-MS. However, after seven days and 14 days of culture, the cells present fibroblastoid morphology, phenotype expected by this cellular type. The results give efforts to indicate this new material as a potential biomaterial for tissue engineering, in the future in vivo approach.

Keywords: cellulose acetate, hydrogel, biomaterial, cellular growth

Procedia PDF Downloads 190
3828 The Relationship between Functional Movement Screening Test and Prevalence of Musculoskeletal Disorders in Emergency Nurse and Emergency Medical Services Staff Shiraz, Iran, 2017

Authors: Akram Sadat Jafari Roodbandi, Alireza Choobineh, Nazanin Hosseini, Vafa Feyzi

Abstract:

Introduction: Physical fitness and optimum functional movement are essential for efficiently performing job tasks without fatigue and injury. Functional Movement Screening (FMS) tests are used in screening of athletes and military forces. Nurses and emergency medical staff are obliged to perform many physical activities such as transporting patients, CPR operations, etc. due to the nature of their jobs. This study aimed to assess relationship between FMS test score and the prevalence of musculoskeletal disorders (MSDs) in emergency nurses and emergency medical services (EMS) staff. Methods: 134 male and female emergency nurses and EMS technicians participated in this cross-sectional, descriptive-analytical study. After video tutorial and practical training of how to do FMS test, the participants carried out the test while they were wearing comfortable clothes. The final score of the FMS test ranges from 0 to 21. The score of 14 is considered weak in the functional movement base on FMS test protocol. In addition to the demographic data questionnaire, the Nordic musculoskeletal questionnaire was also completed for each participant. SPSS software was used for statistical analysis with a significance level of 0.05. Results: Totally, 49.3% (n=66) of the subjects were female. The mean age and work experience of the subjects were 35.3 ± 8.7 and 11.4 ± 7.7, respectively. The highest prevalence of MSDs was observed at the knee and lower back with 32.8% (n=44) and 23.1% (n=31), respectively. 26 (19.4%) health worker had FMS test score of 14 and less. The results of the Spearman correlation test showed that the FMS test score was significantly associated with MSDs (r=-0.419, p < 0.0001). It meant that MSDs increased with the decrease of the FMS test score. Age, sex, and MSDs were the remaining significant factors in linear regression logistic model with dependent variable of FMS test score. Conclusion: FMS test seems to be a usable screening tool in pre-employment and periodic medical tests for occupations that require physical fitness and optimum functional movements.

Keywords: functional movement, musculoskeletal disorders, health care worker, screening test

Procedia PDF Downloads 126
3827 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 127
3826 Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures

Authors: Lenka Bodnárová, Rudolf Hela, Michala Hubertová, Iveta Nováková

Abstract:

This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete.

Keywords: expanded clay aggregate, explosive spalling, high temperature, lightweight concrete, temperature-time curve ISO 834

Procedia PDF Downloads 437
3825 Effect of Poly Naphthalene Sulfonate Superplasticizer on Constructibility of Roller-Compacted Concrete Pavement

Authors: Chamroeun Chhorn, Seong Jae Hong, Yoon-Ho Cho, Hyun Jong Lee, Seung Woo Lee

Abstract:

The use of Roller-Compacted Concrete Pavement (RCCP) in public and private applications has been increasing steadily in the past few decades due to its cost saving. This eco-concrete pavement shares construction characteristics from asphalt pavement and material characteristics from the conventional concrete pavement. Due to its low binder and water content, the consistency of Roller-Compacted Concrete (RCC) is typically very stiff. Thus, it is crucial to control the consistency of this concrete. Without appropriate consistency, required density may not be achieved in actual construction for RCCP. The purpose of this study is to investigate the effect on Poly Naphtalene Sulfonate (PNS) superplasticizer on the consistency of RCC as well as its compactibility in actual construction. From this study, it was found that PNS superplasticizer can effectively reduce the stiffness of an RCC mixture and maintain it for a sufficient amount of time without compromising its strength properties. Moreover, it was observed from field test specimens that the use of this admixture can also improve the compaction efficiency throughout the whole depth of pavement.

