Search results for: modular ready-wall element
2711 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads
Authors: Aaron Aboshio
Abstract:
Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.Keywords: bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction
Procedia PDF Downloads 3022710 Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology
Authors: Rilwan Kayode Apalowo, Dimitrios Chronopoulos
Abstract:
An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements.Keywords: structural identification, non-destructive evaluation, finite elements, wave propagation, layered structures, ultrasound
Procedia PDF Downloads 1432709 Membrane Spanning DNA Origami Nanopores for Protein Translocation
Authors: Genevieve Pugh, Johnathan Burns, Stefan Howorka
Abstract:
Single-molecule sensing via protein nanopores has achieved a step-change in portable and label-free DNA sequencing. However, protein pores of both natural or engineered origin are not able to produce the tunable diameters needed for effective protein sensing. Here, we describe a generic strategy to build synthetic DNA nanopores that are wide enough to accommodate folded protein. The pores are composed of interlinked DNA duplexes and carry lipid anchors to achieve the required membrane insertion. Our demonstrator pore has a contiguous cross-sectional channel area of 50 nm2 which is 6-times larger than the largest protein pore. Consequently, transport of folded protein across bilayers is possible. The modular design is amenable for different pore dimensions and can be adapted for protein sensing or to create molecular gates in synthetic biology.Keywords: biosensing, DNA nanotechnology, DNA origami, nanopore sensing
Procedia PDF Downloads 3232708 Numerical Simulation of Structural Behavior of NSM CFRP Strengthened RC Beams Using Finite Element Analysis
Authors: Faruk Ortes, Baris Sayin, Tarik Serhat Bozkurt, Cemil Akcay
Abstract:
The technique using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) composites has proved to be an reliable strengthening technique. However, the effects of different parameters for the use of NSM CFRP are not fully developed yet. This study focuses on the development of a numerical modeling that can predict the behavior of reinforced concrete (RC) beams strengthened with NSM FRP rods exposed to bending loading and the efficiency of various parameters such as CFRP rod size and filling material type are evaluated by using prepared models. For this purpose, three different models are developed and implemented in the ANSYS® software using Finite Element Analysis (FEA). The numerical results indicate that CFRP rod size and filling material type are significant factors in the behavior of the analyzed RC beams.Keywords: numerical model, FEA, RC beam, NSM technique, CFRP rod, filling material
Procedia PDF Downloads 6012707 A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates
Authors: Dhiraj Biswas, Chaitali Ray
Abstract:
A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content.Keywords: hybrid laminate, Interlaminar stress, refined higher order zigzag theory, warping effect
Procedia PDF Downloads 2222706 Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology
Authors: Won Mog Choi, Seong Kyeong Hong, Seok Young Jeong
Abstract:
The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test.Keywords: pipeline, optimization, elastic modulus of soil, response surface methodology
Procedia PDF Downloads 3852705 Performance of Stiffened Slender Built up Steel I-Columns
Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady
Abstract:
The present work illustrates a parametric study for the effect of stiffeners on the performance of slender built up steel I-columns. To achieve the desired analysis, finite element technique is used to develop nonlinear three-dimensional models representing the investigated columns. The finite element program (ANSYS 13.0) is used as a calculation tool for the necessary nonlinear analysis. A validation of the obtained numerical results is achieved. The considered parameters in the study are the column slenderness ratio and the horizontal stiffener's dimensions as well as the number of stiffeners. The dimensions of the stiffeners considered in the analysis are the stiffener width and the stiffener thickness. Numerical results signify a considerable effect of stiffeners on the performance and failure load of slender built up steel I-columns.Keywords: columns, local buckling, slender, stiffener, thin walled section
Procedia PDF Downloads 3192704 Impact of Mass Customization for 3D Geographic Information Systems under Turbulent Environments
Authors: Abdo Shabah
Abstract:
Mass customization aims to produce customized goods (allowing economies of scope) at lower cost (to achieve economies of scale) using multiple strategies (modularization and postponement). Through a simulation experiment of organizations under turbulent environment, we aim to compare standardization and mass customization of services and assess the impact of different forms of mass customization (early and late postponement) on performance, quality and consumer satisfaction, on the use of modular dynamic 3D Geographic Information System. Our hypothesis is that mass customization performs better and achieves better quality in turbulent environment than standardization, but only when using early postponement strategies. Using mixed methods study, we try to confirm our hypothesis.Keywords: mass customization, postponement, experiment, performance, quality, satisfaction, 3D GIS
