Search results for: student performance prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16595

Search results for: student performance prediction

16055 Characterization of the Music Admission Requirements and Evaluation of the Relationship among Motivation and Performance Achievement

Authors: Antonio M. Oliveira, Patricia Oliveira-Silva, Jose Matias Alves, Gary McPherson

Abstract:

The music teaching is oriented towards offering formal music training. Due to its specificities, this vocational program starts at a very young age. Although provided by the State, the offer is limited to 6 schools throughout the country, which means that the vacancies for prospective students are very limited every year. It is therefore crucial that these vacancies be taken by especially motivated children grown within households that offer the ideal setting for success. Some of the instruments used to evaluate musical performance are highly sensitive to specific previous training, what represents a severe validity problem for testing children who have had restricted opportunities for formal training. Moreover, these practices may be unfair because, for instance, they may not reflect the candidates’ music aptitudes. Based on what constitutes a prerequisite for making an excellent music student, researchers in this field have long argued that motivation, task commitment, and parents’ support are as important as ability. Thus, the aim of this study is: (1) to prepare an inventory of admission requirements in Australia, Portugal and Ireland; (2) to examine whether the candidates to music conservatories and parents’ level of motivation, assessed at three evaluation points (i.e., admission, at the end of the first year, and at the end of the second year), correlates positively with the candidates’ progress in learning a musical instrument (i.e., whether motivation at the admission may predict student musicianship); (3) an adaptation of an existing instrument to assess the motivation (i.e., to adapt the items to the music setting, focusing on the motivation for playing a musical instrument). The inclusion criteria are: only children registered in the administrative services to be evaluated for entrance to the conservatory will be accepted for this study. The expected number of participants is fifty (5-6 years old) in all the three frequency schemes: integrated, articulated and supplementary. Revisiting musical admission procedures is of particular importance and relevance to musical education because this debate may bring guidance and assistance about the needed improvement to make the process of admission fairer and more transparent.

Keywords: music learning, music admission requirements, student’s motivation, parent’s motivation

Procedia PDF Downloads 168
16054 Education and Learning in Indonesia to Refer to the Democratic and Humanistic Learning System in Finland

Authors: Nur Sofi Hidayah, Ratih Tri Purwatiningsih

Abstract:

Learning is a process attempts person to obtain a new behavior changes as a whole, as a result of his own experience in the interaction with the environment. Learning involves our brain to think, while the ability of the brain to each student's performance is different. To obtain optimal learning results then need time to learn the exact hour that the brain's performance is not too heavy. Referring to the learning system in Finland which apply 45 minutes to learn and a 15-minute break is expected to be the brain work better, with the rest of the brain, the brain will be more focused and lessons can be absorbed well. It can be concluded that learning in this way students learn with brain always fresh and the best possible use of the time, but it can make students not saturated in a lesson.

Keywords: learning, working hours brain, time efficient learning, working hours in the brain receive stimulus.

Procedia PDF Downloads 399
16053 Outcome-Based Education as Mediator of the Effect of Blended Learning on the Student Performance in Statistics

Authors: Restituto I. Rodelas

Abstract:

