Search results for: waste characterization
4581 The Impact of the Adittapariyaya Sutta in the Meaning-making of T.S. Eliot’s The Waste Land: A critical Analysis
Authors: Ven Pothupitiye Thilakasiri
Abstract:
The Ādittapariyāya Sutta, also known as the Fire Sermon is an important Buddhist text that addresses the nature of sensual pleasures and attachment through the metaphor of fire. Eliot makes use of this in his epic poem The Waste Land. Though scholars have studied Eliot‘s long poem for traces of eastern philosophy, no scholars have touched upon the idea of how the Adittapariyaya Sutta has enabled the meaning making endeavor of the poem. The present study attempts to address this research gap by undertaking a critical analysis of the Fire Sermon of The Waste Land by undertaking an interdisciplinary study of the poem using two methods—a literary and Buddhist reading methods, namely objective corelative and the three-pillared Buddhist ideas of Anicca (impermanence), Dukkha (suffering) and Anatha (No-self). Thus, the study explores the Ādittapariyāya Sutta’s thematic concerns of impermanence, suffering and no-self within the context of The Waste Land. The setting of the poem symbolizes spiritual desolation and existential crisis. By comparing Sutta‘s teachings with modern existential concerns, which is depicted in T.S. Eliot‘s The Waste Land, the analysis emphasizes the relevance of Buddhist insights to contemporary issues of meaning and disillusioKeywords: Adittapariyaya Sutta, Objective correlative, Eastern Philosophy, Sensual pleasures
Procedia PDF Downloads 314580 Production and Leftovers Usage Policies to Minimize Food Waste under Uncertain and Correlated Demand
Authors: Esma Birisci, Ronald McGarvey
Abstract:
One of the common problems in food service industry is demand uncertainty. This research presents a multi-criteria optimization approach to identify the efficient frontier of points lying between the minimum-waste and minimum-shortfall solutions within uncertain demand environment. It also addresses correlation across demands for items (e.g., hamburgers are often demanded with french fries). Reducing overproduction food waste (and its corresponding environmental impacts) and an aversion to shortfalls (leave some customer hungry) need to consider as two contradictory objectives in an all-you-care-to-eat environment food service operation. We identify optimal production adjustments relative to demand forecasts, demand thresholds for utilization of leftovers, and percentages of demand to be satisfied by leftovers, considering two alternative metrics for overproduction waste: mass; and greenhouse gas emissions. Demand uncertainty and demand correlations are addressed using a kernel density estimation approach. A statistical analysis of the changes in decision variable values across each of the efficient frontiers can then be performed to identify the key variables that could be modified to reduce the amount of wasted food at minimal increase in shortfalls. We illustrate our approach with an application to empirical data from Campus Dining Services operations at the University of Missouri.Keywords: environmental studies, food waste, production planning, uncertain and correlated demand
Procedia PDF Downloads 3754579 Biogas Production from Zebra Manure and Winery Waste Co-Digestion
Authors: Wicleffe Musingarimi
Abstract:
Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas.Keywords: anaerobic digestion, biogas, co-digestion, methanogens
Procedia PDF Downloads 2284578 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement
Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson
Abstract:
Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.Keywords: polyethylene, recycling, waste, composite, kaolin
Procedia PDF Downloads 1774577 Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics
Authors: Fares Alsewailem
Abstract:
Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum.Keywords: Recycling, PET, PS, HDPE, mechanical
Procedia PDF Downloads 2864576 The Use of Geographic Information System for Selecting Landfill Sites in Osogbo
Authors: Nureni Amoo, Sunday Aroge, Oluranti Akintola, Hakeem Olujide, Ibrahim Alabi
Abstract:
This study investigated the optimum landfill site in Osogbo so as to identify suitable solid waste dumpsite for proper waste management in the capital city. Despite an increase in alternative techniques for disposing of waste, landfilling remains the primary means of waste disposal. These changes in attitudes in many parts of the world have been supported by changes in laws and policies regarding the environment and waste disposal. Selecting the most suitable site for landfill can avoid any ecological and socio-economic effects. The increase in industrial and economic development, along with the increase of population growth in Osogbo town, generates a tremendous amount of solid waste within the region. Factors such as the scarcity of land, the lifespan of the landfill, and environmental considerations warrant that the scientific and fundamental studies are carried out in determining the suitability of a landfill site. The