Keywords: roller-compacted concrete, consistency, compactibility, poly naphthalene sulfonate superplasticizer

Procedia PDF Downloads 244
3824 A Static and Dynamic Slope Stability Analysis of Sonapur

Authors: Rupam Saikia, Ashim Kanti Dey

Abstract:

Sonapur is an intense hilly region on the border of Assam and Meghalaya lying in North-East India and is very near to a seismic fault named as Dauki besides which makes the region seismically active. Besides, these recently two earthquakes of magnitude 6.7 and 6.9 have struck North-East India in January and April 2016. Also, the slope concerned for this study is adjacent to NH 44 which for a long time has been a sole important connecting link to the states of Manipur and Mizoram along with some parts of Assam and so has been a cause of considerable loss to life and property since past decades as there has been several recorded incidents of landslide, road-blocks, etc. mostly during the rainy season which comes into news. Based on this issue this paper reports a static and dynamic slope stability analysis of Sonapur which has been carried out in MIDAS GTS NX. The slope being highly unreachable due to terrain and thick vegetation in-situ test was not feasible considering the current scope available so disturbed soil sample was collected from the site for the determination of strength parameters. The strength parameters were so determined for varying relative density with further variation in water content. The slopes were analyzed considering plane strain condition for three slope heights of 5 m, 10 m and 20 m which were then further categorized based on slope angles 30, 40, 50, 60, and 70 considering the possible extent of steepness. Initially static analysis under dry state was performed then considering the worst case that can develop during rainy season the slopes were analyzed for fully saturated condition along with partial degree of saturation with an increase in the waterfront. Furthermore, dynamic analysis was performed considering the El-Centro Earthquake which had a magnitude of 6.7 and peak ground acceleration of 0.3569g at 2.14 sec for the slope which were found to be safe during static analysis under both dry and fully saturated condition. Some of the conclusions were slopes with inclination above 40 onwards were found to be highly vulnerable for slopes of height 10 m and above even under dry static condition. Maximum horizontal displacement showed an exponential increase with an increase in inclination from 30 to 70. The vulnerability of the slopes was seen to be further increased during rainy season as even slopes of minimal steepness of 30 for height 20 m was seen to be on the verge of failure. Also, during dynamic analysis slopes safe during static analysis were found to be highly vulnerable. Lastly, as a part of the study a comparative study on Strength Reduction Method (SRM) versus Limit Equilibrium Method (LEM) was also carried out and some of the advantages and disadvantages were figured out.

Keywords: dynamic analysis, factor of safety, slope stability, strength reduction method

Procedia PDF Downloads 257
3823 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates

Authors: Gavin Gengan, Hsein Kew

Abstract:

Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concrete

Keywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic

Procedia PDF Downloads 200
3822 On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber

Authors: Humayun R. H. Kabir

Abstract:

A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome.

Keywords: dome, strengthening program, carbon fiber, load test

Procedia PDF Downloads 247
3821 Leadership, Corruption, and Governance in Nigeria since 1960: The Way Forward

Authors: Reginald Chikere Keke

Abstract:

This paper examined leadership failure consequent on endemic corruption as being the bane of good governance in Nigeria since independence in 1960 and the way forward. Nigeria is lavishly gifted by nature of abundance in human and material resources to be harnessed a strategic, resolute, ingenious, and inventive leadership. For leadership to drive sustainable growth in society, it must be rooted in the cultural values of the people. This, however, is contrary in Nigeria owing to unscrupulous leadership miscarriage, corruption, and bad governance. Using the eclectic approach, the paper scrutinizes the issues of leadership, corruption, and governance to clearly show how bad leadership and governance have destroyed the national fabric and the way out of Nigeria's development quack mire. Furthermore, this paper examined the perplexing nature of corruption in Nigeria that has made it the only lucrative endeavor for politicians and their cronies, leading Nigeria to be regarded as the world's poverty capital. This paper advocate that Nigerians and the international community must endeavor to enshrine effective leadership and good governance through strong institutions, laws, and individuals who have zero tolerance for corruption and mediocrity in the polity. Only then will the fatherland of everyone’s dreams will be realized, and the labors of our hero’s past will not be in vain.

Keywords: corruption, leadership, governance, Nigeria

Procedia PDF Downloads 122
3820 Differences in Production of Knowledge between Internationally Mobile versus Nationally Mobile and Non-Mobile Scientists

Authors: Valeria Aman

Abstract:

The presented study examines the impact of international mobility on knowledge production among mobile scientists and within the sending and receiving research groups. Scientists are relevant to the dynamics of knowledge production because scientific knowledge is mainly characterized by embeddedness and tacitness. International mobility enables the dissemination of scientific knowledge to other places and encourages new combinations of knowledge. It can also increase the interdisciplinarity of research by forming synergetic combinations of knowledge. Particularly innovative ideas can have their roots in related research domains and are sometimes transferred only through the physical mobility of scientists. Diversity among scientists with respect to their knowledge base can act as an engine for the creation of knowledge. It is therefore relevant to study how knowledge acquired through international mobility affects the knowledge production process. In certain research domains, international mobility may be essential to contextualize knowledge and to gain access to knowledge located at distant places. The knowledge production process contingent on the type of international mobility and the epistemic culture of a research field is examined. The production of scientific knowledge is a multi-faceted process, the output of which is mainly published in scholarly journals. Therefore, the study builds upon publication and citation data covered in Elsevier’s Scopus database for the period of 1996 to 2015. To analyse these data, bibliometric and social network analysis techniques are used. A basic analysis of scientific output using publication data, citation data and data on co-authored publications is combined with a content map analysis. Abstracts of publications indicate whether a research stay abroad makes an original contribution methodologically, theoretically or empirically. Moreover, co-citations are analysed to map linkages among scientists and emerging research domains. Finally, acknowledgements are studied that can function as channels of formal and informal communication between the actors involved in the process of knowledge production. The results provide better understanding of how the international mobility of scientists contributes to the production of knowledge, by contrasting the knowledge production dynamics of internationally mobile scientists with those being nationally mobile or immobile. Findings also allow indicating whether international mobility accelerates the production of knowledge and the emergence of new research fields.

