Search results for: shape effect
15960 An Output Oriented Super-Efficiency Model for Considering Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
There exists some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in calculating efficiency of decision making units (DMU). Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. This problem can be resolved a super-efficiency model. However, a super efficiency model sometimes causes infeasibility problem. This paper suggests an output oriented super-efficiency model for efficiency evaluation under the consideration of time lag effect. A case example using a long term research project is given to compare the suggested model with the MpO modelKeywords: DEA, Super-efficiency, Time Lag, research activities
Procedia PDF Downloads 65515959 Approximate Confidence Interval for Effect Size Base on Bootstrap Resampling Method
Authors: S. Phanyaem
Abstract:
This paper presents the confidence intervals for the effect size base on bootstrap resampling method. The meta-analytic confidence interval for effect size is proposed that are easy to compute. A Monte Carlo simulation study was conducted to compare the performance of the proposed confidence intervals with the existing confidence intervals. The best confidence interval method will have a coverage probability close to 0.95. Simulation results have shown that our proposed confidence intervals perform well in terms of coverage probability and expected length.Keywords: effect size, confidence interval, bootstrap method, resampling
Procedia PDF Downloads 59415958 Price Effect Estimation of Tobacco on Low-wage Male Smokers: A Causal Mediation Analysis
Authors: Kawsar Ahmed, Hong Wang
Abstract:
The study's goal was to estimate the causal mediation impact of tobacco tax before and after price hikes among low-income male smokers, with a particular emphasis on the effect estimating pathways framework for continuous and dichotomous variables. From July to December 2021, a cross-sectional investigation of observational data (n=739) was collected from Bangladeshi low-wage smokers. The Quasi-Bayesian technique, binomial probit model, and sensitivity analysis using a simulation of the computational tools R mediation package had been used to estimate the effect. After a price rise for tobacco products, the average number of cigarettes or bidis sticks taken decreased from 6.7 to 4.56. Tobacco product rising prices have a direct effect on low-income people's decisions to quit or lessen their daily smoking habits of Average Causal Mediation Effect (ACME) [effect=2.31, 95 % confidence interval (C.I.) = (4.71-0.00), p<0.01], Average Direct Effect (ADE) [effect=8.6, 95 percent (C.I.) = (6.8-0.11), p<0.001], and overall significant effects (p<0.001). Tobacco smoking choice is described by the mediated proportion of income effect, which is 26.1% less of following price rise. The curve of ACME and ADE is based on observational figures of the coefficients of determination that asses the model of hypothesis as the substantial consequence after price rises in the sensitivity analysis. To reduce smoking product behaviors, price increases through taxation have a positive causal mediation with income that affects the decision to limit tobacco use and promote low-income men's healthcare policy.Keywords: causal mediation analysis, directed acyclic graphs, tobacco price policy, sensitivity analysis, pathway estimation
Procedia PDF Downloads 11115957 The Effects of Scientific Studies on the Future Fashion Trends
Authors: Basak Ozkendirci
Abstract:
The discovery of chemical dyes, the development of regenerated fibers, and warp knitting technology have enormous effects on the fashion world. The trends created by the information obtained in the context of various studies today shape the fashion world. Trend analysts must follow scientific developments as well as sociological events, political developments and artwork to obtain healthy data on trends. Digital printing technologies have changed the dynamics of textile printing production and also the style of printed designs. Fashion designers already have started design 3D printed accessories and garments. The research fields like the internet of things, artificial intelligence, hologram technologies, mechatronics, energy storage systems, nanotechnology are seen as the technologies that will change the social life and economy of the future. It is clear that research carried out in these areas will affect the textiles of the future and whereat the trends of fashion. The article aims to create a future vision for trend researchers and designers by giving clues about the changes to be experienced in the fashion world. In the first part of the article, information about the scientific studies that are thought to shape the future is given, and the forecasting about how the inventions that can be obtained from these studies can be adapted at the textile are presented. In the second part of the article, examples of how the new generation of innovative textiles will affect the daily life experience of the user are given.Keywords: biotextiles, fashion trends, nanotextiles, new materials, smart textiles, techno textiles