The higher education has adopted the outcomes-based education from K-12. In this approach, the teacher uses any teaching and learning strategies that enable the students to achieve the learning outcomes. The students may be required to exert more effort and figure things out on their own. Hence, outcomes-based students are assumed to be more responsible and more capable of applying the knowledge learned. Another approach that the higher education in the Philippines is starting to adopt from other countries is blended learning. This combination of classroom and fully online instruction and learning is expected to be more effective. Participating in the online sessions, however, is entirely up to the students. Thus, the effect of blended learning on the performance of students in Statistics may be mediated by outcomes-based education. If there is a significant positive mediating effect, then blended learning can be optimized by integrating outcomes-based education. In this study, the sample will consist of four blended learning Statistics classes at Jose Rizal University in the second semester of AY 2015–2016. Two of these classes will be assigned randomly to the experimental group that will be handled using outcomes-based education. The two classes in the control group will be handled using the traditional lecture approach. Prior to the discussion of the first topic, a pre-test will be administered. The same test will be given as posttest after the last topic is covered. In order to establish equality of the groups’ initial knowledge, single factor ANOVA of the pretest scores will be performed. Single factor ANOVA of the posttest-pretest score differences will also be conducted to compare the performance of the experimental and control groups. When a significant difference is obtained in any of these ANOVAs, post hoc analysis will be done using Tukey's honestly significant difference test (HSD). Mediating effect will be evaluated using correlation and regression analyses. The groups’ initial knowledge are equal when the result of pretest scores ANOVA is not significant. If the result of score differences ANOVA is significant and the post hoc test indicates that the classes in the experimental group have significantly different scores from those in the control group, then outcomes-based education has a positive effect. Let blended learning be the independent variable (IV), outcomes-based education be the mediating variable (MV), and score difference be the dependent variable (DV). There is mediating effect when the following requirements are satisfied: significant correlation of IV to DV, significant correlation of IV to MV, significant relationship of MV to DV when both IV and MV are predictors in a regression model, and the absolute value of the coefficient of IV as sole predictor is larger than that when both IV and MV are predictors. With a positive mediating effect of outcomes-base education on the effect of blended learning on student performance, it will be recommended to integrate outcomes-based education into blended learning. This will yield the best learning results.

Keywords: outcome-based teaching, blended learning, face-to-face, student-centered

Procedia PDF Downloads 291
16052 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma

Procedia PDF Downloads 157
16051 Educational Attainment of Owner-Managers and Performance of Micro- and Small Informal Businesses in Nigeria

Authors: Isaiah Oluranti Olurinola, Michael Kayode Bolarinwa, Ebenezer Bowale, Ifeoluwa Ogunrinola

Abstract:

Abstract - While much literature exists on microfinancing and its impact on the development of micro, small and medium-scale enterprises (MSME), yet little is known in respect of the impact of different types of education of owner-managers on the performances as well as innovative possibilities of such enterprises. This paper aims at contributing to the understanding of the impact of different types of education (academic, technical, apprenticeship, etc) that influence the performance of micro, small and medium-sized enterprise (MSME). This study utilises a recent and larger data-set collected in six states and FCT Abuja, Nigeria in the year 2014. Furthermore, the study carries out a comparative analysis of business performance among the different geo-political zones in Nigeria, given the educational attainment of the owner-managers. The data set were enterprise-based and were collected by the Nigerian Institute for Social and Economic Research (NISER) in the year 2014. Six hundred and eighty eight enterprises were covered in the survey. The method of data analysis for this study is the use of basic descriptive statistics in addition to the Logistic Regression model used in the prediction of the log of odds of business performance in relation to any of the identified educational attainment of the owner-managers in the sampled enterprises. An OLS econometric technique is also used to determine the effects of owner-managers' different educational types on the performance of the sampled MSME. Policy measures that will further enhance the contributions of education to MSME performance will be put forward.

Keywords: Business Performance, Education, Microfinancing, Micro, Small and Medium Scale Enterprises

Procedia PDF Downloads 524
16050 Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software

Authors: Marine Segui, Ruxandra Mihaela Botez

Abstract:

OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study.

Keywords: aerodynamic, coefficient, cruise, improving, longitudinal, openVSP, solver, time

Procedia PDF Downloads 235
16049 Making Learning Visible: The Role of Assessment for Learning in Improving Educational Outcomes

Authors: Natcha Mahapoonyanont

Abstract:

This study examines the intersection of Assessment for Learning (AfL) and visible learning principles, focusing on their combined impact on educational outcomes. This study aligns with recent findings on implementing this approach in Thailand, underscoring its potential to transform classrooms into active, student-centered learning spaces. The research highlights key AfL strategies—feedback loops, peer assessment, and goal-setting—as essential for engaging students and fostering self-regulation. Data collected from model schools in Songkhla, Thailand, reveal that integrating visible learning into AfL, alongside professional learning communities (PLCs) for teachers, has led to substantial improvements in student achievement, critical thinking, and engagement. Teachers who underwent targeted training based on visible learning principles demonstrated enhanced skills in providing effective feedback and supporting student autonomy, with post-training assessments showing significant improvements. This study supports the need for continuous teacher development programs that emphasize visible learning concepts alongside strong administrative support and modern educational resources. The findings advocate for AfL and visible learning integration as a model for empowering teachers, enriching student learning, and enhancing educational equity across diverse school settings.

