Search results for: national image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7111

Search results for: national image

6571 Multi-Atlas Segmentation Based on Dynamic Energy Model: Application to Brain MR Images

Authors: Jie Huo, Jonathan Wu

Abstract:

Segmentation of anatomical structures in medical images is essential for scientific inquiry into the complex relationships between biological structure and clinical diagnosis, treatment and assessment. As a method of incorporating the prior knowledge and the anatomical structure similarity between a target image and atlases, multi-atlas segmentation has been successfully applied in segmenting a variety of medical images, including the brain, cardiac, and abdominal images. The basic idea of multi-atlas segmentation is to transfer the labels in atlases to the coordinate of the target image by matching the target patch to the atlas patch in the neighborhood. However, this technique is limited by the pairwise registration between target image and atlases. In this paper, a novel multi-atlas segmentation approach is proposed by introducing a dynamic energy model. First, the target is mapped to each atlas image by minimizing the dynamic energy function, then the segmentation of target image is generated by weighted fusion based on the energy. The method is tested on MICCAI 2012 Multi-Atlas Labeling Challenge dataset which includes 20 target images and 15 atlases images. The paper also analyzes the influence of different parameters of the dynamic energy model on the segmentation accuracy and measures the dice coefficient by using different feature terms with the energy model. The highest mean dice coefficient obtained with the proposed method is 0.861, which is competitive compared with the recently published method.

Keywords: brain MRI segmentation, dynamic energy model, multi-atlas segmentation, energy minimization

Procedia PDF Downloads 336
6570 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform

Authors: Jie Zhao, Meng Su

Abstract:

Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.

Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab

Procedia PDF Downloads 90
6569 Effects of Financial and Non-Financial Accounting Information Reports on Corporate Credibility and Image of the Listed-Firms in Thailand

Authors: Anocha Rojanapanich

Abstract:

This research investigates the effect of financial accounting information and non-financial accounting reports on corporate credibility via strength of board of directors and market environment volatility as moderating effect. Data in this research is collected by questionnaire form non-financial companies listed on the Stock Exchange of Thailand. Multiple regression statistic technique is used for analyzing the data. Results find that firms with greater financial accounting information reports and non-financial accounting information reports will gain greater corporate credibility. Therefore, the corporate reporting has the value for the firms. Moreover, the strength of board of directors will positively moderate the financial and non-financial accounting information reports and corporate credibility relationship. And market environment volatility will negatively moderate the financial and nonfinancial accounting information reports and corporate credibility relationship and the contribution of accounting information reports on corporate credibility is generated to the corporate image. That is the corporate image has affected by corporate credibility.

Keywords: corporate credibility, financial and non-financial reports, firms performance, corporate image

Procedia PDF Downloads 298
6568 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization

Authors: M. Dhana Lakshmi, S. Sakthivel Murugan

Abstract:

As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.

Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter

Procedia PDF Downloads 195
6567 Application of a Universal Distortion Correction Method in Stereo-Based Digital Image Correlation Measurement

Authors: Hu Zhenxing, Gao Jianxin

Abstract:

Stereo-based digital image correlation (also referred to as three-dimensional (3D) digital image correlation (DIC)) is a technique for both 3D shape and surface deformation measurement of a component, which has found increasing applications in academia and industries. The accuracy of the reconstructed coordinate depends on many factors such as configuration of the setup, stereo-matching, distortion, etc. Most of these factors have been investigated in literature. For instance, the configuration of a binocular vision system determines the systematic errors. The stereo-matching errors depend on the speckle quality and the matching algorithm, which can only be controlled in a limited range. And the distortion is non-linear particularly in a complex imaging acquisition system. Thus, the distortion correction should be carefully considered. Moreover, the distortion function is difficult to formulate in a complex imaging acquisition system using conventional models in such cases where microscopes and other complex lenses are involved. The errors of the distortion correction will propagate to the reconstructed 3D coordinates. To address the problem, an accurate mapping method based on 2D B-spline functions is proposed in this study. The mapping functions are used to convert the distorted coordinates into an ideal plane without distortions. This approach is suitable for any image acquisition distortion models. It is used as a prior process to convert the distorted coordinate to an ideal position, which enables the camera to conform to the pin-hole model. A procedure of this approach is presented for stereo-based DIC. Using 3D speckle image generation, numerical simulations were carried out to compare the accuracy of both the conventional method and the proposed approach.