Procedia PDF Downloads 33615956 Globalization as Instrument for Multi-National Corporation in Transforming Asian’s Perspective towards Clean Water Consumption
Authors: Atanta Gian
Abstract:
It is inevitable that globalization has succeeded in transforming the world today. The influence of globalization has emerged in almost every aspect of life nowadays, especially in shaping the perception of the people. It can be seen on how easy for people are affected by the information surrounding them. Due to globalization, the flow of information has become more rapid along with the development of technology. People tend to believe in information that they actually get by themselves, if there is information where most of the people believe it is true, then this information could be categorized as factual and relevant. Therefore if people gain information on what is best for them in terms of daily consumption, then this information could transform their perspective, and it becomes a consideration in selecting their needs for daily consumption. By looking at this trend, the author sees that globalization could be used by Multi-National Corporation (MNC) to enhance the promotion of their products. This is applied by shaping the perspectives of the world regarding what is the best for them. Multi-National Corporation which has better technology in terms of the development of their external promotion could utilize this opportunity to affect people’s perspectives into what they want. In this paper, the author would like to elaborate how globalization is applied by MNC to shape people’s perspective regarding what is the best for them. The author would utilize a case study to analyze on how MNC could transform the perspectives of Asian people regarding the necessary of having a better quality drinking water, which in this case, MNC has shaped the perspective of Asian people in choosing their product by promoting the bottled water as the best choice for them. In the end of this paper, author would come to a conclusion that MNCs are able to shape the world’s perspective regarding the needs of their products which is supported by the globalization that is happening now.Keywords: consumption, globalisation, influence, information technology, multi-national corporations
Procedia PDF Downloads 20815955 The Evolution of the Simulated and Observed Star Formation Rates of Galaxies for the Past 13 Billion Years
Authors: Antonios Katsianis
Abstract:
I present the evolution of the galaxy Star Formation Rate Function (SFRF), star formation rate-stellar mass relation (SFR-M*) and Cosmic Star Formation Rate Density (CSFRD) of z = 0-8 galaxies employing both the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations and a compilation of UV, Ha, radio and IR data. While I present comparisons between the above, I evaluate the effect and importance of supernovae/active galactic nuclei feedback. The relation between the star formation rate and stellar mass of galaxies represents a fundamental constraint on galaxy formation, and has been studied extensively both in observations and cosmological hydrodynamic simulations. However, a tension between the above is reported in the literature. I present the evolution of the SFR-M* relation and demonstrate the inconsistencies between observations that are retrieved using different methods. I employ cosmological hydrodynamic simulations combined with radiative transfer methods and compare these with a range of observed data in order to investigate further the root of this tension. Last, I present insights about the scatter of the SFR-M* relation and investigate which mechanisms (e.g. feedback) drive its shape and evolution.Keywords: cosmological simulations, galaxy formation and evolution, star formation rate, stellar masses
Procedia PDF Downloads 14615954 Improving Efficiencies of Planting Configurations on Draft Environment of Town Square: The Case Study of Taichung City Hall in Taichung, Taiwan
Authors: Yu-Wen Huang, Yi-Cheng Chiang
Abstract:
With urban development, lots of buildings are built around the city. The buildings always affect the urban wind environment. The accelerative situation of wind caused of buildings often makes pedestrians uncomfortable, even causes the accidents and dangers. Factors influencing pedestrian level wind including atmospheric boundary layer, wind direction, wind velocity, planting, building volume, geometric shape of the buildings and adjacent interference effects, etc. Planting has many functions including scraping and slowing urban heat island effect, creating a good visual landscape, increasing urban green area and improve pedestrian level wind. On the other hand, urban square is an important space element supporting the entrance to buildings, city landmarks, and activity collections, etc. The appropriateness of urban square environment usually dominates its success. This research focuses on the effect of tree-planting on the wind environment of urban square. This research studied the square belt of Taichung City Hall. Taichung City Hall is a cuboid building with a large mass opening. The square belt connects the front square, the central opening and the back square. There is often wind draft on the square belt. This phenomenon decreases the activities on the squares. This research applies tree-planting to improve the wind environment and evaluate the effects of two types of planting configuration. The Computational Fluid Dynamics (CFD) simulation analysis and extensive field measurements are applied to explore the improve efficiency of planting configuration on wind environment. This research compares efficiencies of different kinds of planting configuration, including the clustering array configuration and the dispersion, and evaluates the efficiencies by the SET*.Keywords: micro-climate, wind environment, planting configuration, comfortableness, computational fluid dynamics (CFD)