Keywords: visible learning, assessment for learning (AfL), feedback loops, professional learning communities (PLCs), teacher development, student autonomy

Procedia PDF Downloads 4
16048 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 105
16047 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 173
16046 “Student Veterans’ Transition to Nursing Education: Barriers and Facilitators

Authors: Bruce Hunter

Abstract:

Background: The transition for student veterans from military service to higher education can be a challenging endeavor, especially for those pursuing an education in nursing. While the experiences and perspectives of each student veteran is unique, their successful integration into an academic environment can be influenced by a complex array of barriers and facilitators. This mixed-methods study aims to explore the themes and concepts that can be found in the transition experiences of student veterans in nursing education, with a focus on identifying the barriers they face and the facilitators that support their success. Methods: This study utilizes an explanatory mixed-methods approach. The research participants include student veterans enrolled in nursing programs across three academic institutions in the Southeastern United States. Quantitative Phase: A Likert scale instrument is distributed to a sample of student veterans in nursing programs. The survey assesses demographic information, academic experiences, social experiences, and perceptions of institutional support. Quantitative data is analyzed using descriptive statistics to assess demographics and to identify barriers and facilitators to the transition. Qualitative Phase: Two open-ended questions were posed to student veterans to explore their lived experiences, barriers, and facilitators during the transition to nursing education and to further explain the quantitative findings. Thematic analysis with line-by-line coding is employed to identify recurring themes and narratives that may shed light on the barriers and facilitators encountered. Results: This study found that the successful academic integration of student veterans lies in recognizing the diversity of values and attitudes among student veterans, understanding the potential challenges they face, and engaging in initiative-taking steps to create an inclusive and supportive academic environment that accommodates the unique experiences of this demographic. Addressing these academic and social integration concerns can contribute to a more understanding environment for student veterans in the BSN program. Conclusion: Providing support during this transitional period is crucial not only for retaining veterans, but also for bolstering their success in achieving the status of registered nurses. Acquiring an understanding of military culture emerges as an essential initial step for nursing faculty in student veteran retention and for successful completion of their programs. Participants found that their transition experience lacked meaningful social interactions, which could foster a positive learning environment, enhance their emotional well-being, and could contribute significantly to their overall success and satisfaction in their nursing education journey. Recognizing and promoting academic and social integration is important in helping veterans experience a smooth transition into and through the unfamiliar academic environment of nursing education.

Keywords: nursing, education, student veterans, barriers, facilitators

Procedia PDF Downloads 49
16045 Each One, Reach One: Peer Mentoring Support for Faculty Women of Color

Authors: Teresa Leary Handy

Abstract:

As awareness of the importance of diversity has increased in society, higher education has also begun to recognize the importance of supporting faculty of color. In the university setting, faculty women of color specifically encounter barriers that impact their level of job satisfaction, retention rates, and pedagogical practices. These barriers and challenges not only undermine faculty diversity efforts but also hinder the ability of colleges and universities to provide a supportive environment that fosters students' academic success and sense of belonging. Faculty who are marginalized and on the periphery in higher education institutions need support so that they can feel confident in building a student’s sense of belonging which can impact a student’s academic success and goal of earning a college degree. This study examined and sought to understand the importance of supporting faculty of color, specifically women faculty of color, and how this type of faculty support can impact student academic success and a student’s sense of belonging. The study furthered original research on strategies to move an institution forward on the equity spectrum to support belonging and inclusions as core culture elements.