Keywords: distortion, stereo-based digital image correlation, b-spline, 3D, 2D

Procedia PDF Downloads 498
6566 Examining the Effects of National Disaster on the Performance of Hospitality Industry in Korea

Authors: Kim Sang Hyuck, Y. Park Sung

Abstract:

The outbreak of national disasters stimulates the decrease of the both internal and domestic tourism demands, causing bad effects on the hospitality industry. The effective and efficient risk management regarding national disasters are being increasingly required from the hospitality industry practitioners and the tourism policymakers. To establish the effective and efficient risk management strategy on national disasters, the most essential prerequisite condition is the correct estimation of national disasters’ effects in terms of the size and duration of the damages occurred from national disaster on hospitality industry. More specifically, the national disasters are twofold: natural disaster and social disaster. In addition, the hospitality industry has consisted of several types of business, such as hotel, restaurant, travel agency, etc. As reasons of the above, it is important to consider how each type of national disasters differently influences on the performance of each type of hospitality industry. Therefore, the purpose of this study is examining the effects of national disaster on hospitality industry in Korea based on the types of national disasters as well as the types of hospitality business. The monthly data was collected from Jan. 2000 to Dec. 2016. The indexes of industrial production for each hospitality industry in Korea were used with the proxy variable for the performance of each hospitality industry. Two national disaster variables (natural disaster and social disaster) were treated as dummy variables. In addition, the exchange rate, industrial production index, and consumer price index were used as control variables in the research model. The impulse response analysis was used to examine the size and duration of the damages occurred from each type of national disaster on each type of hospitality industries. The results of this study show that the natural disaster and the social disaster differently influenced on each type of hospitality industry. More specifically, the performance of airline industry is negatively influenced by the natural disaster at the time of 3 months later from the incidence. However, the negative impacts of social disaster on airline industry occurred not significantly over the time periods. For the hotel industry, both natural disaster and social disaster negatively influence the performance of hotel industry at the time of 5 months and 6 months later, respectively. Also, the negative impact of natural disaster on the performance of restaurant industry occurred at the time of 5 months later, as well as for both 3 months and 6 months later for the social disaster. Finally, both natural disaster and social disaster negatively influence the performance of travel agency at the time of 3 months and 4 months later, respectively. In conclusion, the types of national disasters differently influence the performance of each type of hospitality industry in Korea. These results would provide an important information to establish the effective and efficient risk management strategy for the national disasters.

Keywords: impulse response analysis, Korea, national disaster, performance of hospitality industry

Procedia PDF Downloads 184
6565 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm

Procedia PDF Downloads 441
6564 International Integration in Innovative Development of Economy

Authors: Tatyana Kolmykova, Elvira Sitnikova

Abstract:

Globalization is one of the key processes that are shaping the modern world. There are different often quite opposite attitudes toward globalization. However, it is impossible to avoid the effects of international integration, and they should be addressed in the process of formation and development of the national industrial sector.

Keywords: integrated structures, industrial sector, globalization, national

Procedia PDF Downloads 510
6563 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
6562 Body Image Dissatifaction with and Personal Behavioral Control in Obese Patients Who are Attending to Treatment

Authors: Mariela Gonzalez, Zoraide Lugli, Eleonora Vivas, Rosana Guzmán

Abstract:

The objective was to determine the predictive capacity of self-efficacy perceived for weight control, locus of weight control and skills of weight self-management in the dissatisfaction of the body image in obese people who attend treatment. Sectional study conducted in the city of Maracay, Venezuela, with 243 obese who attend to treatment, 173 of the feminine gender and 70 of the male, with ages ranging between 18 and 57 years old. The sample body mass index ranged between 29.39 and 44.14. The following instruments were used: The Body Shape Questionnaire (BSQ), the inventory of body weight self-regulation, The Inventory of self-efficacy in the regulation of body weight and the Inventory of the Locus of weight control. Calculating the descriptive statistics and of central tendency, coefficients of correlation and multiple regression; it was found that a low ‘perceived Self-efficacy in the weight control’ and a high ‘Locus of external control’, predict the dissatisfaction with body image in obese who attend treatment. The findings are a first approximation to give an account of the importance of the personal control variables in the study of the psychological grief on the overweight individual.