Procedia PDF Downloads 30815953 Design, Analysis and Optimization of Space Frame for BAJA SAE Chassis
Authors: Manoj Malviya, Shubham Shinde
Abstract:
The present study focuses on the determination of torsional stiffness of a space frame chassis and comparison of elements used in the Finite Element Analysis of frame. The study also discusses various concepts and design aspects of a space frame chassis with the emphasis on their applicability in BAJA SAE vehicles. Torsional stiffness is a very important factor that determines the chassis strength, vehicle control, and handling. Therefore, it is very important to determine the torsional stiffness of the vehicle before designing an optimum chassis so that it should not fail during extreme conditions. This study determines the torsional stiffness of frame with respect to suspension shocks, roll-stiffness and anti-roll bar rates. A spring model is developed to study the effects of suspension parameters. The engine greatly contributes to torsional stiffness, and therefore, its effects on torsional stiffness need to be considered. Deflections in the tire have not been considered in the present study. The proper element shape should be selected to analyze the effects of various loadings on chassis while implementing finite element methods. The study compares the accuracy of results and computational time for different element types. Shape functions of these elements are also discussed. Modelling methodology is discussed for the multibody analysis of chassis integrated with suspension arms and engine. Proper boundary conditions are presented so as to replicate the real life conditions.Keywords: space frame chassis, torsional stiffness, multi-body analysis of chassis, element selection
Procedia PDF Downloads 35215952 Performance of a Sailing Vessel with a Solid Wing Sail Compared to a Traditional Sail
Authors: William Waddington, M. Jahir Rizvi
Abstract:
Sail used to propel a vessel functions in a similar way to an aircraft wing. Traditionally, cloth and ropes were used to produce sails. However, there is one major problem with traditional sail design, the increase in turbulence and flow separation when compared to that of an aircraft wing with the same camber. This has led to the development of the solid wing sail focusing mainly on the sail shape. Traditional cloth sails are manufactured as a single element whereas solid wing sail is made of two segments. To the authors’ best knowledge, the phenomena behind the performances of this type of sail at various angles of wind direction with respect to a sailing vessel’s direction (known as the angle of attack) is still an area of mystery. Hence, in this study, the thrusts of a sailing vessel produced by wing sails constructed with various angles (22°, 24°, 26° and 28°) between the two segments have been compared to that of a traditional cloth sail made of carbon-fiber material. The reason for using carbon-fiber material is to achieve the correct and the exact shape of a commercially available mainsail. NACA 0024 and NACA 0016 foils have been used to generate two-segment wing sail shape which incorporates a flap between the first and the second segments. Both the two-dimensional and the three-dimensional sail models designed in commercial CAD software Solidworks have been analyzed through Computational Fluid Dynamics (CFD) techniques using Ansys CFX considering an apparent wind speed of 20.55 knots with an apparent wind angle of 31°. The results indicate that the thrust from traditional sail increases from 8.18 N to 8.26 N when the angle of attack is increased from 5° to 7°. However, the thrust value decreases if the angle of attack is further increased. A solid wing sail which possesses 20° angle between its two segments, produces thrusts from 7.61 N to 7.74 N with an increase in the angle of attack from 7° to 8°. The thrust remains steady up to 9° angle of attack and drops dramatically beyond 9°. The highest thrust values that can be obtained for the solid wing sails with 22°, 24°, 26° and 28° angle respectively between the two segments are 8.75 N, 9.10 N, 9.29 N and 9.19 N respectively. The optimum angle of attack for each of the solid wing sails is identified as 7° at which these thrust values are obtained. Therefore, it can be concluded that all the thrust values predicted for the solid wing sails of angles between the two segments above 20° are higher compared to the thrust predicted for the traditional sail. However, the best performance from a solid wing sail is expected when the sail is created with an angle between the two segments above 20° but below or equal to 26°. In addition, 1/29th scale models in the wind tunnel have been tested to observe the flow behaviors around the sails. The experimental results support the numerical observations as the flow behaviors are exactly the same.Keywords: CFD, drag, sailing vessel, thrust, traditional sail, wing sail
