Search results for: maisotsenko cycle
1519 Efficacy of Preimplantation Genetic Screening in Women with a Spontaneous Abortion History with Eukaryotic or Aneuploidy Abortus
Authors: Jayeon Kim, Eunjung Yu, Taeki Yoon
Abstract:
Most spontaneous miscarriage is believed to be a consequence of embryo aneuploidies. Transferring eukaryotic embryos selected by PGS is expected to decrease the miscarriage rate. Current PGS indications include advanced maternal age, recurrent pregnancy loss, repeated implantation failure. Recently, use of PGS for healthy women without above indications for the purpose of improving in vitro fertilization (IVF) outcomes is on the rise. However, it is still controversy about the beneficial effect of PGS in this population, especially, in women with a history of no more than 2 miscarriages or miscarriage of eukaryotic abortus. This study aimed to investigate if karyotyping result of abortus is a good indicator of preimplantation genetic screening (PGS) in subsequent IVF cycle in women with a history of spontaneous abortion. A single-center retrospective cohort study was performed. Women who had spontaneous abortion(s) (less than 3) and dilatation and evacuation, and subsequent IVF from January 2016 to November 2016 were included. Their medical information was extracted from the charts. Clinical pregnancy was defined as presence of a gestational sac with fetal heart beat detected on ultrasound in week 7. Statistical analysis was performed using SPSS software. Total 234 women were included. 121 out of 234 (51.7%) underwent karyotyping of the abortus, and 113 did not have the abortus karyotyped. Embryo biopsy was performed on 3 or 5 days after oocyte retrieval, followed by embryo transfer (ET) on a fresh or frozen cycle. The biopsied materials were subjected to microarray comparative genomic hybridization. Clinical pregnancy rate per ET was compared between PGS and non-PGS group in each study group. Patients were grouped by two criteria: karyotype of the abortus from previous miscarriage (unknown fetal karyotype (n=89, Group 1), eukaryotic abortus (n=36, Group 2) or aneuploidy abortus (n=67, Group 3)), and pursuing PGS in subsequent IVF cycle (pursuing PGS (PGS group, n=105) or not pursuing PGS (non-PGS group, n=87)). The PGS group was significantly older and had higher number of retrieved oocytes and prior miscarriages compared to non-PGS group. There were no differences in BMI and AMH level between those two groups. In PGS group, the mean number of transferable embryos (eukaryotic embryo) was 1.3 ± 0.7, 1.5 ± 0.5 and 1.4 ± 0.5, respectively (p = 0.049). In 42 cases, ET was cancelled because all embryos biopsied turned out to be abnormal. In all three groups (group 1, 2, and 3), clinical pregnancy rates were not statistically different between PGS and non-PGS group (Group 1: 48.8% vs. 52.2% (p=0.858), Group 2: 70% vs. 73.1% (p=0.730), Group 3: 42.3% vs. 46.7% (p=0.640), in PGS and non-PGS group, respectively). In both groups who had miscarriage with eukaryotic and aneuploidy abortus, the clinical pregnancy rate between IVF cycles with and without PGS was not different. When we compare miscarriage and ongoing pregnancy rate, there were no significant differences between PGS and non-PGS group in all three groups. Our results show that the routine application of PGS in women who had less than 3 miscarriages would not be beneficial, even in cases that previous miscarriage had been caused by fetal aneuploidy.Keywords: preimplantation genetic diagnosis, miscarriage, kpryotyping, in vitro fertilization
Procedia PDF Downloads 1821518 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research
Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde
Abstract:
Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing
Procedia PDF Downloads 951517 Impact of Serum Estrogen and Progesterone Levels in the Outcome Pregnancy Rate in Frozen Embryo Transfer Cycles. A Prospective Cohort Study
Authors: Sayantika Biswas, Dipanshu Sur, Amitoj Athwal, Ratnabali Chakravorty
Abstract:
Title: Impact of serum estrogen and progesterone levels in the outcome pregnancy rate in frozen embryo transfer cycles. A prospective cohort study Objective: The aim of the current study was to evaluate the effect of serum estradiol (E2) and progesterone (P4) levels at different time points on pregnancy outcomes in frozen embryo transfer (FET) cycles. Materials & Method: A prospective cohort study was performed in patients undergoing frozen embryo transfer. Patients under age 37 years of age with at least one good blastocyst or three good day 3 embryos were included in the study. For endometrial preparation, 14 days of oral estradiol use (2X2 mg for 5 days. 3X2 mg for 4 days, and 4X2 mg for 5 days) was followed by vaginal progesterone twice a day and 50 mg intramuscular progesterone twice a day. Embryo transfer was scheduled 72-76 hrs or 116-120hrs after the initiation of progesterone. Serum E2 and P4 levels were examined at 4 times a) at the start of the menstrual cycle prior to the hormone supplementation. b) on the day of P4 start. c) on the day of ET. d) on the third day after ET. Result: A total 41 women were included in this study (mean age 31.8; SD 2.8). Clinical pregnancy rate was 65.55%. Serum E2 levels on at the start of the menstrual cycle prior to the hormone supplementation and on the day of P4 start were high in patients who achieved pregnancy compared to who did not (P=0.005 and P=0.019 respectively). P4 levels on on the day of ET were also high in patients with clinical pregnancy. On the day of P4 start, a serum E2 threshold of 186.4 pg/ml had a sensitivity of 82%, and P4 had a sensitivity of 71% for the prediction of clinical pregnancy at the threshold value 16.00 ng/ml. Conclusion: In women undergoing FET with hormone replacement, serum E2 level >186.4 pg/ml on the day of the start of progesterone and serum P4 levels >16.00 ng/ml on embryo transfer day are associated with clinical pregnancy.Keywords: serum estradiol, serum progesterone, clinical pregnancy, frozen embryo transfer
Procedia PDF Downloads 811516 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol
Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee
Abstract:
In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.Keywords: apoptosis, cancer, G1 arrest, panaxydol
Procedia PDF Downloads 3221515 Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System
Authors: Maryam Hamlehdar, Guillermo A. Narsilio
Abstract:
