Search results for: legal judgment prediction
3484 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy
Authors: Chaluntorn Vichasilp, Sutee Wangtueai
Abstract:
This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)
Procedia PDF Downloads 3823483 A Polynomial Relationship for Prediction of COD Removal Efficiency of Cyanide-Inhibited Wastewater in Aerobic Systems
Authors: Eze R. Onukwugha
Abstract:
The presence of cyanide in wastewater is known to inhibit the normal functioning of bio-reactors since it has the tendency to poison reactor micro-organisms. Bench scale models of activated sludge reactors with varying aspect ratios were operated for the treatment of cassava wastewater at several values of hydraulic retention time (HRT). The different values of HRT were achieved by the use of a peristaltic pump to vary the rate of introduction of the wastewater into the reactor. The main parameters monitored are the cyanide concentration and respective COD values of the influent and effluent. These observed values were then transformed into a mathematical model for the prediction of treatment efficiency.Keywords: wastewater, aspect ratio, cyanide-inhibited wastewater, modeling
Procedia PDF Downloads 803482 Software Reliability Prediction Model Analysis
Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria
Abstract:
Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability
Procedia PDF Downloads 4653481 Increasing Abundance of Jellyfish in the Shorelines of Bangladesh: Analyzing the Policy Framework for Facing the Challenges
Authors: Md Mizanur Rahman, M. Aslam Alam, Muhammad Abu Yusuf
Abstract:
The abundance of Jellyfish across the coasts of the Bay of Bengal is increasing sharply due to marine pollution, increased sea acidification and climate change. Jellyfish draws our attention to address the local and global stressors. This also indicates that something wrong is happening in this bay behind the scenes. This study aimed to investigate how the policy framework governing the sea can be reformed. To do so, this study evaluated the existing policy, regulatory and institutional framework. Empirical data were collected from the middle coastal zone of Bangladesh. The secondary literature on policy, legal documents, and institutional arrangements were reviewed. The causes of poor coordination among different public sectors and non-compliance of laws were identified. The key findings show that despite the existing of Department of Environment, poor coordination with other departments, and lack of logistics and technical staffs have resulted in severe marine pollution and degradation of coastal and marine living resources. The existing policies had no monitoring and evaluation mechanisms. Non-compliance of the existing laws has been fueling the problems. This study provides an integrated policy and a guideline for updating the legal and institutional mechanism to manage coastal and marine living resources sustainably in Bangladesh to achieve Sustainable Development Goal 14.Keywords: legal, institutional, framework, jellyfish
Procedia PDF Downloads 1263480 Navigating the Legal Seas: The Freedom to Choose Applicable Law in Tort
Authors: Sara Vora (Hoxha)
Abstract:
An essential feature of any international lawsuit is the ability of the parties to pick the law that would apply in the event of a tort claim. This option to choose the law to use in tort cases is based on Article 14 and 4/3 of the Rome II Regulation. The purpose of this article is to examine the boundaries of this freedom, as well as its relevance in international legal disputes. The article opens with a brief introduction to the basics of tort law. After a short introduction, the article demonstrates why Article 14 and 4/3 of the Rome II Regulation are so crucial to the right to select appropriate law in tort cases. The notion of the right to select the law to use in tort cases is examined, along with its breadth and possible restrictions. The article presents case studies to demonstrate how the right to select relevant law in tort might be put into practise. Case results and the judges' rationales for their rulings are examined. The possible influence of the right to select applicable law in tort on the process of harmonisation is also explored in this study. The results are summarised and the primary research question is addressed in the last section of the paper. In conclusion, the parties' ability to pick the law that rules their dispute via the freedom to choose relevant law in tort is a crucial feature of cross-border litigation. Despite certain restrictions, this freedom is nevertheless an important part of the legal structure that governs international conflicts.Keywords: applicable law, tort, Rome II regulation, freedom to choose, cross-border litigation, harmonization of tort law
Procedia PDF Downloads 703479 Judicial Institutions in a Post-Conflict Society: Gaining Legitimacy through a Holistic Reform
Authors: Abdul Salim Amin
Abstract:
This paper focuses on how judiciaries in post-conflict society gain legitimacy through reformation. Legitimacy plays a pivotal role in shaping peoples’ behavior to submit to the law and verifies the rightfulness of an organ for taking binding decisions. Among various dynamics, judicial independence, access to justice and behavioral changes of the judicial officials broadly contribute in legitimation of judiciary in general, and the court in particular. Increasing the independence of judiciary through reform limits the interference of governmental branches in judicial issues and protects basic rights of the citizens. Judicial independence does not only matter in institutional terms, individual independence also influences the impartiality and integrity of judges, which can be increased through education and better administration of justice. Finally, access to justice as an intertwined concept both at the legal and moral spectrum of judicial reform avails justice to the citizen and increases the level of public trust and confidence. Efficient legal decisions on fostering such elements through holistic reform create a rule of law atmosphere. Citizens do not accept illegitimate judiciary and do not trust its decisions. Lack of such tolerance and confidence deters the rule of law and, thus, undermines the democratic development of a society.Keywords: legitimacy, judicial reform, judicial independence, access to justice, legal training, informal justice, rule of law