Keywords: dissatisfaction with body image, obese people, personal control, psychological variables

Procedia PDF Downloads 433
6561 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 66
6560 From Cultural Policy to Social Practice: Literary Festivals as a Platform for Social Inclusion in Pakistan

Authors: S. Jabeen

Abstract:

Though Pakistan has a rich cultural history and a diverse population; its global image is tarnished with labels of Muslim ‘fundamentalism’ and ‘extremism.’ Cultural policy is a tool that can be used by the government of Pakistan to ameliorate this image, but instead, this fundamentalist reputation is reinforced in the 2005 draft of Pakistan’s cultural policy. With its stern focus on a homogenized cultural identity, this 2005 draft bases itself largely on forced participation from the largely Muslim public and leaves little or no benefits to them or cultural minorities in Pakistan. The effects of this homogenized ‘Muslim’ identity linger ten years later where the study and celebration of the cultural heritage of Pakistan in schools and educational festivals focus entirely on creating and maintaining a singular ‘Islamic’ cultural identity. The current lack of inclusion has many adverse effects that include the breeding of extremist mindsets through the usurpation of minority rights and lack of safe cultural public spaces. This paper argues that Pakistan can improve social inclusivity and boost its global image through cultural policy. The paper sets the grounds for research by surveying the effectiveness of different cultural policies across nations with differing socioeconomic status. Then, by sampling two public literary festivals in Pakistan as case studies, the National Youth Peace Festival hosted with a nationalistic agenda using public funds and the Lahore Literary Festival (LLF) that aims to boost the cultural literacy scene of Lahore using both private and public efforts, this paper looks at the success of the private, more inclusive LLF. A revision of cultural policy is suggested that combines public and private efforts to host cultural festivals for the sake of cultural celebration and human development, without a set nationalistic agenda. Consequently, this comparison which is grounded in the human capabilities approach, recommends revising the 2005 draft of the Cultural Policy to improve human capabilities in order to support cultural diversity and ultimately contribute to economic growth in Pakistan.

Keywords: cultural policy, festivals, human capabilities, Pakistan

Procedia PDF Downloads 138
6559 Multi-Channel Charge-Coupled Device Sensors Real-Time Cell Growth Monitor System

Authors: Han-Wei Shih, Yao-Nan Wang, Ko-Tung Chang, Lung-Ming Fu

Abstract:

A multi-channel cell growth real-time monitor and evaluation system using charge-coupled device (CCD) sensors with 40X lens integrating a NI LabVIEW image processing program is proposed and demonstrated. The LED light source control of monitor system is utilizing 8051 microprocessor integrated with NI LabVIEW software. In this study, the same concentration RAW264.7 cells growth rate and morphology in four different culture conditions (DMEM, LPS, G1, G2) were demonstrated. The real-time cells growth image was captured and analyzed by NI Vision Assistant every 10 minutes in the incubator. The image binarization technique was applied for calculating cell doubling time and cell division index. The cells doubling time and cells division index of four group with DMEM, LPS, LPS+G1, LPS+G2 are 12.3 hr,10.8 hr,14.0 hr,15.2 hr and 74.20%, 78.63%, 69.53%, 66.49%. The image magnification of multi-channel CCDs cell real-time monitoring system is about 100X~200X which compares with the traditional microscope.

Keywords: charge-coupled device (CCD), RAW264.7, doubling time, division index

Procedia PDF Downloads 358
6558 Traffic Density Measurement by Automatic Detection of the Vehicles Using Gradient Vectors from Aerial Images

Authors: Saman Ghaffarian, Ilgin Gökaşar

Abstract:

This paper presents a new automatic vehicle detection method from very high resolution aerial images to measure traffic density. The proposed method starts by extracting road regions from image using road vector data. Then, the road image is divided into equal sections considering resolution of the images. Gradient vectors of the road image are computed from edge map of the corresponding image. Gradient vectors on the each boundary of the sections are divided where the gradient vectors significantly change their directions. Finally, number of vehicles in each section is carried out by calculating the standard deviation of the gradient vectors in each group and accepting the group as vehicle that has standard deviation above predefined threshold value. The proposed method was tested in four very high resolution aerial images acquired from Istanbul, Turkey which illustrate roads and vehicles with diverse characteristics. The results show the reliability of the proposed method in detecting vehicles by producing 86% overall F1 accuracy value.