To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production.Keywords: clean hydrogen production, integrated solar-geothermal, low-temperature geothermal energy, numerical modelling
Procedia PDF Downloads 701514 Sustainability in Retaining Wall Construction with Geosynthetics
Authors: Sateesh Kumar Pisini, Swetha Priya Darshini, Sanjay Kumar Shukla
Abstract:
This paper seeks to present a research study on sustainability in construction of retaining wall using geosynthetics. Sustainable construction is a way for the building and infrastructure industry to move towards achieving sustainable development, taking into account environmental, socioeconomic and cultural issues. Geotechnical engineering, being very resource intensive, warrants an environmental sustainability study, but a quantitative framework for assessing the sustainability of geotechnical practices, particularly at the planning and design stages, does not exist. In geotechnical projects, major economic issues to be addressed are in the design and construction of stable slopes and retaining structures within space constraints. In this paper, quantitative indicators for assessing the environmental sustainability of retaining wall with geosynthetics are compared with conventional concrete retaining wall through life cycle assessment (LCA). Geosynthetics can make a real difference in sustainable construction techniques and contribute to development in developing countries in particular. Their imaginative application can result in considerable cost savings over the use of conventional designs and materials. The acceptance of geosynthetics in reinforced retaining wall construction has been triggered by a number of factors, including aesthetics, reliability, simple construction techniques, good seismic performance, and the ability to tolerate large deformations without structural distress. Reinforced retaining wall with geosynthetics is the best cost-effective and eco-friendly solution as compared with traditional concrete retaining wall construction. This paper presents an analysis of the theme of sustainability applied to the design and construction of traditional concrete retaining wall and presenting a cost-effective and environmental solution using geosynthetics.Keywords: sustainability, retaining wall, geosynthetics, life cycle assessment
Procedia PDF Downloads 20611513 Effect of Rhythmic Auditory Stimulation on Gait in Patients with Stroke
Authors: Mohamed Ahmed Fouad
Abstract:
Background: Stroke is the most leading cause to functional disability and gait problems. Objectives: The purpose of this study was to determine the effect of rhythmic auditory stimulation combined with treadmill training on selected gait kinematics in stroke patients. Methods: Thirty male stroke patients participated in this study. The patients were assigned randomly into two equal groups, (study and control). Patients in the study group received treadmill training combined with rhythmic auditory stimulation in addition to selected physical therapy program for hemiparetic patients. Patients in the control group received treadmill training in addition to the same selected physical therapy program including strengthening, stretching, weight bearing, balance exercises and gait training. Biodex gait trainer 2 TM was used to assess selected gait kinematics (step length, step cycle, walking speed, time on each foot and ambulation index) before and after six weeks training period (end of treatment) for both groups. Results: There was a statistically significant increase in walking speed, step cycle, step length, percent of the time on each foot and ambulation index in both groups post-treatment. The improvement in gait parameters post-treatment was significantly higher in the study group compared to the control. Conclusion: Rhythmic auditory stimulation combined with treadmill training is effective in improving selected gait kinematics in stroke patients when added to the selected physical therapy program.Keywords: stroke, rhythmic auditory stimulation, treadmill training, gait kinematics
Procedia PDF Downloads 2451512 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo
Authors: Vladimir A. Vinnikov
Abstract:
The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks
Procedia PDF Downloads 2641511 Widely Diversified Macroeconomies in the Super-Long Run Casts a Doubt on Path-Independent Equilibrium Growth Model
Authors: Ichiro Takahashi
Abstract:
One of the major assumptions of mainstream macroeconomics is the path independence of capital stock. This paper challenges this assumption by employing an agent-based approach. The simulation results showed the existence of multiple "quasi-steady state" equilibria of the capital stock, which may cast serious doubt on the validity of the assumption. The finding would give a better understanding of many phenomena that involve hysteresis, including the causes of poverty. The "market-clearing view" has been widely shared among major schools of macroeconomics. They understand that the capital stock, the labor force, and technology, determine the "full-employment" equilibrium growth path and demand/supply shocks can move the economy away from the path only temporarily: the dichotomy between the short-run business cycles and the long-run equilibrium path. The view then implicitly assumes the long-run capital stock to be independent of how the economy has evolved. In contrast, "Old Keynesians" have recognized fluctuations in output as arising largely from fluctuations in real aggregate demand. It will then be an interesting question to ask if an agent-based macroeconomic model, which is known to have path dependence, can generate multiple full-employment equilibrium trajectories of the capital stock in the super-long run. If the answer is yes, the equilibrium level of capital stock, an important supply-side factor, would no longer be independent of the business cycle phenomenon. This paper attempts to answer the above question by using the agent-based macroeconomic model developed by Takahashi and Okada (2010). The model would serve this purpose well because it has neither population growth nor technology progress. The objective of the paper is twofold: (1) to explore the causes of long-term business cycle, and (2) to examine the super-long behaviors of the capital stock of full-employment economies. (1) The simulated behaviors of the key macroeconomic variables such as output, employment, real wages showed widely diversified macro-economies. They