Procedia PDF Downloads 4532703 A Numerical Study of Seismic Effects on Slope Stability Using Node-Based Smooth Finite Element Method
Authors: H. C. Nguyen
Abstract:
This contribution considers seismic effects on the stability of slope and footing resting on a slope. The seismic force is simply treated as static inertial force through the values of acceleration factor. All domains are assumed to be plasticity deformations approximated using node-based smoothed finite element method (NS-FEM). The failure mechanism and safety factor were then explored using numerical procedure based on upper bound approach in which optimization problem was formed as second order cone programming (SOCP). The data obtained confirm that upper bound procedure using NS-FEM and SOCP can give stable and rapid convergence results of seismic stability factors.Keywords: upper bound analysis, safety factor, slope stability, footing resting on slope
Procedia PDF Downloads 1172702 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding
Authors: Seongsoo Lee
Abstract:
Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.Keywords: motion estimation, test zone search, high efficiency video coding, processing element, optimization
Procedia PDF Downloads 3632701 Plane of Equal Settlement above HDD’s Borehole before Operational Condition
Authors: Shokoufeh Sadeghifard
Abstract:
This study is a review of the nature of soil arching that develops in the upper layer of soil during drilling processes before pulling product pipe inside the hole. This study is based on the results of some parametric studies which are investigating the behavior of drained sandy soil above HDD borehole using Plaxis finite element solution. The influence of drilling mud injection in these series of analyses has been ignored. However, a suitable drilling mud pressure helps to achieve stable arch when the height of soil cover over the drilling borehole is not enough. In this study, the soil response to the formation of a HDD borehole is compared to arching theory developed by Terzaghi (1943). It is found that Terzaghi’s approach is capable of describing all of the behaviour seen when a stable arch forms. According to the numerical results, a suitable safe depth of 4D, D is borehole diameter, is suggested for typical range of HDD borehole in sandy soil.Keywords: HDD, Plaxis, finite element, arching, settlement, drilling
Procedia PDF Downloads 3552700 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections
Authors: Jackeline Kafie-Martinez, Peter B. Keating
Abstract:
A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.Keywords: clamping stress, fatigue, finite elements, rivet, riveted railroad bridges
Procedia PDF Downloads 2802699 Reduction of High-Frequency Planar Transformer Conduction Losses Using a Planar Litz Wire Structure
Authors: Hamed Belloumi, Amira Zouaoui, Ferid kourda
Abstract:
A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar Litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded Litz wires. In order to further illustrate the eddy current effect in different arrangements, a Finite-Element Analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels.Keywords: planar transformer, finite-element analysis, winding losses, planar Litz wire
Procedia PDF Downloads 4002698 Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis
Authors: Mohamed Bendoukha, Mustapha Mosbah
Abstract:
The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension.Keywords: intervertebral disc, lumbar spine, degenerative nuclesion, L4-L5, range of motion finite element model, hyperelasticy
Procedia PDF Downloads 1852697 A Mixed Finite Element Formulation for Functionally Graded Micro-Beam Resting on Two-Parameter Elastic Foundation
Authors: Cagri Mollamahmutoglu, Aykut Levent, Ali Mercan
Abstract:
Micro-beams are one of the most common components of Nano-Electromechanical Systems (NEMS) and Micro Electromechanical Systems (MEMS). For this reason, static bending, buckling, and free vibration analysis of micro-beams have been the subject of many studies. In addition, micro-beams restrained with elastic type foundations have been of particular interest. In the analysis of microstructures, closed-form solutions are proposed when available, but most of the time solutions are based on numerical methods due to the complex nature of the resulting differential equations. Thus, a robust and efficient solution method has great importance. In this study, a mixed finite element formulation is obtained for a functionally graded Timoshenko micro-beam resting on two-parameter elastic foundation. In the formulation modified couple stress theory is utilized for the micro-scale effects. The equation of motion and boundary conditions are derived according to Hamilton’s principle. A functional, derived