Keywords: equity, inclusion, belonging, women, faculty support

Procedia PDF Downloads 68
16044 Dialogic Approaches to Writing Pedagogy

Authors: Yael Leibovitch

Abstract:

Teaching academic writing is a source of concern for secondary schools. Many students struggle to meet the basic standards of literacy while teacher confidence in this arena remains low. These issues are compounded by the conventionally prescriptive character of writing instruction, which fails to engage student writers. At the same time, a growing body of research on dialogic teaching has highlighted the powerful role of talk in student learning. With the intent of enhancing pedagogical capability, this paper shares finding from a co-inquiry case study that investigated how teachers think about and negotiate classroom discourse to position students as effective academic writers and thinkers. Using a range of qualitative methods, this project closely documents the iterative collaboration of educators as they sought to create more opportunities for dialogic engagement. More specifically, it triangulates both teacher and student data regarding the efficacy of interdependent thinking and collaborative reasoning as organizing principals for literacy learning. Findings indicate that a dialogic teaching repertoire helps to develop the cognitive and metacognitive skills of adolescent writers. In addition, they underscore the importance of sustained professional collaboration to the uptake of new writing pedagogies.

Keywords: dialogic teaching, writing, teacher professional development, student literacy

Procedia PDF Downloads 213
16043 Improving Online Learning Engagement through a Kid-Teach-Kid Approach for High School Students during the Pandemic

Authors: Alexander Huang

Abstract:

Online learning sessions have become an indispensable complement to in-classroom-learning sessions in the past two years due to the emergence of Covid-19. Due to social distance requirements, many courses and interaction-intensive sessions, ranging from music classes to debate camps, are online. However, online learning imposes a significant challenge for engaging students effectively during the learning sessions. To resolve this problem, Project PWR, a non-profit organization formed by high school students, developed an online kid-teach-kid learning environment to boost students' learning interests and further improve students’ engagement during online learning. Fundamentally, the kid-teach-kid learning model creates an affinity space to form learning groups, where like-minded peers can learn and teach their interests. The role of the teacher can also help a kid identify the instructional task and set the rules and procedures for the activities. The approach also structures initial discussions to reveal a range of ideas, similar experiences, thinking processes, language use, and lower student-to-teacher ratio, which become enriched online learning experiences for upcoming lessons. In such a manner, a kid can practice both the teacher role and the student role to accumulate experiences on how to convey ideas and questions over the online session more efficiently and effectively. In this research work, we conducted two case studies involving a 3D-Design course and a Speech and Debate course taught by high-school kids. Through Project PWR, a kid first needs to design the course syllabus based on a provided template to become a student-teacher. Then, the Project PWR academic committee evaluates the syllabus and offers comments and suggestions for changes. Upon the approval of a syllabus, an experienced and voluntarily adult mentor is assigned to interview the student-teacher and monitor the lectures' progress. Student-teachers construct a comprehensive final evaluation for their students, which they grade at the end of the course. Moreover, each course requires conducting midterm and final evaluations through a set of surveyed replies provided by students to assess the student-teacher’s performance. The uniqueness of Project PWR lies in its established kid-teach-kids affinity space. Our research results showed that Project PWR could create a closed-loop system where a student can help a teacher improve and vice versa, thus improving the overall students’ engagement. As a result, Project PWR’s approach can train teachers and students to become better online learners and give them a solid understanding of what to prepare for and what to expect from future online classes. The kid-teach-kid learning model can significantly improve students' engagement in the online courses through the Project PWR to effectively supplement the traditional teacher-centric model that the Covid-19 pandemic has impacted substantially. Project PWR enables kids to share their interests and bond with one another, making the online learning environment effective and promoting positive and effective personal online one-on-one interactions.