Procedia PDF Downloads 27715951 Power MOSFET Models Including Quasi-Saturation Effect
Authors: Abdelghafour Galadi
Abstract:
In this paper, accurate power MOSFET models including quasi-saturation effect are presented. These models have no internal node voltages determined by the circuit simulator and use one JFET or one depletion mode MOSFET transistors controlled by an “effective” gate voltage taking into account the quasi-saturation effect. The proposed models achieve accurate simulation results with an average error percentage less than 9%, which is an improvement of 21 percentage points compared to the commonly used standard power MOSFET model. In addition, the models can be integrated in any available commercial circuit simulators by using their analytical equations. A description of the models will be provided along with the parameter extraction procedure.Keywords: power MOSFET, drift layer, quasi-saturation effect, SPICE model
Procedia PDF Downloads 19115950 [Keynote Speaker]: Some Similarity Considerations for Design of Experiments for Hybrid Buoyant Aerial Vehicle
Authors: A. U. Haque, W. Asrar, A. A Omar, E. Sulaeman, J. S. M. Ali
Abstract:
Buoyancy force applied on deformable symmetric bodies can be estimated by using Archimedes Principle. Such bodies like ellipsoidal bodies have high volume to surface ratio and are isometrically scaled for mass, length, area and volume to follow square cube law. For scaling up such bodies, it is worthwhile to find out the scaling relationship between the other physical quantities that represent thermodynamic, structural and inertial response etc. So, dimensionless similarities to find an allometric scale can be developed by using Bukingham π theorem which utilizes physical dimensions of important parameters. Base on this fact, physical dependencies of buoyancy system are reviewed to find the set of physical variables for deformable bodies of revolution filled with expandable gas like helium. Due to change in atmospheric conditions, this gas changes its volume and this change can effect the stability of elongated bodies on the ground as well as in te air. Special emphasis was given on the existing similarity parameters which can be used in the design of experiments of such bodies whose shape is affected by the external force like a drag, surface tension and kinetic loads acting on the surface. All these similarity criteria are based on non-dimensionalization, which also needs to be consider for scaling up such bodies.Keywords: Bukhigham pi theorem, similitude, scaling, buoyancy
Procedia PDF Downloads 37515949 Utilization of a Composite of Oil Ash, Scoria, and Expanded Perlite with Polyethylene Glycol for Energy Storage Systems
Authors: Khaled Own Mohaisen, Md. Hasan Zahir, Salah U. Al-Dulaijan, Shamsad Ahmad, Mohammed Maslehuddin
Abstract:
Shape-stabilized phase change materials (ss-PCMs) for energy storage systems were developed using perlite, scoria, and oil ash as a carrier, with polyethylene glycol (PEG) with a molecular weight of 6000 as phase change material (PCM). Physical mixing using simple impregnation of ethanol evaporation technique method was carried out to fabricate the form stabilized PCM. The fabricated PCMs prevent leakage, reduce the supercooling effect and minimize recalescence problems of the PCM. The differential scanning calorimetry (DSC) results show that perlite composite (ExPP) has the highest latent heat of melting and freezing values of (141.6 J/g and 143.7 J/g) respectively, compared with oil ash (OAP) and scoria (SCP) composites. Moreover, ExPP has the highest impregnation ratio, energy storage efficiency, and energy storage capacity compared with OAP and SCP. However, OAP and SCP have higher thermal conductivity values compared to ExPP composites which accelerate the thermal storage response in the composite. These results were confirmed with DSC, and the characteristic of the PCMs was investigated by using XRD and FE-SEM techniques.Keywords: expanded perlite, oil ash, scoria, energy storage material
Procedia PDF Downloads 8615948 A Comprehensive Study on the Porosity Effect of Ti-20Zr Alloy Produced by Powder Metallurgy as a Biomaterial
Authors: Eyyup Murat Karakurt, Yan Huang, Mehmet Kaya, Huseyin Demirtas
Abstract:
In this study, the effect of the porosity effect of Ti-20Zr alloy produced by powder metallurgy as a biomaterial was investigated experimentally. The Ti based alloys (Ti-20%Zr (at.) were produced under 300 MPa, for 6 h at 1200 °C. Afterward, the microstructure of the Ti-based alloys was analyzed by optical analysis, scanning electron microscopy, energy dispersive spectrometry. Moreover, compression tests were applied to determine the mechanical behaviour of samples. As a result, highly porous Ti-20Zr alloys exhibited an elastic modulus close to human bone. The results later were compared theoretically and experimentally.Keywords: porosity effect, Ti based alloys, elastic modulus, compression test