were often remarkably stable but exhibited both short-term and long-term fluctuations. The long-term fluctuations occur through the following two adjustments: the quantity and relative cost adjustments of capital stock. The first one is obvious and assumed by many business cycle theorists. The reduced aggregate demand lowers prices, which raises real wages, thereby decreasing the relative cost of capital stock with respect to labor. (2) The long-term business cycles/fluctuations were synthesized with the hysteresis of real wages, interest rates, and investments. In particular, a sequence of the simulation runs with a super-long simulation period generated a wide range of perfectly stable paths, many of which achieved full employment: all the macroeconomic trajectories, including capital stock, output, and employment, were perfectly horizontal over 100,000 periods. Moreover, the full-employment level of capital stock was influenced by the history of unemployment, which was itself path-dependent. Thus, an experience of severe unemployment in the past kept the real wage low, which discouraged a relatively costly investment in capital stock. Meanwhile, a history of good performance sometimes brought about a low capital stock due to a high-interest rate that was consistent with a strong investment.Keywords: agent-based macroeconomic model, business cycle, hysteresis, stability
Procedia PDF Downloads 2111510 Investigating Sustainable Construction and Demolition Waste Management Practices in South Africa
Authors: Ademilade J. Aboginije, Clinton O. Aigbavboa
Abstract:
South Africa is among the emerging economy, which has a policy and suitable environment that dynamically stimulates waste management practices of diverting waste away from landfill through prevention, reuse, recycling, and recovery known as the 4R-approaches. The focus of this paper is to investigate the existing structures and processes that are environmentally responsible, then determine the resource-efficiency of the waste management practices in the South Africa construction industry. This paper indicates the results of an investigation carried out by using a systematic review of several related literatures to assess the sustainability of waste management scenarios with secondary material recovery to pinpoint all influential criteria and consequently, highlights a step by step approach to adequately analyze the process by using the indicators that can clearly and fully value the waste management practices in South Africa. Furthermore, a life cycle Analytical tool is used to support the development of a framework which can be applied in measuring the sustainability of existing waste management practices in South Africa. Finding shows that sustainable C&D waste management practices stance a great prospect far more noticeable in terms of job creation and opportunities, saving cost and conserving natural resources when incorporated, especially in the process of recycling and reusing of C&D waste materials in several construction projects in South Africa. However, there are problems such as; inadequacy of waste to energy plants, low compliances to policies and sustainable principles, lack of enough technical capacities confronting the effectiveness of the current waste management practices. Thus, with the increase in the pursuit of sustainable development in most developing countries, this paper determines how sustainability can be measured and used in top-level decision-making policy within construction and demolition waste management for a sustainable built environment.Keywords: construction industry, green-star rating, life-cycle analysis, sustainability, zero-waste hierarchy
Procedia PDF Downloads 1281509 Dynamic Determination of Spare Engine Requirements for Air Fighters Integrating Feedback of Operational Information
Authors: Tae Bo Jeon
Abstract:
Korean air force is undertaking a big project to replace prevailing hundreds of old air fighters such as F-4, F-5, KF-16 etc. The task is to develop and produce domestic fighters equipped with 2 complete-type engines each. A large number of engines, however, will be purchased as products from a foreign engine maker. In addition to the fighters themselves, secure the proper number of spare engines serves a significant role in maintaining combat readiness and effectively managing the national defense budget due to high cost. In this paper, we presented a model dynamically updating spare engine requirements. Currently, the military administration purchases all the fighters, engines, and spare engines at acquisition stage and does not have additional procurement processes during the life cycle, 30-40 years. With the assumption that procurement procedure during the operational stage is established, our model starts from the initial estimate of spare engine requirements based on limited information. The model then performs military missions and repair/maintenance works when necessary. During operation, detailed field information - aircraft repair and test, engine repair, planned maintenance, administration time, transportation pipeline between base, field, and depot etc., - should be considered for actual engine requirements. At the end of each year, the performance measure is recorded and proceeds to next year when it shows higher the threshold set. Otherwise, additional engine(s) will be bought and added to the current system. We repeat the process for the life cycle period and compare the results. The proposed model is seen to generate far better results appropriately adding spare engines thus avoiding possible undesirable situations. Our model may well be applied to future air force military operations.Keywords: DMSMS, operational availability, METRIC, PRS
Procedia PDF Downloads 1741508 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities
Authors: Mehmet Bulent Topkaya, Mustafa Yildirim
Abstract:
Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment
Procedia PDF Downloads 3021507 Fenton Sludge's Catalytic Ability with Synergistic Effects During Reuse for Landfill Leachate Treatment
Authors: Mohd Salim Mahtab, Izharul Haq Farooqi, Anwar Khursheed
Abstract:
Advanced oxidation processes (AOPs) based on Fenton are versatile options for treating complex wastewaters containing refractory compounds. However, the classical Fenton process (CFP) has limitations, such as high sludge production and reagent dosage, which limit its broad use and result in secondary contamination. As a result, long-term solutions are required for process intensification and the removal of these impediments. This study shows that Fenton sludge could serve as a catalyst in the Fe³⁺/Fe²⁺ reductive pathway, allowing non-regenerated sludge to be reused for complex wastewater treatment, such as landfill leachate treatment, even in the absence of Fenton's reagents. Experiments with and without pH adjustments in stages I and II demonstrated that an acidic pH is desirable. Humic compounds in leachate could improve the cycle of Fe³⁺/Fe²⁺ under optimal conditions, and the chemical oxygen demand (COD) removal efficiency was 22±2% and 62±2%% in stages I and II, respectively. Furthermore, excellent total suspended solids (TSS) removal (> 95%) and color removal (> 80%) were obtained in stage II. The processes underlying synergistic (oxidation/coagulation/adsorption) effects were addressed. The design of the experiment (DOE) is growing increasingly popular and has thus been implemented in the chemical, water, and environmental domains. The relevance of the statistical model for the desired response was validated using the explicitly stated optimal conditions. The operational factors, characteristics of reused sludge, toxicity analysis, cost calculation, and future research objectives were also discussed. Reusing non-regenerated Fenton sludge, according to the study's findings, can minimize hazardous solid toxic emissions and total treatment costs.Keywords: advanced oxidation processes, catalysis, Fe³⁺/Fe²⁺ cycle, fenton sludge
Procedia PDF Downloads 891506 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser
Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua
Abstract:
In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.Keywords: energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis
Procedia PDF Downloads 3851505 Product Life Cycle Assessment of Generatively Designed Furniture for Interiors Using Robot Based Additive Manufacturing
Authors: Andrew Fox, Qingping Yang, Yuanhong Zhao, Tao Zhang
Abstract:
Furniture is a very significant subdivision of architecture and its inherent interior design activities. The furniture industry has developed from an artisan-driven craft industry, whose forerunners saw themselves manifested in their crafts and treasured a sense of pride in the creativity of their designs, these days largely reduced to an anonymous collective mass-produced output. Although a very conservative industry, there is great potential for the implementation of collaborative digital technologies allowing a reconfigured artisan experience to be reawakened in a new and exciting form. The furniture manufacturing industry, in general, has been slow to adopt new methodologies for a design using artificial and rule-based generative design. This tardiness has meant the loss of potential to enhance its capabilities in producing sustainable, flexible, and mass customizable ‘right first-time’ designs. This paper aims to demonstrate the concept methodology for the creation of alternative and inspiring aesthetic structures for robot-based additive manufacturing (RBAM). These technologies can enable the economic creation of previously unachievable structures, which traditionally would not have been commercially economic to manufacture. The integration of these technologies with the computing power of generative design provides the tools for practitioners to create concepts which are well beyond the insight of even the most accomplished traditional design teams. This paper aims to address the problem by introducing generative design methodologies employing the Autodesk Fusion 360 platform. Examination of the alternative methods for its use has the potential to significantly reduce the estimated 80% contribution to environmental impact at the initial design phase. Though predominantly a design methodology, generative design combined with RBAM has the potential to leverage many lean manufacturing and quality assurance benefits, enhancing the efficiency and agility of modern furniture manufacturing. Through a case study examination of a furniture artifact, the results will be compared to a traditionally designed and manufactured product employing the Ecochain Mobius product life cycle analysis (LCA) platform. This will highlight the benefits of both generative design and robot-based additive manufacturing from an environmental impact and manufacturing efficiency standpoint. These step changes in design methodology and environmental assessment have the potential to revolutionise the design to manufacturing workflow, giving momentum to the concept of conceiving a pre-industrial model of manufacturing, with the global demand for a circular economy and bespoke sustainable design at its heart.Keywords: robot, manufacturing, generative design, sustainability, circular econonmy, product life cycle assessment, furniture
Procedia PDF Downloads 1411504 Exploring the Development of Communicative Skills in English Teaching Students: A Phenomenological Study During Online Instruction
Authors: Estephanie S. López Contreras, Vicente Aranda Palacios, Daniela Flores Silva, Felipe Oliveros Olivares, Romina Riquelme Escobedo, Iñaki Westerhout Usabiaga
Abstract:
This research explored whether the context of online instruction has influenced the development of first-year English-teaching students' communication skills, being these speaking and listening. The theoretical basis finds its niche in the need to bridge the gap in knowledge about the Chilean online educational context and the development of English communicative skills. An interpretative paradigm and a phenomenological design were implemented in this study. Twenty- two first-year students and two teachers from an English teaching training program participated in the study. The students' ages ranged from 18 to 26 years of age, and the teachers' years of experience ranged from 5 to 13 years in the program. For data collection purposes, semi- structured interviews were applied to both students and teachers. Interview questions were based on the initial conceptualization of the central phenomenon. Observations, field notes, and focus groups with the students are also part of the data collection process. Data analysis considered two-cycle methods. The first included descriptive coding for field notes, initial coding for interviews, and creating a codebook. The second cycle included axial coding for both field notes and interviews. After data analysis, the findings show that students perceived online classes as instances in which active communication cannot always occur. In addition, changes made to the curricula as a consequence of the COVID-19 pandemic have affected students' speaking and listening skills.Keywords: attitudes, communicative skills, EFL teaching training program, online instruction, and perceptions