Keywords: kid-teach-kid, affinity space, online learning, engagement, student-teacher

Procedia PDF Downloads 143
16042 The Use of Social Media in a UK School of Pharmacy to Increase Student Engagement and Sense of Belonging

Authors: Samantha J. Hall, Luke Taylor, Kenneth I. Cumming, Jakki Bardsley, Scott S. P. Wildman

Abstract:

Medway School of Pharmacy – a joint collaboration between the University of Kent and the University of Greenwich – is a large school of pharmacy in the United Kingdom. The school primarily delivers the accredited Master or Pharmacy (MPharm) degree programme. Reportedly, some students may feel isolated from the larger student body that extends across four separate campuses, where a diverse range of academic subjects is delivered. In addition, student engagement has been noted as being limited in some areas, as evidenced in some cases by poor attendance at some lectures. In January 2015, the University of Kent launched a new initiative dedicated to Equality, Diversity and Inclusivity (EDI). As part of this project, Medway School of Pharmacy employed ‘Student Success Project Officers’ in order to analyse past and present school data. As a result, initiatives have been implemented to i) negate disparities in attainment and ii) increase engagement, particularly for Black, Asian and Minority Ethnic (BAME) students which make up for more than 80% of the pharmacy student cohort. Social media platforms are prevalent, with global statistics suggesting that they are most commonly used by females between the ages of 16-34. Student focus groups held throughout the academic year brought to light the school’s need to use social media much more actively. Prior to the EDI initiative, social media usage for Medway School of Pharmacy was scarce. Platforms including: Facebook, Twitter, Instagram, YouTube, The Student Room and University Blogs were either introduced or rejuvenated. This action was taken with the primary aim of increasing student engagement. By using a number of varied social media platforms, the university is able to capture a large range of students by appealing to different interests. Social media is being used to disseminate important information, promote equality and diversity, recognise and celebrate student success and also to allow students to explore the student life outside of Medway School of Pharmacy. Early data suggests an increase in lecture attendance, as well as greater evidence of student engagement highlighted by recent focus group discussions. In addition, students have communicated that active social media accounts were imperative when choosing universities for 2015/16. It allows students to understand more about the University and community prior to beginning their studies. By having a lively presence on social media, the university can use a multi-faceted approach to succeed in early engagement, as well as fostering the long term engagement of continuing students.

Keywords: engagement, social media, pharmacy, community

Procedia PDF Downloads 327
16041 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 93
16040 Bullying Rates Among Students with Special Needs in the United States

Authors: Kaycee Bills

Abstract:

Past studies have indicated students who have disabilities are at a higher risk of experiencing bullying victimization in comparison to other student groups. Extracurricular activity participation has been shown to establish better social outcomes for students. These positive social outcomes indirectly decrease the number of times a student is bullied. The following study uses the National Crime Victimization Survey – School Crime Supplement (NCVS/SCS) to analyze the bullying concurrences experienced among students, with disabilities being a focal variable. To explore the relationship between extracurricular involvement and bullying occurrence rates, this study employs a binary logistic regression to determine if athletic and non-athletic extracurricular activities have an impact on the number of times a student with disabilities experiences bullying. Implications for future social welfare practice and research are discussed.

Keywords: disability, bullying, extracurricular activities, athletics

Procedia PDF Downloads 161
16039 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome

Abstract:

This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: stock market prediction, social moods, regression model, DJIA

Procedia PDF Downloads 549
16038 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 95
16037 Students' Perception of Using Dental E-Models in an Inquiry-Based Curriculum

Authors: Yanqi Yang, Chongshan Liao, Cheuk Hin Ho, Susan Bridges

Abstract:

Aim: To investigate student’s perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding student’s perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most of the students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, student's preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline.