Procedia PDF Downloads 22615947 Carbohydrate Intake Estimation in Type I Diabetic Patients Described by UVA/Padova Model
Authors: David A. Padilla, Rodolfo Villamizar
Abstract:
In recent years, closed loop control strategies have been developed in order to establish a healthy glucose profile in type 1 diabetic mellitus (T1DM) patients. However, the controller itself is unable to define a suitable reference trajectory for glucose. In this paper, a control strategy Is proposed where the shape of the reference trajectory is generated bases in the amount of carbohydrates present during the digestive process, due to the effect of carbohydrate intake. Since there no exists a sensor to measure the amount of carbohydrates consumed, an estimator is proposed. Thus this paper presents the entire process of designing a carbohydrate estimator, which allows estimate disturbance for a predictive controller (MPC) in a T1MD patient, the estimation will be used to establish a profile of reference and improve the response of the controller by providing the estimated information of ingested carbohydrates. The dynamics of the diabetic model used are due to the equations described by the UVA/Padova model of the T1DMS simulator, the system was developed and simulated in Simulink, taking into account the noise and limitations of the glucose control system actuators.Keywords: estimation, glucose control, predictive controller, MPC, UVA/Padova
Procedia PDF Downloads 26015946 Effect of Co Substitution on Structural, Magnetocaloric, Magnetic, and Electrical Properties of Sm0.6Sr0.4CoxMn1-xO3 Synthesized by Sol-gel Method
Authors: A. A. Azab
Abstract:
In this work, Sm0.6Sr0.4CoxMn1-xO3 (x=0, 0.1, 0.2 and 0.3) was synthesized by sol-gel method for magnetocaloric effect (MCE) applications. XRD analysis confirmed formation of the required orthorhombic phase of perovskite, and there is crystallographic phase transition as a result of substitution. Maxwell-Wagner interfacial polarisation and Koops phenomenological theory were used to investigate and analyze the temperature and frequency dependency of the dielectric permittivity. The phase transition from the ferromagnetic to the paramagnetic state was demonstrated to be second order. Based on the isothermal magnetization curves obtained at various temperatures, the magnetic entropy change was calculated. A magnetocaloric effect (MCE) over a wide temperature range was studied by determining DSM and the relative cooling power (RCP).Keywords: magnetocaloric effect, pperovskite, magnetic phase transition, dielectric permittivity
Procedia PDF Downloads 6615945 FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique
Authors: Bahattin Duzgun, Adem Kocyigit, Demet Tatar, Ahmet Battal
Abstract:
Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications.Keywords: doubly doped, spin coating, FTIR analysis, AFM analysis
Procedia PDF Downloads 44915944 Mechanical Behavior of a Pipe Subject to Buckling
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study, we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: finite element analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 21315943 Buckling a Reservoir Composite Provided with Notches
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: Finite Element Analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 35815942 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems
Authors: Ahmed Fradi
Abstract:
Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context.Keywords: CAD, 3D object retrieval, shape based retrieval, similarity calculation
Procedia PDF Downloads 26115941 Study the Sloshing Phenomenon in the Tank Filled Partially with Liquid Using Computational Fluid Dynamics (CFD) Simulation
Authors: Amit Kumar, Jaikumar V, Pradeep AG, Shivakumar Bhavi
Abstract:
Reducing sloshing is one of the major challenges in industries where transporting of liquid involved. The present study investigates the sloshing effect for different liquid levels 25%, 50%, and 75% of the tank capacity. CFD simulation for three different liquid levels has been carried out using a time-based multiphase Volume of fluid (VOF) scheme. Baffles were introduced to examine the sloshing effect inside the tank. Results were compared against the baseline case to assess the effectiveness of baffles. Maximum liquid height over the period of the simulation was considered as the parameter for measuring the sloshing effect inside the tank. It was found that the addition of baffles reduced the sloshing effect inside the tank as compared to the baseline model.Keywords: sloshing, CFD, VOF, baffles
Procedia PDF Downloads 25115940 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain
Authors: Madiha El Awamie, Catherine Rees
Abstract:
Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.Keywords: antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative
Procedia PDF Downloads 33915939 Solution Approaches for Some Scheduling Problems with Learning Effect and Job Dependent Delivery Times