analysis of spatial data and consideration of regulations and accepted criteria are part of the important elements in the site selection. This paper presents a multi-criteria decision-making method using geographic information system (GIS) with the integration of the fuzzy logic multi-criteria decision making (FMCDM) technique for landfill suitability site evaluation. By using the fuzzy logic method (classification of suitable areas in the range of 0 to 1 scale), the superposing of the information layers related to drainage, soil, land use/land cover, slope, land use, and geology maps were performed in the study. Based on the result obtained in this study, five (5) potential sites are suitable for the construction of a landfill are proposed, two of which belong to the most suitable zone, and the existing waste disposal site belonged to the unsuitable zone.Keywords: fuzzy logic multi-criteria decision making, geographic information system, landfill, suitable site, waste disposal
Procedia PDF Downloads 1484575 Management Methods of Food Losses in Polish Processing Plants
Authors: Beata Bilska, Marzena Tomaszewska, Danuta Kolozyn-Krajewska
Abstract:
Food loss and food waste are a global problem of the modern economy. The research undertaken aimed to analyze how food is handled in catering establishments when it comes to food waste and to demonstrate the main ways of management with foods/dishes not served to consumers. A survey study was conducted from January to June 2019. The selection of catering establishments participating in the study was deliberate. The study included establishments located only in Mazowieckie Voivodeship (Poland). Forty-two completed questionnaires were collected. In some questions, answers were based on a 5-point scale of 1 to 5 (from "always" / "every day" to "never"). The survey also included closed questions with a suggested cafeteria of answers. The respondents stated that in their workplaces, dishes served cold and hot ready meals are discarded every day or almost every day (23.7% and 20.5% of answers respectively). A procedure most frequently used for dealing with dishes not served to consumers on a given day is their storage at a cool temperature until the following day. In the research, 1/5 of respondents admitted that consumers "always" or "usually" leave uneaten meals on their plates, and over 41% "sometimes" do so. It was found additionally that food not used in the foodservice sector is most often thrown into a public container for rubbish. Most often thrown into the public container (with communal trash) were: expired products (80.0%), plate waste (80.0%) and inedible products (fruit and vegetable peels, eggshells) (77.5%). Most frequently into the container dedicated only to food waste were thrown out used deep-frying oil (62.5%). 10% of respondents indicated that inedible products in their workplaces are allocated for animal feeds. Food waste in the foodservice sector remains an insufficiently studied issue, as owners of these objects are often unwilling to disclose data about the subject. Incorrect ways of management with foods not served to consumers were observed. There is a need to develop educational activities for employees and management in the context of food waste management in the foodservice sector.Keywords: food waste, inedible products, plate waste, used deep-frying oil
Procedia PDF Downloads 1284574 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene
Authors: R. Dangtungee, A. Rattanapan, S. Siengchin
Abstract:
Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.Keywords: high-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide
Procedia PDF Downloads 3684573 Logistical Optimization of Nuclear Waste Flows during Decommissioning
Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. Ladier, S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet
Abstract:
An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.Keywords: nuclear decommissioning, logistical optimization, decision-support framework, waste management
Procedia PDF Downloads 3254572 Value-Added Products from Recycling of Solid Waste in Steel Plants
Authors: B. Karthik Vasan, Rachil Maliwal, Somnath Basu
Abstract:
Generation of solid waste is a major problem confronting the iron and steel industry around the world. Disposal of untreated wastes is no longer a viable solution in view of the environmental regulations becoming more and more stringent, as well as an increase in community awareness about the long-term hazards of indiscriminate waste disposal. The current work explores the possibility of converting some of the ‘problematic’ solid wastes generated during steel manufacturing operations, viz. dust from primary steelmaking, iron ore handling, and flux calcination processes, into value-added products instead of environmentally hazardous disposal practices. It was possible to develop a synthetic calcium ferrite, which helped to enhance the dissolution of calcined basic fluxes (e.g. CaO) and reduce the overall energy consumption during steel making. This, in turn, increased process efficiency and reduced greenhouse gas emissions. The preliminary results from laboratory-scale experiments clearly demonstrate the potential of utilizing these ‘waste materials’ that are generated in-house in iron and steel manufacturing plants. The energy required for synthesis of the ferrite may be reduced further by partially utilizing the waste heat from the exhaust gases. In the longer run, it would result in significant financial benefits due to reduced dependence on purchased fluxes. The synthesized ferrite is non-hygroscopic and this provides an additional benefit during its storage and transportation, relative to calcined lime (CaO) that is widely used as a basic flux across the steel making industry.Keywords: calcium ferrite, flux, slag formation, solid waste