Keywords: e-models, inquiry-based curriculum, education, questionnaire

Procedia PDF Downloads 433
16036 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 49
16035 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 153
16034 The Best Methods of Motivating and Encouraging the Students to Study: A Case Study

Authors: Mahmoud I. Syam, Osama K. El-Hafy

Abstract:

With lack of student motivation, there will be a little or no real learning in the class and this directly effects student achievement and test scores. Some students are naturally motivated to learn, but many students are not motivated, they do care little about learning and need their instructors to motivate them. Thus, motivating students is part of the instructor’s job. It’s a tough task to motivate students and make them have more attention and enthusiasm. As a part of this research, a questionnaire has been distributed among a sample of 155 students out of 1502 students from Foundation Program at Qatar University. The questionnaire helped us to determine some methods to motivate the students and encourage them to study such as variety of teaching activities, encouraging students to participate during the lectures, creating intense competition between the students, using instructional technology, not using grades as a threat and respecting the students and treating them in a good manner. Accordingly, some hypotheses are tested and some recommendations are presented.

Keywords: learning, motivating, student, teacher, testing hypotheses

Procedia PDF Downloads 473
16033 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine

Procedia PDF Downloads 200
16032 Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator

Authors: Bhavesh Dadhich, Fenil Bamnoliya, Akshita Swaminathan

Abstract:

This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications.

Keywords: savonius turbine, power, overlap ratio, tip speed ratio, TENG

Procedia PDF Downloads 122
16031 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 138
16030 Academic Motivation Maintenance for Students While Solving Mathematical Problems in the Middle School

Authors: M. Rodionov, Z. Dedovets

Abstract:

The level and type of student academic motivation are the key factors in their development and determine the effectiveness of their education. Improving motivation is very important with regard to courses on middle school mathematics. This article examines the general position regarding the practice of academic motivation. It also examines the particular features of mathematical problem solving in a school setting.

Keywords: teaching strategy, mathematics, motivation, student

Procedia PDF Downloads 447
16029 Issues and Problems of Leadership Competencies among Head of Science Panels in Sarawak

Authors: Adawati Suhaili, Kamisah Osman, Mohd Effendi, Ewan Mohd Matore

Abstract:

The global education reform has prompted Malaysia to transform the education system in Malaysia through the Malaysian Education Blueprint (MEB) 2013-2025. This transformation is aimed to achieve the top one-third rank in international assessment. The low achievement of student scientific literacy in TIMMS (Trends in International Mathematics and Science Study ) and PISA (Programme for International Student Assessment) has caused concern to the Ministry Of Education (MOE) despite various reform efforts. Therefore, an alternative action by enhancing the role of the Head of Science Panels (HoSPs) as a key change agent in catalyzing the improvement of student performance should be considered. Highlights of previous studies have shown that subject leadership is able to enhance teacher teaching quality in order to increase student learning. To lead the Science department and guide Science teachers more effectively, HoSPs need to strengthen their leadership skills. However, the issue of weaknesses in the leadership competencies of HoSPs in Malaysia has caused them to lack confidence and ability in leading the Science Department. The main objective of this study is to explore the factors that contribute to the problems faced by HoSPs at Sarawak in their leadership roles. This study used a qualitative design framework and using a semi-structured interview method for data collection. There were six informants involved in the interview consisting of lecturers, Senior Administrative Assistant Teacher and HoSPs. The findings of the study had been identified four main factors that contribute to problems in the leadership competencies of HoSPs in Sarawak, namely leadership practices, leadership structure, academic subjects and school change. The results are significant to the MOE in strengthening the leadership competencies of HoSPs in a more focus for improving the achievement of scientific literacy of students in Malaysia. This study can help improve the Hosps' leadership competencies in Malaysia.

Keywords: issues, problems, Malaysia education blueprint, leadership competencies, head of science panels

Procedia PDF Downloads 199
16028 Exploring Students’ Voices in Lecturers’ Teaching and Learning Developmental Trajectory

Authors: Khashane Stephen Malatji, Makwalete Johanna Malatji

Abstract:

Student evaluation of teaching (SET) is the common way of assessing teaching quality at universities and tracing the professional growth of lecturers. The aim of this study was to investigate the role played by student evaluation in the teaching and learning agenda at one South African University. The researchers used a qualitative approach and a case study research design. With regards to data collection, document analysis was used. Evaluation reports were reviewed to monitor the growth of lecturers who were evaluated during the academic years 2020 and 2021 in one faculty. The results of the study reveal that student evaluation remains the most relevant tool to inform the teaching agenda at a university. Lecturers who were evaluated were found to grow academically. All lecturers evaluated during 2020 have shown great improvement when evaluated repeatedly during 2021. Therefore, it can be concluded that student evaluation helps to improve the pedagogical and professional proficiency of lecturers. The study therefore, recommends that lecturers conduct an evaluation for each module they teach every semester or annually in case of year modules. The study also recommends that lecturers attend to all areas that draw negative comments from students in order to improve.

Keywords: students’ voices, teaching agenda, evaluation, feedback, responses

Procedia PDF Downloads 90
16027 Managing Cognitive Load in Accounting: An Analysis of Three Instructional Designs in Financial Accounting

Authors: Seedwell Sithole

Abstract:

One of the persistent problems in accounting education is how to effectively support students’ learning. A promising technique to this issue is to investigate the extent that learning is determined by the design of instructional material. This study examines the academic performance of students using three instructional designs in financial accounting. Student’s performance scores and reported mental effort ratings were used to determine the instructional effectiveness. The findings of this study show that accounting students prefer graph and text designs that are integrated. The results suggest that spatially separated graph and text presentations in accounting should be reorganized to align with the requirements of human cognitive architecture.

Keywords: accounting, cognitive load, education, instructional preferences, students

Procedia PDF Downloads 153
16026 Improving Part-Time Instructors’ Academic Outcomes with Gamification

Authors: Jared R. Chapman

Abstract:

This study introduces a type of motivational information system called an educational engagement information system (EEIS). An EEIS draws on principles of behavioral economics, motivation theory, and learning cognition theory to design information systems that help students want to improve their performance. This study compares academic outcomes for course sections taught by part- and full-time instructors both with and without an EEIS. Without an EEIS, students in the part-time instructor's course sections demonstrated significantly higher failure rates (a 143.8% increase) and dropout rates (a 110.4% increase) with significantly fewer students scoring a B- or higher (39.8% decrease) when compared to students in the course sections taught by a full-time instructor. It is concerning that students in the part-time instructor’s course without an EEIS had significantly lower academic outcomes, suggesting less understanding of the course content. This could impact retention and continuation in a major. With an EEIS, when comparing part- and full-time instructors, there was no significant difference in failure and dropout rates or in the number of students scoring a B- or higher in the course. In fact, with an EEIS, the failure and dropout rates were statistically identical for part- and full-time instructor courses. When using an EEIS (compared with not using an EEIS), the part-time instructor showed a 62.1% decrease in failures, a 61.4% decrease in dropouts, and a 41.7% increase in the number of students scoring a B- or higher in the course. We are unaware of other interventions that yield such large improvements in academic performance. This suggests that using an EEIS such as Delphinium may compensate for part-time instructors’ limitations of expertise, time, or rewards that can have a negative impact on students’ academic outcomes. The EEIS had only a minimal impact on failure rates (7.7% decrease) and dropout rates (18.8% decrease) for the full-time instructor. This suggests there is a ceiling effect for the improvements that an EEIS can make in student performance. This may be because experienced instructors are already doing the kinds of things that an EEIS does, such as motivating students, tracking grades, and providing feedback about progress. Additionally, full-time instructors have more time to dedicate to students outside of class than part-time instructors and more rewards for doing so. Using adjunct and other types of part-time instructors will likely remain a prevalent practice in higher education management courses. Given that using part-time instructors can have a negative impact on student graduation and persistence in a field of study, it is important to identify ways we can augment part-time instructors’ performance. We demonstrated that when part-time instructors use an EEIS, it can result in significantly lower students’ failure and dropout rates and an increase in the rate of students earning a B- or above; and bring their students’ performance to parity with the performance of students taught by a full-time instructor.

Keywords: gamification, engagement, motivation, academic outcomes

Procedia PDF Downloads 70