Procedia PDF Downloads 1211503 Challenges of Translation Knowledge for Pediatric Rehabilitation Technology
Authors: Patrice L. Weiss, Barbara Mazer, Tal Krasovsky, Naomi Gefen
Abstract:
Knowledge translation (KT) involves the process of applying the most promising research findings to practical settings, ensuring that new technological discoveries enhance healthcare accessibility, effectiveness, and accountability. This perspective paper aims to discuss and provide examples of how the KT process can be implemented during a time of rapid advancement in rehabilitation technologies, which have the potential to greatly influence pediatric healthcare. The analysis is grounded in a comprehensive systematic review of literature, where key studies from the past 34 years were carefully interpreted by four expert researchers in scientific and clinical fields. This review revealed both theoretical and practical insights into the factors that either facilitate or impede the successful implementation of new rehabilitation technologies. By utilizing the Knowledge-to-Action cycle, which encompasses the knowledge creation funnel and the action cycle, we demonstrated its application in integrating advanced technologies into clinical practice and guiding healthcare policy adjustments. We highlighted three successful technology applications: powered mobility, head support systems, and telerehabilitation. Moreover, we investigated emerging technologies, such as brain-computer interfaces and robotic assistive devices, which face challenges related to cost, durability, and usability. Recommendations include prioritizing early and ongoing design collaborations, transitioning from research to practical implementation, and determining the optimal timing for clinical adoption of new technologies. In conclusion, this paper informs, justifies, and strengthens the knowledge translation process, ensuring it remains relevant, rigorous, and significantly contributes to pediatric rehabilitation and other clinical fields.Keywords: knowledge translation, rehabilitation technology, pediatrics, barriers, facilitators, stakeholders
Procedia PDF Downloads 271502 Cycle-Oriented Building Components and Constructions Made from Paper Materials
Authors: Rebecca Bach, Evgenia Kanli, Nihat Kiziltoprak, Linda Hildebrand, Ulrich Knaack, Jens Schneider
Abstract:
The building industry has a high demand for resources and at the same time is responsible for a significant amount of waste created worldwide. Today's building components need to contribute to the protection of natural resources without creating waste. This is defined in the product development phase and impacts the product’s degree of being cycle-oriented. Paper-based materials show advantage due to their renewable origin and their ability to incorporate different functions. Besides the ecological aspects like renewable origin and recyclability the main advantages of paper materials are its light-weight but stiff structure, the optimized production processes and good insulation values. The main deficits from building technology’s perspective are the material's vulnerability to humidity and water as well as inflammability. On material level, those problems can be solved by coatings or through material modification. On construction level intelligent setup and layering of a building component can improve and also solve these issues. The target of the present work is to provide an overview of developed building components and construction typologies mainly made from paper materials. The research is structured in four parts: (1) functions and requirements, (2) preselection of paper-based materials, (3) development of building components and (4) evaluation. As part of the research methodology at first the needs of the building sector are analyzed with the aim to define the main areas of application and consequently the requirements. Various paper materials are tested in order to identify to what extent the requirements are satisfied and determine potential optimizations or modifications, also in combination with other construction materials. By making use of the material’s potentials and solving the deficits on material and on construction level, building components and construction typologies are developed. The evaluation and the calculation of the structural mechanics and structural principals will show that different construction typologies can be derived. Profiles like paper tubes can be used at best for skeleton constructions. Massive structures on the other hand can be formed by plate-shaped elements like solid board or honeycomb. For insulation purposes corrugated cardboard or cellulose flakes have the best properties, while layered solid board can be applied to prevent inner condensation. Enhancing these properties by material combinations for instance with mineral coatings functional constructions mainly out of paper materials were developed. In summary paper materials offer a huge variety of possible applications in the building sector. By these studies a general base of knowledge about how to build with paper was developed and is to be reinforced by further research.Keywords: construction typologies, cycle-oriented construction, innovative building material, paper materials, renewable resources
Procedia PDF Downloads 2811501 Developing a Roadmap by Integrating of Environmental Indicators with the Nitrogen Footprint in an Agriculture Region, Hualien, Taiwan
Authors: Ming-Chien Su, Yi-Zih Chen, Nien-Hsin Kao, Hideaki Shibata
Abstract:
The major component of the atmosphere is nitrogen, yet atmospheric nitrogen has limited availability for biological use. Human activities have produced different types of nitrogen related compounds such as nitrogen oxides from combustion, nitrogen fertilizers from farming, and the nitrogen compounds from waste and wastewater, all of which have impacted the environment. Many studies have indicated the N-footprint is dominated by food, followed by housing, transportation, and goods and services sectors. To solve the impact issues from agricultural land, nitrogen cycle research is one of the key solutions. The study site is located in Hualien County, Taiwan, a major rice and food production area of Taiwan. Importantly, environmentally friendly farming has been promoted for years, and an environmental indicator system has been established by previous authors based on the concept of resilience capacity index (RCI) and environmental performance index (EPI). Nitrogen management is required for food production, as excess N causes environmental pollution. Therefore it is very important to develop a roadmap of the nitrogen footprint, and to integrate it with environmental indicators. The key focus of the study thus addresses (1) understanding the environmental impact caused by the nitrogen cycle of food products and (2) uncovering the trend of the N-footprint of agricultural products in Hualien, Taiwan. The N-footprint model was applied, which included both crops and energy consumption in the area. All data were adapted from government statistics databases and crosschecked for consistency before modeling. The actions involved with agricultural production were evaluated and analyzed for nitrogen loss to the environment, as well as measuring the impacts to humans and the environment. The results showed that rice makes up the largest share of agricultural production by weight, at 80%. The dominant meat production is pork (52%) and poultry (40%); fish and seafood were at similar levels to pork production. The average per capita food consumption in Taiwan is 2643.38 kcal capita−1 d−1, primarily from rice (430.58 kcal), meats (184.93 kcal) and wheat (ca. 356.44 kcal). The average protein uptake is 87.34 g capita−1 d−1, and 51% is mainly from meat, milk, and eggs. The preliminary results showed that the nitrogen footprint of food production is 34 kg N per capita per year, congruent with the results of Shibata et al. (2014) for Japan. These results provide a better understanding of the nitrogen demand and loss in the environment, and the roadmap can furthermore support the establishment of nitrogen policy and strategy. Additionally, the results serve to develop a roadmap of the nitrogen cycle of an environmentally friendly farming area, thus illuminating the nitrogen demand and loss of such areas.Keywords: agriculture productions, energy consumption, environmental indicator, nitrogen footprint
Procedia PDF Downloads 3031500 Evaluation of a Chitin Synthesis Inhibitor Novaluron in the Shrimp Palaemon Adspersus: Impact on Ecdysteroids and Chitin Contents
Authors: Hinda Berghiche, Hamida Benradia, Noureddine Soltani
Abstract:
Pesticides are widely used in crop production and are known to induce a major contamination of ecosystems especially in aquatic environments. The leaching of a large amount of pollutants derived from agricultural activities (fertilizers, pesticides) might contaminate rivers which diverse into the likes and estuarine and coastal environments affecting several organisms such as crustacean species. In this context, there is searched for new selective insecticides with minimal toxic effects on the environment and human health such as growth insect regulators (GIRs). The current study aimed to examine the impact of novaluron (CE 20%), a potent benzoylphenylurea derivative insecticide on mosquito larvae, against non-target shrimp, Palaemon adspersus (Decapoda, Palaemonidae). The compound was tested at two concentrations (0.91 mg/L and 4.30 mg/L) corresponding respectively to the LC50 and LC90 determined against fourth-instar larvae of Culiseta longiareolata (Diptera, Culicidae). The molting hormone titer was determined in the haemolymph by an enzyme-immunoassay, while chitin was measured in peripheral integument at different stages during the molting cycle. Under normal conditions, the haemolymphatic ecdysteroid concentrations increased during the molting cycle to reach peak at stage D. In the treated series, we note absence of the peak at stage D and an increase at stages B, C and D as compared to the controls. Concerning the chitin amounts, we observe an increase from stage A to stage C followed by a decrease at stage D. Exposition of shrimps to novaluron resulted in a significant decrease of values at all molting stages with a dose-response effect. Thus, the insecticide can present secondary effects on this non-target arthropod species.Keywords: toxicology, novaluron, crustacean, palaemon adspersus, ecdysteroids, cuticle, chitin
Procedia PDF Downloads 2491499 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI
Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K Rao, S. Ganesh Kamath
Abstract:
The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and haemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially-coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The haemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveals that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the haemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.Keywords: fluid-structure interaction, arterial stenosis, wall shear stress, carotid artery bifurcation
Procedia PDF Downloads 5711498 Evaluation of Possible Application of Cold Energy in Liquefied Natural Gas Complexes
Authors: А. I. Dovgyalo, S. O. Nekrasova, D. V. Sarmin, A. A. Shimanov, D. A. Uglanov
Abstract:
Usually liquefied natural gas (LNG) gasification is performed due to atmospheric heat. In order to produce a liquefied gas a sufficient amount of energy is to be consumed (about 1 kW∙h for 1 kg of LNG). This study offers a number of solutions, allowing using a cold energy of LNG. In this paper it is evaluated the application turbines installed behind the evaporator in LNG complex due to its work additional energy can be obtained and then converted into electricity. At the LNG consumption of G=1000kg/h the expansion work capacity of about 10 kW can be reached. Herewith-open Rankine cycle is realized, where a low capacity cryo-pump (about 500W) performs its normal function, providing the cycle pressure. Additionally discussed an application of Stirling engine within the LNG complex also gives a possibility to realize cold energy. Considering the fact, that efficiency coefficient of Stirling engine reaches 50 %, LNG consumption of G=1000 kg/h may result in getting a capacity of about 142 kW of such a thermal machine. The capacity of the pump, required to compensate pressure losses when LNG passes through the hydraulic channel, will make 500 W. Apart from the above-mentioned converters, it can be proposed to use thermoelectric