Keywords: aerial images, intelligent transportation systems, traffic density measurement, vehicle detection

Procedia PDF Downloads 379
6557 Image Compression Using Block Power Method for SVD Decomposition

Authors: El Asnaoui Khalid, Chawki Youness, Aksasse Brahim, Ouanan Mohammed

Abstract:

In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression.

Keywords: image compression, SVD, block SVD power method, lossless compression, near lossless

Procedia PDF Downloads 387
6556 Recognition of Objects in a Maritime Environment Using a Combination of Pre- and Post-Processing of the Polynomial Fit Method

Authors: R. R. Hordijk, O. J. G. Somsen

Abstract:

Traditionally, radar systems are the eyes and ears of a ship. However, these systems have their drawbacks and nowadays they are extended with systems that work with video and photos. Processing of data from these videos and photos is however very labour-intensive and efforts are being made to automate this process. A major problem when trying to recognize objects in water is that the 'background' is not homogeneous so that traditional image recognition technics do not work well. Main question is, can a method be developed which automate this recognition process. There are a large number of parameters involved to facilitate the identification of objects on such images. One is varying the resolution. In this research, the resolution of some images has been reduced to the extreme value of 1% of the original to reduce clutter before the polynomial fit (pre-processing). It turned out that the searched object was clearly recognizable as its grey value was well above the average. Another approach is to take two images of the same scene shortly after each other and compare the result. Because the water (waves) fluctuates much faster than an object floating in the water one can expect that the object is the only stable item in the two images. Both these methods (pre-processing and comparing two images of the same scene) delivered useful results. Though it is too early to conclude that with these methods all image problems can be solved they are certainly worthwhile for further research.

Keywords: image processing, image recognition, polynomial fit, water

Procedia PDF Downloads 534
6555 Embodying the Ecological Validity in Creating the Sustainable Public Policy: A Study in Strengthening the Green Economy in Indonesia

Authors: Gatot Dwi Hendro, Hayyan ul Haq

Abstract:

This work aims to explore the strategy in embodying the ecological validity in creating the sustainability of public policy, particularly in strengthening the green economy in Indonesia. This green economy plays an important role in supporting the national development in Indonesia, as it is a part of the national policy that posits the primary priority in Indonesian governance. The green economy refers to the national development covering strategic natural resources, such as mining, gold, oil, coal, forest, water, marine, and the other supporting infrastructure for products and distribution, such as fabrics, roads, bridges, and so forth. Thus, all activities in those national development should consider the sustainability. This sustainability requires the strong commitment of the national and regional government, as well as the local governments to put the ecology as the main requirement for issuing any policy, such as licence in mining production, and developing and building new production and supporting infrastructures for optimising the national resources. For that reason this work will focus on the strategy how to embody the ecological values and norms in the public policy. In detail, this work will offer the method, i.e. legal techniques, in visualising and embodying the norms and public policy that valid ecologically. This ecological validity is required in order to maintain and sustain our collective life.

Keywords: ecological validity, sustainable development, coherence, Indonesian Pancasila values, environment, marine

Procedia PDF Downloads 485
6554 Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry

Authors: Yongseok Kwon, Woowon Jeong, Eunjin Cho, Sangkug Chung, Kyehan Rhee

Abstract:

Steady streaming flow fields induced by a 500 um bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the saggital plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytic solution, and they also showed a reasonable agreement.

Keywords: oscillating bubble, particle image velocimetry, microstreaming, vortices,

Procedia PDF Downloads 413
6553 Mapping the Technological Interventions to the National Action Plan for Marine Litter Management 2018-2025: Addressing the Marine Plastic Litter at the Marine Tourism Destinations in Indonesia

Authors: Kaisar Akhir, Azhar Slamet

Abstract:

This study aims to provide recommendations for addressing marine plastic litter at the ocean tourism destinations in Indonesia sustainably through technological interventions in the framework of the National Action Plan for Marine Litter Management 2018-2025. In Indonesia, marine tourism is a rapidly growing economic sector. However, marine tourism destinations are facing a global challenge called marine plastic litter. Marine plastic litter is a threat to those destinations since it has potential impacts on the reduction of marine environmental sustainability, the health of tourists and local communities as well as tourism business income. Since 2018, the Indonesian government has passed and promulgated the National Plan of Action on Marine Litter Management 2018-2025. This national action plan consists of three important key aspects of interventions (i.e., societal effort, technological application, and institutional coordination) and five strategies for addressing marine litter in Indonesia, in particular, to address 70% of marine plastic litter by 2025. The strategies include 1) National movement for raising awareness of stakeholders, 2) Land-based litter management, 3) Litter management at the sea and coasts, 4) Funding mechanism, institutional strengthening, monitoring, and law enforcement, and 5) Research and development. In this study, technological interventions around the world and in Indonesia are reviewed and analyzed on their relevance to the national action plan based on five criteria. As a result, there are twelve kinds of technological interventions recommended to be implemented for addressing marine plastic litter in the marine tourism destinations in Indonesia.

Keywords: marine litter management, marine plastic litter, national action plan, ocean sustainability, ocean tourism destination, technological interventions

Procedia PDF Downloads 169
6552 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection

Authors: Nadia Ben Youssef, Aicha Bouzid

Abstract:

Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.

Keywords: gradient, edge detection, color image, quaternion

Procedia PDF Downloads 234
6551 Prevalence of Gestational Diabetes Mellitus in Western Australia from 2015 until 2020

Authors: Kumaressan Ragunathan, Arisudhan Anantharachagan

Abstract:

Gestational diabetes mellitus (GDM) is the subtype of diabetes that has been rapidly increasing in numbers in Australia. The annual percentage of GDM has increased more than 50 percent in the last decade. According to Diabetes Australia, more than five hundred thousand women in Australia will be diagnosed with GDM. Globally, the prevalence of GDM ranges from single-digit to more than 45%. The prevalence of GDM has increased significantly last five years after the introduction of new diagnostic criteria. Hence, we have decided to investigate the trend in GDM prevalence in a tertiary maternity unit at Western Australia and compare it to national prevalence. Data is derived from STORK Perinatal Database which has been used by Maternity services in Western Australia to populate information on pregnancy and labour. We have selected data from 2015 until 2020, which includes 17508 women. Among 17508 women, 3850 women were diagnosed with GDM. In 2015, we had a total of 2213 deliveries with 345 of them were complicated by GDM. GDM prevalence was 15.6% compared to the Australian national prevalence of 12%. In 2016, total deliveries increased to 2759 with 590 of were with GDM. GDM prevalence was 21.4% compared to the Australian national prevalence of 12%. In 2017, total deliveries further increased to 3049 with 675 with GDM. GDM prevalence was 22.1%, with an Australian national prevalence of 13%. In 2018, total deliveries continued to increase, with numbers reaching 3231 with 749 with GDM. GDM prevalence was 23.2%, with an Australian National prevalence of 14%. In 2019, total deliveries were 3110, with 712 complicated by GDM. GDM prevalence was 22.9%, with Australian national prevalence 14%. In 2020, total deliveries 3146 with 819 complicated by GDM. GDM prevalence increased to 26% and we were unable to compare this to national standard as national prevalence has not been released. Among 3890 women with GDM, 2482 (64%) of them required insulin. Apart from that, a total 1642(42%) from the GDM group were delivered via the Caesarean section. 2121 (55%) women with GDM required induction of labour. Overall, we demonstrated an increase in the prevalence of GDM in our unit from 2015 until 2020. Our prevalence is also higher compared to national prevalence. This could be contributed by the increasing number of obesity and in addition, our unit accepts referrals of women with a body mass index (BMI) of more than 40. Hence, further studies are required to look at other risk factors like ethnicity, socio-economic status, health literacy and age, which could contribute to this high prevalence.

Keywords: gestational diabetes mellitus, prevalence, Western Australia, Australia

Procedia PDF Downloads 163
6550 The Mediating Effects of Student Satisfaction on the Relationship Between Organisational Image, Service Quality and Students’ Loyalty in Higher Education Institutions in Kano State, Nigeria

Authors: Ado Ismail Sabo

Abstract:

Statement of the Problem: The global trend in tertiary education institutions today is changing and moving towards engagement, promotion and marketing. The reason is to upscale reputation and impact positioning. More prominently, existing rivalry today seeks to draw-in the best and brightest students. A university or college is no longer just an institution of higher learning, but one adapting additional business nomenclature. Therefore, huge financial resources are invested by educational institutions to polish their image and improve their global and national ranking. In Nigeria, which boasts of a vast population of over 180 million people, some of whose patronage can bolster its education sector; standard of education continues to decline. Today, some Nigerian tertiary education institutions are shadows of their pasts, in terms of academic excellence. Quality has been relinquished because of the unquenchable quest by government officials, some civil servants, school heads and educators to amass wealth. It is very difficult to gain student satisfaction and their loyalty. Some of the student’s loyalties factor towards public higher educational institutions might be confusing. It is difficult to understand the extent to which students are satisfy on many needs. Some students might feel satisfy with the academic lecturers only, whereas others may want everything, and others will never satisfy. Due to these problems, this research aims to uncover the crucial factors influencing student loyalty and to examine if students’ satisfaction might impact mediate the relationship between service quality, organisational image and students’ loyalty towards public higher education institutions in Kano State, Nigeria. The significance of the current study is underscored by the paucity of similar research in the subject area and public tertiary education in a developing country like Nigeria as shown in existing literature. Methodology: The current study was undertaken by quantitative research methodology. Sample of 600 valid responses were obtained within the study population comprising six selected public higher education institutions in Kano State, Nigeria. These include: North West University Kano, Bayero University Kano, School of Management Studies Kano, School of Technology Kano, Sa’adatu Rimi College Kano and Federal College of Education (FCE) Kano. Four main hypotheses were formulated and tested using structural equation modeling techniques with Analysis of Moment Structure (AMOS Version 22.0). Results: Analysis of the data provided support for the main issue of this study, and the following findings are established: “Student Satisfaction mediates the relationship between Service Quality and Student Loyalty”, “Student Satisfaction mediates the relationship between Organizational Image and Student Loyalty” respectively. The findings of this study contributed to the theoretical implication which proposed a structural model that examined the relationships among overall Organizational image, service quality, student satisfaction and student loyalty. Conclusion: In addition, the findings offered a better insight to the managerial (higher institution of learning service providers) by focusing on portraying the image of service quality with student satisfaction in improving the quality of student loyalty.

Keywords: student loyalty, service quality, student satisfaction, organizational image

Procedia PDF Downloads 69
6549 Comparison of Radiation Dosage and Image Quality: Digital Breast Tomosynthesis vs. Full-Field Digital Mammography

Authors: Okhee Woo

Abstract:

Purpose: With increasing concern of individual radiation exposure doses, studies analyzing radiation dosage in breast imaging modalities are required. Aim of this study is to compare radiation dosage and image quality between digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM). Methods and Materials: 303 patients (mean age 52.1 years) who studied DBT and FFDM were retrospectively reviewed. Radiation dosage data were obtained by radiation dosage scoring and monitoring program: Radimetrics (Bayer HealthCare, Whippany, NJ). Entrance dose and mean glandular doses in each breast were obtained in both imaging modalities. To compare the image quality of DBT with two-dimensional synthesized mammogram (2DSM) and FFDM, 5-point scoring of lesion clarity was assessed and the better modality between the two was selected. Interobserver performance was compared with kappa values and diagnostic accuracy was compared using McNemar test. The parameters of radiation dosages (entrance dose, mean glandular dose) and image quality were compared between two modalities by using paired t-test and Wilcoxon rank sum test. Results: For entrance dose and mean glandular doses for each breasts, DBT had lower values compared with FFDM (p-value < 0.0001). Diagnostic accuracy did not have statistical difference, but lesion clarity score was higher in DBT with 2DSM and DBT was chosen as a better modality compared with FFDM. Conclusion: DBT showed lower radiation entrance dose and also lower mean glandular doses to both breasts compared with FFDM. Also, DBT with 2DSM had better image quality than FFDM with similar diagnostic accuracy, suggesting that DBT may have a potential to be performed as an alternative to FFDM.

Keywords: radiation dose, DBT, digital mammography, image quality

Procedia PDF Downloads 349
6548 Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE

Authors: Parimalah Velo, Ahmad Zakaria

Abstract:

Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data.