Keywords: bibliometrics, diversity, interdisciplinarity, international mobility, knowledge production

Procedia PDF Downloads 287
3819 Education and Development: An Overview of Islam

Authors: Rasheed Sanusi Adeleke

Abstract:

Several attempts have been made by scholars, both medieval and contemporary on the impact of Islam on scientific discovery. Lesser attention, however, is always accorded to the historical antecedents of the earlier Muslim scholars, who made frantic efforts towards the discoveries. Islam as a divine religion places high premium on the acquisition of knowledge especially that of sciences. It considers knowledge as a comprehensive whole, which covers both spiritual and material aspects of human life. Islam torches every aspect of human life for the growth, development and advancement of society. Acquisition of knowledge of humanity, social sciences as well as the pure and applied sciences is comprehensively expressed in Islamic education. Not only this, the history portrays the leading indelible roles played by the early Muslims on these various fields of knowledge. That is why Islam has declared acquisition of knowledge compulsory for all Muslims. This paper therefore analyses the contributions of Islam to civilization with particular reference to sciences. It also affirms that Islam is beyond the religion of prayers and rituals. The work is historic, analytic and explorative in nature. Recommendations are also also put forward as suggestions for the present generation cum posterity in general and Muslims in particular.

Keywords: education, development, Islam, development and Islam

Procedia PDF Downloads 429
3818 Online Consortium of Independent Colleges and Universities (OCICU): Using Cluster Analysis to Grasp Student and Institutional Value of Consolidated Online Offerings in Higher Education

Authors: Alex Rodriguez, Adam Guerrero

Abstract:

Purpose: This study is designed to examine the institutions that comprise the Online Consortium of Independent Colleges and Universities (OCICU) to understand better the types of higher education institutions that comprise their membership. The literature on this topic is extensive in analyzing the current economic environment around higher education, which is largely considered to be negative for independent, tuition-driven institutions, and is forcing colleges and universities to reexamine how the college-attending population defines value and how institutions can best utilize their existing resources (and those of other institutions) to meet that value expectation. The results from this analysis are intended to give OCICU the ability to target their current customer base better, based on their most notable differences, and other institutions to see how to best approach consolidation within higher education. Design/Methodology: This study utilized k-means cluster analysis in order to explore the possibility that different segments exist within the seventy-one colleges and universities that have comprised OCICU. It analyzed fifty different variables, whose selection was based on the previous literature, collected by the Integrated Postsecondary Education Data System (IPEDS), whose data is self-reported by individual institutions. Findings: OCICU member institutions are partitioned into two clusters: "access institutions" and "conventional institutions” based largely on the student profile they target. Value: The methodology of the study is relatively unique as there are not many studies within the field of higher education marketing that have employed cluster analysis, and this type of analysis has never been conducted on OCICU members, specifically, or that of any higher education consolidated offering. OCICU can use the findings of this study to obtain a better grasp as to the specific needs of the two market segments OCICU currently serves and develop measurable marketing programs around how those segments are defined that communicate the value sought by current and potential OCICU members or those of similar institutions. Other consolidation efforts within higher education can also employ the same methodology to determine their own market segments.

Keywords: Consolidation, Colleges, Enrollment, Higher Education, Marketing, Strategy, Universities

Procedia PDF Downloads 125
3817 The Impact of Human Intervention on Net Primary Productivity for the South-Central Zone of Chile

Authors: Yannay Casas-Ledon, Cinthya A. Andrade, Camila E. Salazar, Mauricio Aguayo

Abstract:

The sustainable management of available natural resources is a crucial question for policy-makers, economists, and the research community. Among several, land constitutes one of the most critical resources, which is being intensively appropriated by human activities producing ecological stresses and reducing ecosystem services. In this context, net primary production (NPP) has been considered as a feasible proxy indicator for estimating the impacts of human interventions on land-uses intensity. Accordingly, the human appropriation of NPP (HANPP) was calculated for the south-central regions of Chile between 2007 and 2014. The HANPP was defined as the difference between the potential NPP of the naturally produced vegetation (NPP0, i.e., the vegetation that would exist without any human interferences) and the NPP remaining in the field after harvest (NPPeco), expressed in gC/m² yr. Other NPP flows taken into account in HANPP estimation were the harvested (NPPh) and the losses of NPP through land conversion (NPPluc). The ArcGIS 10.4 software was used for assessing the spatial and temporal HANPP changes. The differentiation of HANPP as % of NPP0 was estimated by each landcover type taken in 2007 and 2014 as the reference years. The spatial results depicted a negative impact on land use efficiency during 2007 and 2014, showing negative HANPP changes for the whole region. The harvest and biomass losses through land conversion components are the leading causes of loss of land-use efficiency. Furthermore, the study depicted higher HANPP in 2014 than in 2007, representing 50% of NPP0 for all landcover classes concerning 2007. This performance was mainly related to the higher volume of harvested biomass for agriculture. In consequence, the cropland depicted the high HANPP followed by plantation. This performance highlights the strong positive correlation between the economic activities developed into the region. This finding constitutes the base for a better understanding of the main driving force influencing biomass productivity and a powerful metric for supporting the sustainable management of land use.

Keywords: human appropriation, land-use changes, land-use impact, net primary productivity

Procedia PDF Downloads 130
3816 A Design Method for Wind Turbine Blade to Have Uniform Strength and Optimum Power Generation Performance

Authors: Pengfei Liu, Yiyi Xu

Abstract:

There have been substantial incidents of wind turbine blade fractures and failures due to the lack of systematic blade strength design method incorporated with the aerodynamic forces and power generation efficiency. This research was to develop a methodology and procedure for the wind turbine rotor blade strength taking into account the strength, integration, and aerodynamic performance in terms of power generation efficiency. The wind turbine blade designed using this method and procedure will have a uniform strength across the span to save unnecessary thickness in many blade radial locations and yet to maintain the optimum power generation performance. A turbine rotor code, taking into account both aerodynamic and structural properties, was developed. An existing wind turbine blade was used as an example. For a condition of extreme wind speed of 100 km per hour, the design reduced about 19% of material usage while maintaining the optimum power regeneration efficiency.

Keywords: renewable energy, wind turbine, turbine blade strength, aerodynamics-strength coupled optimization

Procedia PDF Downloads 169
3815 Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials

Authors: Heitor Oliveira, Gabriele De-Waal, Juergen Schmenger, Lynsey Godfrey, Tibor Kovacs

Abstract:

Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings.

Keywords: colloids, hair cosmetics, light scattering, performance and stability, soft materials, viscoelastic properties

Procedia PDF Downloads 169
3814 Structural Performances of Rubberized Concrete Wall Panel Utilizing Fiber Cement Board as Skin Layer

Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Mo Kim Hung, Yip Chun Chieh

Abstract:

This research delves into the structural characteristics of distinct construction material, rubberized lightweight foam concrete (RLFC) wall panels, which have been developed as a sustainable alternative for the construction industry. These panels are engineered with a RLFC core, possessing a density of 1150 kg/m3, which is specifically formulated to bear structural loads. The core is enveloped with high-strength fiber cement boards, selected for their superior load-bearing capabilities, and enhanced flexural strength when compared to conventional concrete. A thin bed adhesive, known as TPS, is employed to create a robust bond between the RLFC core and the fiber cement cladding. This study underscores the potential of RLFC wall panels as a viable and eco-friendly option for modern building construction, offering a combination of structural efficiency and environmental benefits.

Keywords: structural performance, rubberized concrete wall panel, fiber cement board, insulation performance

Procedia PDF Downloads 52
3813 Concrete Performance Evaluation of Coarse Aggregate Replacement by Civil Construction Waste

Authors: Juliane P. De Oliveira, Carlos H. Dos Santos, Marcia Shoji, Maria E. C. Ferreira, Natalia U. Yamaguchi

Abstract:

The construction sector is considered a major generator of environmental impacts due to the high consumption of natural resources and waste generation. Thus, this article aims to evaluate the performance of a concrete produced by the partial and total replacement of natural coarse aggregate by recycled coarse aggregate, derived from the concrete residue of buildings and demolitions. The study was made by comparing the compressive strength and absorption of three different concrete traces, keeping the water/cement factor of 0.60 and changing only the proportions of recycled coarse aggregate between 0%, 50% and 100%. Traces 50% and 100% obtained good results by comparing the actual specific mass, because the material used is lighter to the natural coarse aggregate. It was concluded that the concrete produced with recycled aggregates, even with inferior results, can be used where it is not needed a structural function, giving an adequate destination to the construction and demolition waste and consequently reducing the extraction and consumption of natural resources.

Keywords: green concrete, recycled aggregate, recycling, sustainable development

Procedia PDF Downloads 145