generating packages (TGP), which are widely used now. At present, the modern thermoelectric generator line provides availability of electric capacity with coefficient of efficiency up to 15%. In the proposed complex, it is suggested to install the thermoelectric generator on the evaporator surface is such a way, that the cold end is contacted with the evaporator’s surface, and the hot one – with the atmosphere. At the LNG consumption of G=1000 kgг/h and specified coefficient of efficiency the capacity of the heat flow Qh will make about 32 kW. The derivable net electric power will be P=4,2 kW, and the number of packages will amount to about 104 pieces. The carried out calculations demonstrate the research perceptiveness in this field of propulsion plant development, as well as allow realizing the energy saving potential with the use of liquefied natural gas and other cryogenics technologies.Keywords: cold energy, gasification, liquefied natural gas, electricity
Procedia PDF Downloads 2731497 A Methodology for Sustainable Interoperability within Collaborative Networks
Authors: Aicha Koulou, Norelislam El Hami, Nabil Hmina
Abstract:
This paper aims at presenting basic concepts and principles in order to develop a methodology to set up sustainable interoperability within collaborative networks. Definitions and clarifications related to the concept of interoperability and sustainability are given. Interoperability levels and cycle that are components supporting the methodology are presented; a structured approach and related phases are proposed.Keywords: Interoperability, sustainability, collaborative networks, sustainable Interoperability
Procedia PDF Downloads 1491496 Designing and Enacting an Adjunct Faculty Self-Study of Teaching Community
Authors: Anastasia P. Samaras, Allison Ward-Parsons, Beth Dalbec, Paula Cristina Azevedo, Anya Evmenova, Arvinder Johri, Lynne Scott Constantine, Lesley Smith
Abstract:
Two cycles of qualitative data were collected. Cycle One sources included participant survey results, participant postings on Blackboard forums, facilitator memos, and meeting notes as well as reflections and notes from whole-group meetings.Keywords: adjunct faculty, professional development, self-study methodology, teaching
Procedia PDF Downloads 1631495 Life Cycle Assessment of a Parabolic Solar Cooker
Authors: Bastien Sanglard, Lou Magnat, Ligia Barna, Julian Carrey, Sébastien Lachaize
Abstract:
Cooking is a primary need for humans, several techniques being used around the globe based on different sources of energy: electricity, solid fuel (wood, coal...), fuel or liquefied petroleum gas. However, all of them leads to direct or indirect greenhouse gas emissions and sometimes health damage in household. Therefore, the solar concentrated power represent a great option to lower the damages because of a cleaner using phase. Nevertheless, the construction phase of the solar cooker still requires primary energy and materials, which leads to environmental impacts. The aims of this work is to analyse the ecological impacts of a commercialaluminium parabola and to compare it with other means of cooking, taking the boiling of 2 litres of water three times a day during 40 years as the functional unit. Life cycle assessment was performed using the software Umberto and the EcoInvent database. Calculations were realized over more than 13 criteria using two methods: the international panel on climate change method and the ReCiPe method. For the reflector itself, different aluminium provenances were compared, as well as the use of recycled aluminium. For the structure, aluminium was compared to iron (primary and recycled) and wood. Results show that climate impacts of the studied parabola was 0.0353 kgCO2eq/kWh when built with Chinese aluminium and can be reduced by 4 using aluminium from Canada. Assessment also showed that using 32% of recycled aluminium would reduce the impact by 1.33 and 1.43 compared to the use of primary Canadian aluminium and primary Chinese aluminium, respectively. The exclusive use of recycled aluminium lower the impact by 17. Besides, the use of iron (recycled or primary) or wood for the structure supporting the reflector significantly lowers the impact. The impact categories of the ReCiPe method show that the parabola made from Chinese aluminium has the heaviest impact - except for metal resource depletion - compared to aluminium from Canada, recycled aluminium or iron. Impact of solar cooking was then compared to gas stove and induction. The gas stove model was a cast iron tripod that supports the cooking pot, and the induction plate was as well a single spot plate. Results show the parabolic solar cooker has the lowest ecological impact over the 13 criteria of the ReCiPe method and over the global warming potential compared to the two other technologies. The climate impact of gas cooking is 0.628kgCO2/kWh when used with natural gas and 0.723 kgCO2/kWh when used with a bottle of gas. In each case, the main part of emissions came from gas burning. Induction cooking has a global warming potential of 0.12 kgCO2eq/kWh with the electricity mix of France, 96.3% of the impact being due to electricity production. Therefore, the electricity mix is a key factor for this impact: for instance, with the electricity mix of Germany and Poland, impacts are 0.81kgCO2eq/kWh and 1.39 kgCO2eq/kWh, respectively. Therefore, the parabolic solar cooker has a real ecological advantages compared to both gas stove and induction plate.Keywords: life cycle assessement, solar concentration, cooking, sustainability
Procedia PDF Downloads 1851494 Pharmacological Mechanisms of an Indolic Compound in Chemoprevention of Colonic Acf Formation in Azoxymethane-Induced Colon Cancer Rat Model and Cell Lines
Authors: Nima Samie, Sekaran Muniandy, Zahurin Mohamed, M. S. Kanthimathi
Abstract:
Although number of indole containing compounds have been reported to have anticancer properties in vitro but only a few of them show potential as anticancer compounds in vivo. The current study was to evaluate the mechanism of cytotoxicity of selected indolic compound in vivo and in vitro. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, human monocyte/macrophage CRL-9855, and B lymphocyte CCL-156 cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content, measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results displayed a potent suppressive effect on HT-29 and WiDr after 24 h of treatment with IC50 value of 2.52±0.34 µg/ml and 2.13±0.65 µg/ml respectively. This cytotoxic effect on normal, monocyte/macrophage and B-cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the compound. Activation of this pathway was further evidenced by significant activation of caspase-9 and 3/7. The compound was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. These findings were further investigated for inhibitory efficiency of the compound on colonic aberrant crypt foci in male rats. Rats were divided in to 5 groups: vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of compounds for 10 weeks. Administration of compound suppressed total colonic ACF formation up to 73.4%. The results also showed that treatment with the compound significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining. The outcome of this study suggest sthat the indolic compound is a potent anti-cancer agent against colon cancer and can be further evaluated by animal trial.Keywords: indolic compound, chemoprevention, crypt, azoxymethane, colon cancer
Procedia PDF Downloads 3481493 Coumestrol Induced Apoptosis in Breast Cancer MCF-7 Cells via Redox Cycling of Copper and ROS Generation: Implications of Copper Chelation Strategy in Cancer Treatment
Authors: Atif Zafar Khan, Swarnendra Singh, Imrana Naseem
Abstract:
Breast cancer is one of the most frequent malignancies in women worldwide and a leading cause of cancer-related deaths among women. Therefore, there is a need to identify new chemotherapeutic strategies for cancer treatment. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. Keeping in view these facts, we evaluated the anticancer activity and copper-dependent cytotoxic effect of coumestrol (phytoestrogen in soybean products) in breast cancer MCF-7 cells. Coumestrol inhibited proliferation and induced apoptosis in MCF-7 cells, which was prevented by copper chelator neocuproine and ROS scavengers. Coumestrol treatment induced ROS generation coupled to DNA fragmentation, up-regulation of p53/p21, cell cycle arrest at G1/S phase, mitochondrial membrane depolarization and caspases 9/3 activation. All these effects were suppressed by ROS scavengers and neocuproine. These results suggest that coumestrol targets elevated copper for redox cycling to generate ROS leading to DNA fragmentation. DNA damage leads to p53 up-regulation which directs the cell cycle arrest at G1/S phase and promotes caspase-dependent apoptosis of MCF-7 cells. In conclusion, coumestrol induces pro-oxidant cell death by chelating cellular copper to produce copper-coumestrol complexes that engages in redox cycling in breast cancer cells. Thus, targeting elevated copper levels might be a potential therapeutic strategy for selective cytotoxic action against malignant cells.Keywords: apoptosis, breast cancer, copper chelation, coumestrol, reactive oxygens species, redox cycling
Procedia PDF Downloads 2451492 Implementation of Ecological and Energy-Efficient Building Concepts
Authors: Robert Wimmer, Soeren Eikemeier, Michael Berger, Anita Preisler
Abstract:
A relatively large percentage of energy and resource consumption occurs in the building sector. This concerns the production of building materials, the construction of buildings and also the energy consumption during the use phase. Therefore, the overall objective of this EU LIFE project “LIFE Cycle Habitation” (LIFE13 ENV/AT/000741) is to demonstrate innovative building concepts that significantly reduce CO₂emissions, mitigate climate change and contain a minimum of grey energy over their entire life cycle. The project is being realised with the contribution of the LIFE financial instrument of the European Union. The ultimate goal is to design and build prototypes for carbon-neutral and “LIFE cycle”-oriented residential buildings and make energy-efficient settlements the standard of tomorrow in line with the EU 2020 objectives. To this end, a resource and energy-efficient building compound is being built in Böheimkirchen, Lower Austria, which includes 6 living units and a community area as well as 2 single family houses with a total usable floor surface of approximately 740 m². Different innovative straw bale construction types (load bearing and pre-fabricated non loadbearing modules) together with a highly innovative energy-supply system, which is based on the maximum use of thermal energy for thermal energy services, are going to be implemented. Therefore only renewable resources and alternative energies are used to generate thermal as well as electrical energy. This includes the use of solar energy for space heating, hot water and household appliances like dishwasher or washing machine, but also a cooking place for the community area operated with thermal oil as heat transfer medium on a higher temperature level. Solar collectors in combination with a biomass cogeneration unit and photovoltaic panels are used to provide thermal and electric energy for the living units according to the seasonal demand. The building concepts are optimised by support of dynamic simulations. A particular focus is on the production and use of modular prefabricated components and building parts made of regionally available, highly energy-efficient, CO₂-storing renewable materials like straw bales. The building components will be produced in collaboration by local SMEs that are organised in an efficient way. The whole building process and results are monitored and prepared for knowledge transfer and dissemination including a trial living in the residential units to test and monitor the energy supply system and to involve stakeholders into evaluation and dissemination of the applied technologies and building concepts. The realised building concepts should then be used as templates for a further modular extension of the settlement in a second phase.Keywords: energy-efficiency, green architecture, renewable resources, sustainable building
Procedia PDF Downloads 1501491 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking
Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid
Abstract:
The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module
Procedia PDF Downloads 1781490 Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach
Authors: Helen L. Hein, Joachim Schwarte
Abstract:
As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO2 emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future.Keywords: aerogel-based, insulating material, early development phase, interval arithmetic
Procedia PDF Downloads 144