through a scientific procedure based on Gateaux Differential, is proposed for the bending and buckling analysis which is equivalent to the governing equations and boundary conditions. Most important advantage of the formulation is that the mixed finite element formulation allows usage of C₀ type continuous shape functions. Thus shear-locking is avoided in a built-in manner. Also, element matrices are sparsely populated and can be easily calculated with closed-form integration. In this framework results concerning the effects of micro-scale length parameter, power-law parameter, aspect ratio and coefficients of partially or fully continuous elastic foundation over the static bending, buckling, and free vibration response of FG-micro-beam under various boundary conditions are presented and compared with existing literature. Performance characteristics of the presented formulation were evaluated concerning other numerical methods such as generalized differential quadrature method (GDQM). It is found that with less computational burden similar convergence characteristics were obtained. Moreover, formulation also includes a direct calculation of the micro-scale related contributions to the structural response as well.Keywords: micro-beam, functionally graded materials, two-paramater elastic foundation, mixed finite element method
Procedia PDF Downloads 1602696 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models
Authors: C. F. Kumru, C. Kocatepe, O. Arikan
Abstract:
In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.Keywords: electric field, energy transmission line, finite element method, pylon
Procedia PDF Downloads 7282695 Addressing Rural Health Challenges: A Flexible Modular Approach for Resilient Healthcare Services
Authors: Pariya Sheykhmaleki, Debajyoti Pati
Abstract:
Rural areas in the United States face numerous challenges in providing quality and assessable primary healthcare services, especially during emergencies such as natural disasters or pandemics. This study showcases a cutting-edge flexible module that aims to overcome these challenges by offering adaptable healthcare facilities capable of providing comprehensive health services in remote and disaster-prone regions. According to the Health Resources and Services Administration (HRSA), approximately 62 million Americans, or 1 in 5 individuals, live in areas designated as Health Professional Shortage Areas (HPSAs) for primary care. These areas are characterized by limited access to healthcare facilities, shortage of healthcare professionals, transportation barriers, inadequate healthcare infrastructure, higher rates of chronic diseases, mental health disparities, and limited availability of specialized care, including urgent circumstances like pandemics that can exacerbate this issue. To address these challenges, the literature study began by examining primary health solutions in very remote areas, e.g., spaceships, to identify the state-of-the-art technologies and the methods used to facilitate primary care needs. The literature study on flexibility in architecture and interior design was also adapted to develop a conceptual design for rural areas. The designed flexible module provides an innovative solution. This module can be prefabricated as all parts are standardized. The flexibility of the module allows the structure to be modified based on local and geographical requirements as well as the ability to expand as required. It has been designed to stand either by itself or work in tandem with public buildings. By utilizing sustainable approaches and flexible spatial configurations, the module optimizes the utilization of limited resources while ensuring efficient and effective healthcare delivery. Furthermore, the poster highlights the key features of this flexible module, including its ability to support telemedicine and telehealth services for all five levels of urgent care conditions, i.e., from facilitating fast tracks to supporting emergency room services, in two divided zones. The module's versatility enables its deployment in rural areas located far from urban centers and disaster-stricken regions, ensuring access to critical healthcare services in times of need. This module is also capable of responding in urban areas when the need for primary health becomes vastly urgent, e.g., during a pandemic. It emphasizes the module's potential to bridge the healthcare gap between rural and urban areas and mitigate the impact of rural health challenges.Keywords: rural health, healthcare challenges, flexible modular design, telemedicine, telehealth
Procedia PDF Downloads 772694 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea
Authors: Woo Young Jung, Bu Seog Ju
Abstract:
This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.Keywords: seismic, bridge, FEM, evaluation, numerical analysis
Procedia PDF Downloads 3662693 Numerical Investigation of Material Behavior During Non-Equal Channel Multi Angular Extrusion
Authors: Mohamed S. El-Asfoury, Ahmed Abdel-Moneim, Mohamed N. A. Nasr
Abstract:
The current study uses finite element modeling to investigate and analyze a modified form of the from the conventional equal channel multi-angular pressing (ECMAP), using non-equal channels, on the workpiece material plastic deformation. The modified process non-equal channel multi-angular extrusion (NECMAE) is modeled using two-dimensional plane strain finite element model built using the commercial software ABAQUS. The workpiece material used is pure aluminum. The model was first validated by comparing its results to analytical solutions for single-pass equal channel angular extrusion (ECAP), as well as previously published data. After that, the model was used to examine the effects of different % of reductions of the area (for the second stage) on material plastic deformation, corner gap, and required the load. Three levels of reduction in the area were modeled; 10%, 30%, and 50%, and compared to single-pass and double-pass ECAP. Cases with a higher reduction in the area were found to have smaller corner gaps, higher and much uniform plastic deformation, as well as higher required loads. The current results are mainly attributed to the back pressure effects exerted by the second stage, as well as strain hardening effects experienced during the first stage.Keywords: non-equal channel angular extrusion, multi-pass, sever plastic deformation, back pressure, Finite Element Modelling (FEM)
Procedia PDF Downloads 4222692 Smart Meter Incorporating UWB Technology
Authors: T. A. Khan, A. B. Khan, M. Babar, T. A. Taj, Imran Ijaz Imran
Abstract:
Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional services as compared to the conventional energy meters. One of the important element that makes a meter smart and different is its communication module. Smart meters usually have two way and real-time communication between the consumer and the supplier through which its transfer data and information. In this paper, Ultra Wide Band (UWB) is recommended as communication platform because of its high data-rate and presents the physical layer, which could be easily incorporated in existing Smart Meters. The physical layer is simulated in MATLAB Simulink and the results are provided.Keywords: Ultra Wide Band (UWB), Smart Meter, MATLAB, transfer data
Procedia PDF Downloads 5162691 Guided Wave in a Cylinder with Trepezoid Cross-Section
Authors: Nan Tang, Bin Wu, Cunfu He
Abstract:
The trapezoid rods are widely used in civil engineering as load –carrying members. Ultrasonic guided wave is one of the most popular techniques in analyzing the propagation of elastic guided wave. The goal of this paper is to investigate the propagation of elastic waves in the isotropic bar with trapezoid cross-section. Dispersion curves that describe the relationship between the frequency and velocity provide the fundamental information to describe the propagation of elastic waves through a structure. Based on the SAFE (semi-analytical finite element) a linear algebraic system of equations is obtained. By using numerical methods, dispersion curves solved for the rods with the trapezoid cross-section. These fundamental information plays an important role in applying ultrasonic guided waves to NTD for structures with trapezoid cross section.Keywords: guided wave, dispersion, finite element method, trapezoid rod
Procedia PDF Downloads 2912690 Vibration Frequencies Analysis of Nanoporous Graphene Membrane
Authors: Haw-Long Lee, Win-Jin Chang, Yu-Ching Yang
Abstract:
In this study, we use the atomic-scale finite element method to investigate the vibrational behavior of the armchair- and zigzag-structured nanoporous graphene layers with different size under the SFSF and CFFF boundary conditions. The fundamental frequencies computed for the graphene layers without pore are compared with the results of previous studies. We observe very good correspondence of our results with that of the other studies in all the considered cases. For the armchair- and zigzag-structured nanoporous graphene layers under the SFSF and CFFF boundary conditions, the frequencies decrease as the size of the nanopore increase. When the positions of the pore are symmetric with respect to the center of the graphene, the frequency of the zigzag pore graphene is higher than that of the armchair one.Keywords: atomic-scale finite element method, graphene, nanoporous, natural frequency
Procedia PDF Downloads 3612689 Numerical and Experimental Analysis of Stiffened Aluminum Panels under Compression
Authors: Ismail Cengiz, Faruk Elaldi
Abstract:
Within the scope of the study presented in this paper, load carrying capacity and buckling behavior of a stiffened aluminum panel designed by adopting current ‘buckle-resistant’ design application and ‘Post –Buckling’ design approach were investigated experimentally and numerically. The test specimen that is stabilized by Z-type stiffeners and manufactured from aluminum 2024 T3 Clad material was test under compression load. Buckling behavior was observed by means of 3 – dimensional digital image correlation (DIC) and strain gauge pairs. The experimental study was followed by developing an efficient and reliable finite element model whose ability to predict behavior of the stiffened panel used for compression test is verified by compering experimental and numerical results in terms of load – shortening curve, strain-load curves and buckling mode shapes. While finite element model was being constructed, non-linear behaviors associated with material and geometry was considered. Finally, applicability of aluminum stiffened panel in airframe design against to composite structures was evaluated thorough the concept of ‘Structural Efficiency’. This study reveals that considerable amount of weight saving could be gained if the concept of ‘post-buckling design’ is preferred to the already conventionally used ‘buckle resistant design’ concept in aircraft industry without scarifying any of structural integrity under load spectrum.Keywords: post-buckling, stiffened panel, non-linear finite element method, aluminum, structural efficiency
Procedia PDF Downloads 1482688 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement
Authors: Yu Luan
Abstract:
The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite element analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.Keywords: artificial ear, bone conducted vibration, occlusion measurement, finite element modeling
Procedia PDF Downloads 872687 Experimental Study on Flexural Strength of Reinforced Geopolymer Concrete Beams
Authors: Khoa Tan Nguyen, Tuan Anh Le, Kihak Lee
Abstract:
This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC) beams. A commercial finite element (FE) software ABAQUS has been used to perform a structural behavior of RGPC beams. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental tests and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occurring, the actual deflection of RGPC beam from experimental test results were slightly different from the results of ABAQUS. And there is good agreement between the crack patterns of fly ash-based geopolymer concrete generated by FE analysis using ABAQUS, and those in experimental data.Keywords: geopolymer concrete beam, finite element mehod, stress strain relation, modulus elasticity
Procedia PDF Downloads 3922686 Effect of Arsenic Treatment on Element Contents of Sunflower, Growing in Nutrient Solution
Authors: Szilvia Várallyay, Szilvia Veres, Éva Bódi, Farzaneh Garousi, Béla Kovács
Abstract:
The agricultural environment is contaminated with heavy metals and other toxic elements, which means more and more threats. One of the most important toxic element is the arsenic. Consequences of arsenic toxicity in the plant organism is decreases the weight of the roots, and causes discoloration and necrosis of leaves. The toxicity of arsenic depends on the quality and quantity of the arsenic specialization. The arsenic in the soil and in the plant presents as a most hazardous specialization. A dicotyledon plant were chosen for the experiment, namely sunflower. The sunflower plants were grown in nutrient solution in different As(III) levels. The content of As, P, Fe were measured from experimental plants, using by ICP-MS.Negative correlation was observed between the higher concentration of As(V) and As(III) in the nutrition solution and the content of P in the sunflower tissue. The amount of Fe was decreasing if we used a higher concentration of arsenic (30 mg kg-1). We can tell the conclusion that the arsenic had a negative effect on the sunflower tissue P and Fe content.Keywords: arsenic, sunflower, ICP-MS, toxicity
Procedia PDF Downloads 6462685 Cleaner Technology for Stone Crushers
Authors: S. M. Ahuja
Abstract:
There are about 12000 stone crusher units in India and are located in clusters around urban areas to the stone quarries. These crushers create lot of fugitive dust emissions and noise pollution which is a major health hazard for the people working in the crushers and also living in its vicinity. Ambient air monitoring was carried out near various stone crushers and it has been observed that fugitive emission varied from 300 to 8000 mg/Nm3. A number of stone crushers were thoroughly studied and their existing pollution control devices were examined. Limitations in the existing technology were also studied. A technology consisting of minimal effective spray nozzles to reduce the emissions at source followed by a containment cum control system having modular cyclones as air pollution control device has been conceived. Besides preliminary energy audit has also been carried out in some of the stone crushers which indicates substantial potential for energy saving.Keywords: stone crushers, spray nozzles, energy audit
Procedia PDF Downloads 3322684 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator
Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard
Abstract:
Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.Keywords: blade tip timing, blisk, finite element, vibration measurement
Procedia PDF Downloads 3102683 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis
Procedia PDF Downloads 1362682 Dam Break Model Using Navier-Stokes Equation
Authors: Alireza Lohrasbi, Alireza Lavaei, Mohammadali M. Shahlaei
Abstract:
The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique.Keywords: dam break, Naiver-Stokes equations, free-surface flows, Arbitrary Lagrangian-Eulerian
Procedia PDF Downloads 336