Procedia PDF Downloads 2184571 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates
Authors: Malleshappa Japagal, Srinivas Chitragar
Abstract:
The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio
Procedia PDF Downloads 3104570 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products
Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis
Abstract:
About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products
Procedia PDF Downloads 4284569 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen
Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar
Abstract:
Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation
Procedia PDF Downloads 1194568 Production of Cellulose Nanowhiskers from Red Algae Waste and Its Application in Polymer Composite Development
Authors: Z. Kassab, A. Aboulkas, A. Barakat, M. El Achaby
Abstract:
The red algae are available enormously around the world and their exploitation for the production of agar product has become as an important industry in recent years. However, this industrial processing of red algae generated a large quantity of solid fibrous wastes, which constitute a source of a serious environmental problem. For this reason, the exploitation of this solid waste would help to i) produce new value-added materials and ii) to improve waste disposal from environment. In fact, this solid waste can be fully utilized for the production of cellulose microfibers and nanocrystals because it consists of large amount of cellulose component. For this purpose, the red algae waste was chemically treated via alkali, bleaching and acid hydrolysis treatments with controlled conditions, in order to obtain pure cellulose microfibers and cellulose nanocrystals. The raw product and the as-extracted cellulosic materials were successively characterized using serval analysis techniques, including elemental analysis, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy and transmission electron microscopy. As an application, the as extracted cellulose nanocrystals were used as nanofillers for the production of polymer-based composite films with improved thermal and tensile properties. In these composite materials, the adhesion properties and the large number of functional groups that are presented in the CNC’s surface and the macromolecular chains of the polymer matrix are exploited to improve the interfacial interactions between the both phases, improving the final properties. Consequently, the high performances of these composite materials can be expected to have potential in packaging material applications.Keywords: cellulose nanowhiskers, food packaging, polymer composites, red algae waste
Procedia PDF Downloads 2314567 Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production
Authors: Reda Abdel-Aziz
Abstract:
Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment.Keywords: agricultural waste, compost, chemical fertilizers, corn production, environment
Procedia PDF Downloads 3224566 Utilization of Municipal Solid Waste in Thermal Power Production: A Techno-Economic Study of Kasur City, Punjab, Pakistan
Authors: Hafiz Muhammad Umer Aslam, Mohammad Rafiq Khan
Abstract:
This techno-economic study reports the feasibility of generating thermoelectric power from municipal solid waste (MSW) of Kasur City by incineration process. The data was gathered from different establishments of Kasur, through appropriate permission from their heads, and processed to design different alternative projects for installation of a thermal power plant in the city of Kasur. A technique of discounted cash flow was used to evaluate alternative projects so that their Benefit to Cost Ratio, Net Present Value, Internal Rate of Return and Payback Period can be determined. The study revealed that Kasur City currently consumes 18MWh electricity and generates 179 tons/day MSW. The generated waste has the ability to produce 2.1MWh electricity at the cost of USD 0.0581/unit with an expenditure of USD 3,907,692 as initial fixed investment of forming about 1/7th of consumption of Kasur. The cost from this source, when compared to current rate of electricity in Pakistan (USD 0.1346), is roughly half.Keywords: Kasur City, resource recovery, thermoelectric power, waste management
Procedia PDF Downloads 1744565 Strategic Development of Urban Environmental Management Base on Good Governance - Case study of (Waste Management of Tehran)