Authors: M. Duran Toksari, Berrin Ucarkus
Abstract:
In this paper, we propose two algorithms to optimally solve makespan and total completion time scheduling problems with learning effect and job dependent delivery times in a single machine environment. The delivery time is the extra time to eliminate adverse effect between the main processing and delivery to the customer. In this paper, we introduce the job dependent delivery times for some single machine scheduling problems with position dependent learning effect, which are makespan are total completion. The results with respect to two algorithms proposed for solving of the each problem are compared with LINGO solutions for 50-jobs, 100-jobs and 150-jobs problems. The proposed algorithms can find the same results in shorter time.Keywords: delivery Times, learning effect, makespan, scheduling, total completion time
Procedia PDF Downloads 46815938 Wave Pressure Metering with the Specific Instrument and Measure Description Determined by the Shape and Surface of the Instrument including the Number of Sensors and Angle between Them
Authors: Branimir Jurun, Elza Jurun
Abstract:
Focus of this paper is description and functioning manner of the instrument for wave pressure metering. Moreover, an essential component of this paper is the proposal of a metering unit for the direct wave pressure measurement determined by the shape and surface of the instrument including the number of sensors and angle between them. Namely, far applied instruments by means of height, length, direction, wave time period and other components determine wave pressure on a particular area. This instrument, allows the direct measurement i.e. measurement without additional calculation, of the wave pressure expressed in a standardized unit of measure. That way the instrument has a standardized form, surface, number of sensors and the angle between them. In addition, it is made with the status that follows the wave and always is on the water surface. Database quality which is listed by the instrument is made possible by using the Arduino chip. This chip is programmed for receiving by two data from each of the sensors each second. From these data by a pre-defined manner a unique representative value is estimated. By this procedure all relevant wave pressure measurement results are directly and immediately registered. Final goal of establishing such a rich database is a comprehensive statistical analysis that ranges from multi-criteria analysis across different modeling and parameters testing to hypothesis accepting relating to the widest variety of man-made activities such as filling of beaches, security cages for aquaculture, bridges construction.Keywords: instrument, metering, water, waves
Procedia PDF Downloads 26315937 Using Tilted Façade to Reduce Thermal Discomfort in a UK Passivhaus Dwelling for a Warming Climate
Authors: Yahya Lavafpour, Steve Sharples
Abstract:
This study investigated the potential negative impacts of future UK climate change on dwellings. In particular, the risk of overheating was considered for a Passivhaus dwelling in London. The study used dynamic simulation modelling software to investigate the potential use of building geometry to control current and future overheating risks in the dwelling for London climate. Specifically, the focus was on the optimum inclination of a south façade to make use of the building’s shape to self-protect itself. A range of different inclined façades were examined to test their effectiveness in reducing the overheating risk. The research found that implementing a 115° tilted façade could completely eliminate the risk of overheating in current climate, but with some consequence for natural ventilation and daylighting. Future overheating was significantly reduced by the tilted façade. However, geometric considerations could not eradicate completely the risk of overheating particularly by the 2080s. The study also used CFD modelling and sensitivity analysis to investigate the effect of the façade geometry on the wind pressure distributions on and around the building surface. This was done to assess natural ventilation flows for alternative façade inclinations.Keywords: climate change, tilt façade, thermal comfort, passivhaus, overheating
Procedia PDF Downloads 76115936 Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive
Authors: M. A. Hassan, M. H. Sakinah, K. Kadirgama, D. Ramasamy, M. M. Noor, M. M. Rahman
Abstract:
Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil.Keywords: concentration, improvement, tribological, copper (II) oxide, nano lubricant
Procedia PDF Downloads 43715935 Propagation of the Effects of Certain Types of Military Psychological Operations in a Networked Population
Authors: Colette Faucher
Abstract:
In modern asymmetric conflicts, the Armed Forces generally have to intervene in countries where the internal peace is in danger. They must make the local population an ally in order to be able to deploy the necessary military actions with its support. For this purpose, psychological operations (PSYOPs) are used to shape people’s behaviors and emotions by the modification of their attitudes in acting on their perceptions. PSYOPs aim at elaborating and spreading a message that must be read, listened to and/or looked at, then understood by the info-targets in order to get from them the desired behavior. A message can generate in the info-targets, reasoned thoughts, spontaneous emotions or reflex behaviors, this effect partly depending on the means of conveyance used to spread this message. In this paper, we focus on psychological operations that generate emotions. We present a method based on the Intergroup Emotion Theory, that determines, from the characteristics of the conveyed message and of the people from the population directly reached by the means of conveyance (direct info-targets), the emotion likely to be triggered in them and we simulate the propagation of the effects of such a message on indirect info-targets that are connected to them through the social networks that structure the population.Keywords: military psychological operations, social identity, social network, emotion propagation
Procedia PDF Downloads 40915934 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates
Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali
Abstract:
In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.Keywords: non-linear vibrations, annular plates, large amplitudes, functionally graded material
Procedia PDF Downloads 36215933 Concrete Mix Design Using Neural Network
Authors: Rama Shanker, Anil Kumar Sachan
Abstract:
Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.Keywords: aggregate proportions, artificial neural network, concrete grade, concrete mix design
Procedia PDF Downloads 38815932 Controlled Size Synthesis of ZnO and PEG-ZnO NPs and Their Biological Evaluation
Authors: Mahnoor Khan, Bashir Ahmad, Khizar Hayat, Saad Ahmad Khan, Laiba Ahmad, Shumaila Bashir, Abid Ali Khan
Abstract:
The objective of this study was to synthesize the smallest possible size of ZnO NPs using a modified wet chemical synthesis method and to prepare core shell using polyethylene glycol (PEG) as shell material. Advanced and sophisticated techniques were used to confirm the synthesis, size, and shape of these NPs. Rounded, clustered NPs of size 5.343 nm were formed. Both the plain and core shell NPs were tested against MDR bacteria (E. cloacae, E. amnigenus, Shigella, S. odorifacae, Citrobacter, and E. coli). Both of the NPs showed excellent antibacterial properties, whereas E. cloacae showed maximum zone of inhibition of 16 mm, 27 mm, and 32 mm for 500 μg/ml, 1000 μg/ml, and 1500 μg/ml, respectively for plain ZnO NPs and 18 mm, 28 mm and 35 mm for 500 μg/ml, 1000 μg/ml and 1500 μg/ml for core shell NPs. These NPs were also biocompatible on human red blood cells showing little hemolysis of only 4% for 70 μg/ml for plain NPs and 1.5% for 70 μg/ml for core shell NPs. Core shell NPs were highly biocompatible because of the PEG. Their therapeutic effect as photosensitizers in photodynamic therapy (PDT) for cancer treatment was also monitored. The cytotoxicity of ZnO and PEG-ZnO was evaluated using MTT assay. Our results demonstrated that these NPs could generate ROS inside tumor cells after irradiation which in turn initiates an apoptotic pathway leading to cell death hence proving to be an effective candidate for PDT.Keywords: ZnO, hemolysis, cytotoxiciy assay, photodynamic therapy, antibacterial
Procedia PDF Downloads 13515931 Forecast Dispersion, Investor Sentiment and the Cross Section of Stock Returns
Authors: Guoyu Lin
Abstract:
This paper explores the role investor sentiment plays in the relationship between analyst forecast dispersion and stock returns. With short sale constraints, stock prices are determined by the optimistic investors. During the high sentiment periods when investors suffer more from psychological bias, there are more optimistic investors. This is the first paper to document that following the high sentiment periods, stocks with the most analyst forecast dispersion are overpriced, earning significantly negative returns, while those with the least analyst forecast dispersion are not overpriced as the degree of belief dispersion is low. However, following the low sentiment periods, both are not overpriced. A portfolio which longs the least dispersed stocks and shorts the most dispersed stocks yields significantly positive returns only following the high sentiment periods. My findings can potentially reconcile the puzzling risk effect and mispricing effect in the literature. The risk (mispricing) effect suggests a positive (negative) relation between analyst forecast dispersion and future stock returns. Presumably, the magnitude of the mispricing effect depends on the proportion of irrational investors and their bias, which is positively related to investor sentiment. During the high sentiment period, the mispricing effect takes over and the overall effect is negative. During the low sentiment period, the percentage of irrational investors is mediate, and the mispricing effect and the risk effect counter each other, leading to insignificant relation.Keywords: analyst forecast dispersion, short-sale constraints, investor sentiment, stock returns
Procedia PDF Downloads 140