Keywords: gamma camera, Geant4 application of tomographic emission (GATE), Monte Carlo, thyroid imaging

Procedia PDF Downloads 271
6547 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 366
6546 Detecting the Blood of Femoral and Carotid Artery of Swine Using Photoacoustic Tomography in-vivo

Authors: M. Y. Lee, S. H. Park, S. M. Yu, H. S. Jo, C. G. Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging with ultrasound. It also provides the high contrast and resolution due to optical and ultrasound imaging, respectively. For these reasons, many studies take experiment in order to apply this method for many diagnoses. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer. In this study, we conduct the experiment using swine and detect the blood of carotid artery and femoral artery. We measured the blood of femoral and carotid artery of swine and reconstructed the image using 950nm due to the HbO₂ absorption coefficient. The photoacoustic image is overlaid with ultrasound image in order to match the position. In blood of artery, major composition of blood is HbO₂. In this result, we can measure the blood of artery.

Keywords: photoacoustic tomography, swine artery, carotid artery, femoral artery

Procedia PDF Downloads 252
6545 Challenges for Tourism Development in Algeria: Perspectives of Algerian Tourism Suppliers

Authors: Nour-Elhouda Lecheheb

Abstract:

Despite substantial tourism potentials, the Algerian tourism industry has faced a number of challenges, including the government heavy dependence on the energy sector, negative perception in the West, and a lack of effective resource management and marketing. This paper attempts to discuss the challenges hindering the development of the Algerian tourism industry from the perspective of the official tourism suppliers in Algeria both in the public and private sectors. A total of 10 semi-structured interviews were conducted during a field-trip to Algiers, Algeria, in September 2019. From the analysis of the interviews, it is evident that the Algerian tourism suppliers face a number of challenges mainly the country’s negative image in the West and a significant lack of political and financial support to contest this negative image effectively and sufficiently.

Keywords: Algerian tourism, destination development, destination image, tourism suppliers

Procedia PDF Downloads 258
6544 Formulation of a Rapid Earthquake Risk Ranking Criteria for National Bridges in the National Capital Region Affected by the West Valley Fault Using GIS Data Integration

Authors: George Mariano Soriano

Abstract:

In this study, a Rapid Earthquake Risk Ranking Criteria was formulated by integrating various existing maps and databases by the Department of Public Works and Highways (DPWH) and Philippine Institute of Volcanology and Seismology (PHIVOLCS). Utilizing Geographic Information System (GIS) software, the above-mentioned maps and databases were used in extracting seismic hazard parameters and bridge vulnerability characteristics in order to rank the seismic damage risk rating of bridges in the National Capital Region.

Keywords: bridge, earthquake, GIS, hazard, risk, vulnerability

Procedia PDF Downloads 409
6543 Leukocyte Detection Using Image Stitching and Color Overlapping Windows

Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan

Abstract:

Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.

Keywords: color overlapping windows, image stitching, leukocyte detection, white blood cell detection

Procedia PDF Downloads 310
6542 Development of a Few-View Computed Tomographic Reconstruction Algorithm Using Multi-Directional Total Variation

Authors: Chia Jui Hsieh, Jyh Cheng Chen, Chih Wei Kuo, Ruei Teng Wang, Woei Chyn Chu

Abstract:

Compressed sensing (CS) based computed tomographic (CT) reconstruction algorithm utilizes total variation (TV) to transform CT image into sparse domain and minimizes L1-norm of sparse image for reconstruction. Different from the traditional CS based reconstruction which only calculates x-coordinate and y-coordinate TV to transform CT images into sparse domain, we propose a multi-directional TV to transform tomographic image into sparse domain for low-dose reconstruction. Our method considers all possible directions of TV calculations around a pixel, so the sparse transform for CS based reconstruction is more accurate. In 2D CT reconstruction, we use eight-directional TV to transform CT image into sparse domain. Furthermore, we also use 26-directional TV for 3D reconstruction. This multi-directional sparse transform method makes CS based reconstruction algorithm more powerful to reduce noise and increase image quality. To validate and evaluate the performance of this multi-directional sparse transform method, we use both Shepp-Logan phantom and a head phantom as the targets for reconstruction with the corresponding simulated sparse projection data (angular sampling interval is 5 deg and 6 deg, respectively). From the results, the multi-directional TV method can reconstruct images with relatively less artifacts compared with traditional CS based reconstruction algorithm which only calculates x-coordinate and y-coordinate TV. We also choose RMSE, PSNR, UQI to be the parameters for quantitative analysis. From the results of quantitative analysis, no matter which parameter is calculated, the multi-directional TV method, which we proposed, is better.

Keywords: compressed sensing (CS), low-dose CT reconstruction, total variation (TV), multi-directional gradient operator

Procedia PDF Downloads 256