Authors: A. Farhad Sadri, B. Ali Farhadi, C. Nasim Shalamzari
Abstract:
Waste management is a principle of urban and environmental governance. Waste management in Tehran metropolitan requires good strategies for better governance. Using of good urban governance principles together with eight main indexes can be an appropriate base for this aim. One of the reasonable tools in this field is usage of SWOT methods which provides possibility of comparing the opportunities, threats, weaknesses, and strengths by using IFE and EFE matrixes. The results of the above matrixes, respectively 2.533 and 2.403, show that management system of Tehran metropolitan wastes has performed weak regarding to internal factors and has not have good performance regarding using the opportunities and dealing with threats. In this research, prioritizing and describing the real value of each 24 strategies in waste management in Tehran metropolitan have been surveyed considering good governance derived from Quantitative Strategic Planning Management (QSPM) by using Kolomogrof-Smirnoff by 1.549 and significance level of 0.073 in order to define normalization of final values and all of the strategies utilities and Variance Analysis of ANOVA has been calculated for all SWOT strategies. Duncan’s test results regarding four WT, ST, WO, and SO strategies show no significant difference. In addition to mean comparison by Duncan method in this research, LSD (Lowest Significant Difference test) has been used by probability of 5% and finally, 7 strategies and final model of Tehran metropolitan waste management strategy have been defined. Increasing the confidence of people with transparency of budget, developing and improving the legal structure (rule-oriented and law governance, more responsibility about requirements of private sectors, increasing recycling rates and real effective participation of people and NGOs to improve waste management (contribution) and etc, are main available strategies which have been achieved based on good urban governance management principles.Keywords: waste, strategy, environmental management, urban good governance, SWOT
Procedia PDF Downloads 3284564 Biodegradation of Cellulosic Materials by Marine Fungi Isolated from South Corniche of Jeddah, Saudi Arabia
Authors: Fuad Ameen, Mohamed Moslem, Sarfaraz Hadi
Abstract:
Twenty-eight fungal isolates belonging to 12 genera were derived from debris, sediment and water samples collected from Avicennia marina stands 25km south of Jeddah city on the Red Sea coast of Saudi Arabia. Eight of these isolates were found to be able to grow in association cellulosic waste materials under in vitro conditions in the absence of any carbon source. Isolates were further tested for their potential to degrade paper and clothes wastes by co-cultivation under aeration on a rotary shaker. These fungi accumulated significantly higher biomass, produced ligninolytic and cellulase enzymes, and liberated larger volumes of CO2. These observations indicated that the selected isolates were able to break down and consume the waste materials.Keywords: biodegradation, enzyme activity, waste materials, mangrove
Procedia PDF Downloads 5754563 A Snapshot of Agricultural Waste in the European Union
Authors: Margarida Soares, Zlatina Genisheva, Lucas Nascimento, André Ribeiro, Tiago Miranda, Eduardo Pereira, Joana Carvalho
Abstract:
In the current global context, we face a significant challenge: the rapid population increase combined with the pressing need for sustainable management of agro-industrial waste. Beyond understanding how population growth impacts waste generation, it is essential to first identify the primary types of waste produced and the countries responsible to guide targeted actions. This study presents key statistical data on waste production from the agriculture, forestry, and fishing sectors across the European Union, alongside information on the agricultural areas dedicated to crop production in each European Union country. These insights will form the basis for future research into waste production by crop type and country to improve waste management practices and promote recovery methods that are vital for environmental sustainability. The agricultural sector must stay at the forefront of scientific and technological advancements to meet climate change challenges, protect the environment, and ensure food and health security. The study's findings indicate that population growth significantly increases pressure on natural resources, leading to a rise in agro-industrial waste production. EUROSTAT data shows that, in 2020, the agriculture, forestry, and fishing sectors produced over 21 million tons of waste. Spain emerged as the largest producer, contributing nearly 30% of the EU's total waste in these sectors. Furthermore, five countries—Spain, the Netherlands, France, Sweden, and Germany—were responsible for producing more than two-thirds of the waste from these sectors. Regarding agricultural land use, the data for 2020 revealed that around two-thirds of the total agricultural area was concentrated in six countries: France, Spain, Germany, Poland, Romania, and Italy. Regarding waste production per capita, the Netherlands had the highest figures in the EU for 2020. The data presented in this study highlights the urgent need for action in managing agricultural waste in the EU. As population growth continues to drive up demand for agricultural products, waste generation will inevitably rise unless significant changes are made in managing of agro-industrial waste. The countries must lead the way in adopting technological waste management strategies that focus on reducing, reusing, and recycling waste to benefit both the environment and society. Equally important is the need to promote collaborative efforts between governments, industries, and research institutions to develop and implement technologies that transform waste into valuable resources. The insights from this study are critical for informing future strategies to improve the management and valorization of waste from the agro-industrial sector. One of the most promising approaches is adopting circular economy principles to create closed-loop systems that minimize environmental impacts. By rethinking waste as a valuable resource rather than a by-product, agricultural industries can contribute to more sustainable practices that support both environmental health and economic growth.Keywords: agricultural area, agricultural waste, circular economy, environmental challenges, population growth
Procedia PDF Downloads 204562 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria
Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman
Abstract:
Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstressed. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is the loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhancing agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and anti-nutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.Keywords: anti-nutritional, healthy livelihood, nutritional waste, organic waste
Procedia PDF Downloads 3864561 The Effect of Solution Density on the Synthesis of Magnesium Borate from Boron-Gypsum
Authors: N. Tugrul, E. Sariburun, F. T. Senberber, A. S. Kipcak, E. Moroydor Derun, S. Piskin
Abstract:
Boron-gypsum is a waste which occurs in the boric acid production process. In this study, the boron content of this waste is evaluated for the use in synthesis of magnesium borates and such evaluation of this kind of waste is useful more than storage or disposal. Magnesium borates, which are a sub-class of boron minerals, are useful additive materials for the industries due to their remarkable thermal and mechanical properties. Magnesium borates were obtained hydrothermally at different temperatures. Novelty of this study is the search of the solution density effects to magnesium borate synthesis process for the increasing the possibility of boron-gypsum usage as a raw material. After the synthesis process, products are subjected to XRD and FT-IR to identify and characterize their crystal structure, respectively.Keywords: boron-gypsum, hydrothermal synthesis, magnesium borate, solution density
Procedia PDF Downloads 4004560 Plasma Gasification as a Sustainable Way for Energy Recovery from Scrap Tyre
Authors: Gloria James, S. K. Nema, T. S. Anantha Singh, P. Vadivel Murugan
Abstract:
The usage of tyre has increased enormously in day to day life. The used tyre and rubber products pose major threat to the environment. Conventional thermal techniques such as low temperature pyrolysis and incineration produce high molecular organic compounds (condensed and collected as aromatic oil) and carbon soot particles. Plasma gasification technique can dispose tyre waste and generate combustible gases and avoid the formation of high molecular aromatic compounds. These gases generated in plasma gasification process can be used to generate electricity or as fuel wherever required. Although many experiments have been done on plasma pyrolysis of tyres, very little work has been done on plasma gasification of tyres. In this work plasma gasification of waste tyres have been conducted in a fixed bed reactor having graphite electrodes and direct current (DC) arc plasma system. The output of this work has been compared with the previous work done on plasma pyrolysis of tyres by different authors. The aim of this work is to compare different process based on gas generation, efficiency of the process and explore the most effective option for energy recovery from waste tyres.Keywords: plasma, gasification, syngas, tyre waste
Procedia PDF Downloads 1854559 Waste Egg Albumin Derived Small Peptides Stimulate Photosynthetic Electron Transport
Authors: Seungwon Han, Sung young Yoo, Tae Wan Kim
Abstract:
The objective of this study was to measure the changes in the photochemical response in the leaves of red pepper (Capsium annuum L.) after foliar fertilization of amino acid and small peptides derived from the waste egg. As a nitrogen fertilizer, waste eggs were incubated over one 1week and then degraded as amino acids and small peptides. The smaller peptides less than 20 kDa were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). MALDI-TOF-MS as a rapid analysis method was to show the molecular mass of degraded egg protein. The sequences of peptides were identified as follows; γ-Glu- Cys-γ-Glu-Cys-γ-Glu-Cys)-Ser and γ-Glu-Cys-γ-Glu-Cys-γ-Glu- Cys)-Gly. It was clearly illuminated that the parameters related to quantum yields for PSI electron transport (ΦRE1O, ΨRE1O, δRE1O) and RC/ABS have increased tendency by small peptide application. On the other hand, phenomenological energy fluxes (ABSO/CSM, TRO/CSM, ET2O/CSM, RE1O/CSM, DIO/CSM) have considerably fluctuated with foliar fertilization of small peptides. In conclusion, the small peptides can enhance the photochemical activities from photosystem II to photosystem I. This study was financially supported by RDA Agenda Project PJ 016196012022.Keywords: electron transport, foliar fertilization, small peptide, waste egg
Procedia PDF Downloads 1704558 A Novel Alginate/Tea Waste Complex for Restoration and Conservation of Historical Textiles Using Immobilized Enzymes
Authors: Mohamed E. Hassan
Abstract:
Through numerous chemical linkages, historical textiles in burial contexts or in museums are exposed to many different forms of stains and filth. The cleaning procedure must be carried out carefully without causing any irreparable harm, and sediments must be removed without damaging the surface's original material. Science and technology continue to develop novel methods for cleaning historical textiles and artistic surfaces biologically (using enzymes). Lipase and α-amylase were immobilized on nanoparticles of alginate/tea waste nanoparticle complex and used in historical textile cleaning. The preparation of nanoparticles, activation, and enzyme immobilization were characterized. Optimization of loading times and units of the two enzymes was done. It was found that the optimum time and units of amylase were 3 hours and 30 U, respectively. While the optimum time and units of lipase were 2.5 hours and 20 U, respectively, FT-IR and TGA instruments were used in proving the preparation of nanoparticles and the immobilization process. SEM was used to examine the fibres before and after treatment. In conclusion, a new carrier was prepared from alginate/Tea waste and optimized to be used in the restoration and conservation of historical textiles using immobilized lipase and α-amylase.Keywords: alginate/tea waste, nanoparticles, immobilized enzymes, historical textiles
Procedia PDF Downloads 954557 Verifying Environmental Performance through Inventory and Assessment: Case Study of the Los Alamos National Laboratory Waste Compliance and Tracking System
Authors: Oral S. Saulters, Shanon D. Goldberg, Wendy A. Staples, Ellena I. Martinez, Lorie M. Sanchez, Diego E. Archuleta, Deborah L. Williams, Scot D. Johnson
Abstract:
To address an important set of unverified field conditions, the Los Alamos National Laboratory Waste Compliance and Tracking System (WCATS) Wall-to-Wall Team performed an unprecedented and advanced inventory. This reconciliation involved confirmation analysis for approximately 5850 hazardous, low-level, mixed low-level, and transuranic waste containers located in more than 200 staging and storage areas across 33 technical areas. The interdisciplinary team scoped, planned, and developed the multidimensional assessments. Through coordination with cross-functional site hosts, they were able to verify and validate data while resolving discrepancies identified in WCATS. The results were extraordinary with an updated inventory, tailored outreach, more cohesive communications, and timely closed-loop feedback.Keywords: circular economy, environmental performance data, social-ecological-technological systems, waste management
Procedia PDF Downloads 1314556 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains
Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*
Abstract:
Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy
Procedia PDF Downloads 1474555 Co-Liquefaction of Cellulosic Biomass and Waste Plastics
Authors: Katsumi Hirano, Yusuke Kakuta, Koji Yoshida, Shozo Itagaki, Masahiko Kajioka, Toshihiko Okada
Abstract:
A conversion technology of cellulosic biomass and waste plastics to liquid fuel at low pressure and low temperature has been investigated. This study aims at the production of the liquefied fuel (CPLF) of substituting diesel oil by mixing cellulosic biomass and waste plastics in the presence of solvent. Co-liquefaction of cellulosic biomass (Japan cedar) and polypropylene (PP) using wood tar or mineral oil as solvent at 673K with an autoclave was carried out. It was confirmed that the co-liquefaction gave CPLF in a high yield among the cases of wood or of polypropylene Which was ascribed the acceleration of decomposition of plastics by radicals derived from the decomposition of wood. The co-liquefaction was also conducted by a small twin screw extruder. It was found that CPLF was obtained in the co-liquefaction, And the acceleration of decomposition of plastics in the presence of cellulosic biomass. The engine test of CPLF showed that the engine performances, Compression ignition and combustion characteristics were almost similar to those of diesel fuel at any mixing ratio of CPLF and any load, Therefore, CPLF could be practically used as alternative fuel for diesel engines.Keywords: Cellulosic Biomass, Co-liquefaction, Solvent, Waste Plastics
Procedia PDF Downloads 3774554 The Inclusion of the Cabbage Waste in Buffalo Ration Made of Sugarcane Waste and Its Effect on Characteristics of the Silage
Authors: Adrizal, Irsan Ryanto, Sri Juwita, Adika Sugara, Tino Bapirco
Abstract:
The objective of the research was to study the influence of the inclusion of the cabbage waste into a buffalo rations made of sugarcane waste on the feed formula and characteristic of complete feed silage. Research carried out a two-stage i.e. the feed formulation and experiment of making complete feed silage. Feed formulation is done by linear programming. Data input is the price of feed stuffs and their nutrient contents as well as requirements for rations, while the output is the use of each feed stuff and the price of complete feed. The experiment of complete feed silage was done by a completely random design 4 x 4. The treatments were 4 inclusion levels of the cabbage waste i.e. 0%,(T1) 5%(T2), 10%(T3) and 15% (T4), with 4 replications. The result of feed formulation for T1 was cabbage (0%), sugarcane top (17.9%), bagasse (33.3%), Molasses (5.0%), cabagge (0%), Thitonia sp (10.0%), rice brand (2.7%), palm kernel cake (20.0%), corn meal (9.1%), bond meal (1.5%) and salt (0.5%). The formula of T2 was cabagge (5%), sugarcane top (1.7%), bagasse (45.2%), Molasses (5.0%), , Thitonia sp (10.0%), rice brand (3.6%), palm kernel cake (20.0%), corn meal (7.5%), bond meal (1.5%) and salt (0.5%). The formula of T3 was cabbage (10%), sugarcane top (0%), bagasse (45.3%), Molasses (5.0%), Thitonia sp (10.0%), rice brand (3.8%), palm kernel cake (20.0%), corn meal (3.9%), bond meal (1.5%) and salt(0.5%). The formula of T4 was cabagge (15.0%), sugarcane top (0%), bagasse (44.1%), Molasses (5.0%), Thitonia sp (10.0%), rice brand (3.9%), palm kernel cake (20.0%), corn meal (0%), bond meal (1.5%) and salt (0.5%). An increase in the level of inclusion of the cabbage waste can decrease the cost of rations. The cost of rations (IDR/kg on DM basis) were 1442, 1367, 1333, and 1300 respectively. The rations formula were not significantly (P > 0.05) influent the on fungal colonies, smell, texture and color of the complete ration silage, but the pH increased significantly (P < 0.05). It concluded that inclusion of cabbage waste can minimize the cost of buffalo ration, without decreasing the silage quality of complete feed.Keywords: buffalo, cabbage, complete feed, sillage characteristic, sugarcane waste
Procedia PDF Downloads 2684553 Understanding Solid Waste Management in Face of Political Instability: Actors, Roles, and Challenges to Sustainable Development in Kinshasa
Authors: Longondjo Etambakonga Clement
Abstract:
Local municipality responsible for solid waste management (SWM) in many developing countries is facing real challenge. This is even more critical in the country facing political instability. Few decades ago, it has emerged new urban governance including partnerships and involvement of formal and informal actors for an effective and sustainable solid waste management. This paper identifies SWM actors and analyzes their roles to sustainable development in Kinshasa. An attempt has been to examine the challenges facing the actors in managing effectively waste in the city. The study is based on the empirical data gathered in the years 2009 and 2014 in Kinshasa using expert interviews, observation and documentation. The findings indicate that solid waste in the city is poorly managed, activities not coordinated and fragmented, as consequence severe public health and environmental problems. Five group actors are involved in SWM in the city including government, private business, NGOs/CBOs/donors, household, scavengers, in which, scavengers are more visible in collection and recycling activities. The results suggest that recognition of informal collectors and recyclers (scavengers) and strengthening alliances among all SWM stakeholders can lead to greater effective SWM in the city. The key lessons learned include lack of city’s SWM culture over SWM, unwillingness to pay and lack of environmental consciences are the main obstructions to sustainable SWM, therefore there is a need for social capital approach to empower individual and group actors as to create capabilities for an sustainable SWM.Keywords: challenges, institutions, political instability, scavengers, solid waste management, sustainable development
Procedia PDF Downloads 3604552 Synthesis of Amorphous Nanosilica Anode Material from Philippine Waste Rice Hull for Lithium Battery Application
Authors: Emie A. Salamangkit-Mirasol, Rinlee Butch M. Cervera
Abstract:
Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull. In addition, initial electrode performance of the synthesized samples as an anode material in Lithium Battery have been investigated.Keywords: agricultural waste, anode material, nanosilica, rice hull
Procedia PDF Downloads 285