Procedia PDF Downloads 5033478 Legal Pluralism and Ideology: The Recognition of the Indigenous Justice Administration in Bolivia through the "Indigenismo" and "Decolonisation" Discourses
Authors: Adriana Pereira Arteaga
Abstract:
In many Latin American countries the transition towards legal pluralism - has developed as part of what is called Latin-American-Constitutionalism over the last thirty years. The aim of this paper is to discuss how legal pluralism in its current form in Bolivia may produce exclusion and violence. Legal sources and discourse analysis - as an approach to examine written language on discourse documentation- will be used to develop this paper. With the constitution of 2009, Bolivia was symbolically "re-founded" into a multi-nation state. This shift goes hand in hand with the "indigenista" and "decolonisation" ideologies developing since the early 20th century. Discourses based on these ideologies reflect the rejection of liberal and western premises on which the Bolivian republic was originally built after independence. According to the "indigenista" movements, the liberal nation-state generates institutions corresponding to a homogenous society. These liberal institutions not only ignore the Bolivian multi-nation reality, but also maintain the social structures originating form the colony times, based on prejudices against the indigenous. The described statements were elaborated through the image: the indigenous people humiliated by a cruel western system as highlighted by the constitution's preamble. This narrative had a considerable impact on the sensitivity of people and received great social support. Therefore the proposal for changing structures of the nation-state, is charged with an emancipatory message of restoring even the pre-Columbian order. An order at times romantically described as the perfect order. Legally this connotes a rejection of the positivistic national legal system based on individual rights and the promotion of constitutional recognition of indigenous justice administration. The pluralistic Constitution is supposed to promote tolerance and a peaceful coexistence among nations, so that the unity and integrity of the country could be maintained. In its current form, legal pluralism in Bolivia is justified on pre-existing rights contained for example in the International - Labour - Organization - Convention 169, but it is more developed on the described discursive constructions. Over time these discursive constructions created inconsistencies in terms of putting indigenous justice administration into practice: First, because legal pluralism has been more developed on level of political discourse, so a real interaction between the national and the indigenous jurisdiction cannot be observed. There are no clear coordination and cooperation mechanisms. Second, since the recently reformed constitution is based on deep sensitive experiences, little is said about the general legal principles on which a pluralistic administration of justice in Bolivia should be based. Third, basic rights, liberties, and constitutional guarantees are also affected by the antagonized image of the national justice administration. As a result, fundamental rights could be violated on a large scale because many indigenous justice administration practices run counter to these constitutional rules. These problems are not merely Bolivian but may also be encountered in other regional countries with similar backgrounds, like Ecuador.Keywords: discourse, indigenous justice, legal pluralism, multi-nation
Procedia PDF Downloads 4473477 Reforms in China's Vaccine Administration: Vulnerabilities, Legislative Progresses and the Systemic View of Vaccine Administration Law
Authors: Lin Tang, Xiaoxia Guo, Lingling Zhang
Abstract:
Recent vaccine scandals overshadowed China’s accomplishment of public health, triggering discussions on the causes of vaccine incidents. Through legal interpretation of selected vaccine incidents and analysis of systemic vulnerabilities in vaccine circulation and lot release, a panoramic review of legislative progresses in the vaccine administration sheds the light on this debate. In essence, it is the combination of the lagging legal system and the absence of information technology infrastructure in the process of vaccine administration reform that has led to the recurrence of vaccine incidents. These findings have significant implications for further improvement of vaccine administration and China’s participation in global healthcare.Keywords: legislation, lot release, public health, reform, vaccine administration, vaccine circulation
Procedia PDF Downloads 1543476 The Role of Law in Promoting Democratic Governance
Authors: Mozamil Mohamed Ali
Abstract:
Understanding the relationship between law and democratic governance, this research, titled “The Role of Law in Enhancing Democratic Governance: A Comparative Study of Political Systems in Developing Countries,” focuses on examining the impact of legal frameworks on strengthening democratic practices within developing nations. Democratic governance requires transparency and institutional accountability to meet citizens’ needs, which necessitates legal frameworks that ensure compliance with governance standards. These frameworks hold greater significance in developing countries, where challenges such as corruption, weak public institutions, and socio-political conflicts affect their ability to achieve sustainable democratic governance. In this context, the research explores how laws influence these aspects. The study compares various developing countries that have experienced different levels of success and difficulty in enhancing democratic governance, focusing on the legal frameworks and public policies each country has implemented to improve transparency, accountability, and strengthen the role of public institutions. This comparative analysis aims to reveal the effectiveness of legal systems in supporting democratic governance and to identify the factors that lead to the success or failure of these legal frameworks in different contexts. For example, the study includes cases from countries in Asia, Africa, and Latin America, analyzing the legal and institutional policies and their roles in achieving justice and reducing corruption. It examines the impact of legislation that promotes freedom of the press, human rights, and judicial independence as fundamental elements for transparent and democratic governance. Additionally, the research discusses how anti-corruption policies and laws governing electoral competition contribute to improving government responsiveness to public demands. The hypothesis of the research centers on the idea that developing transparent and fair laws contributes to achieving sustainable democratic governance. The analyses show that applying laws equally and impartially strengthens citizens’ trust in public institutions and encourages political participation. At the same time, the research highlights the importance of local adaptation to global legal frameworks, as it may be necessary to consider local socio-political and economic contexts to ensure the success of these frameworks. In conclusion, this research underscores the importance of legal frameworks as a pivotal factor in the success of democratic governance. It provides recommendations related to enhancing judicial independence, enforcing anti-corruption laws, and improving access to information as essential steps for strengthening democratic governance in developing countries. The findings suggest that laws respected and carefully implemented can form a solid foundation for building more transparent and effective government institutions, contributing to sustainable development and social justice in these nations.Keywords: impact of legislation, role of institutions in controlling power, community participation, role of the judiciary
Procedia PDF Downloads 253475 Client Importance and Audit Quality under Civil Law versus Common Law Societies
Authors: Kelly Grani Yuen
Abstract:
Accounting scandals and auditing frauds are perceived to be driven by aggressive companies and misrepresentation of audit reports. However, local legal systems and law enforcements may affect the services auditors provide to their ‘important’ clients. Under the civil law and common law jurisdictions, the standard setters, the government, and the regulatory bodies treat cases differently. As such, whether or not different forms of legal systems and extent of law enforcement plays an important role in auditor’s Audit Quality is a question this paper attempts to explore. The paper focuses on the investigation in Asia, where Hong Kong represents the common-law jurisdiction, while Taiwan and China represent the civil law jurisdiction. Only the ten reputable accounting firms are used in this study due to the differences in rankings and establishments of some of the small local audit firms. This will also contribute to the data collected between the years 2007-2013. By focusing on the use of multiple regression based on the dependent (Audit Quality) and independent variables (Client Importance, Law Enforcement, and Press Freedom), six different models are established. Results demonstrate that since different jurisdictions have different legal systems and market regulations, auditor’s treatment on ‘important’ clients will vary. However, with the moderators in place (law enforcement and press freedom), the relationship between client importance and audit quality may be smoothed out. With that in mind, this study contributes to local governments and standard setters’ consideration on legal reform and proper law enforcement in the market. Perhaps, with such modifications on the economic systems, collusion between companies and auditors can finally be put to a halt.Keywords: audit quality, client importance, jurisdiction, modified audit opinions
Procedia PDF Downloads 4103474 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor
Authors: Hao Yan, Xiaobing Zhang
Abstract:
The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model
Procedia PDF Downloads 913473 The Contribution of the Lomé Charter to Combating Trafficking in Arms at Sea: Nigerian and South African Legal Perspectives
Authors: Obinna Emmanuel Nkomadu
Abstract:
Many illegal activities take place on the sea, including trafficking in arms, which constitutes one of the major threats to maritime security. Indeed, the dissemination of arms has hampered the peaceful settlement of many States in Africa, fuelled disputes into armed conflicts, and contributed to the prolongation of armed conflicts in many African States. The absence of international standards on the importation, exportation, and transfer of conventional arms is a contributory factor to conflict, displacement of people, crime, and terrorism on the continent of Africa, which in turn undermines peace, safety, security, stability, and sustainable development. South Africa and Nigeria have taken steps to address the illicit arms, but, despite those steps, arms trafficking at sea continues. To suppress the illicit arms and to combat a number of other threats to maritime security around the continent of Africa, the majority of AU members in 2016 adopted the African Charter on Maritime Security and Safety and Development in Africa (“the Lomé Charter”). However, the Lomé Charter is yet to come into force. This paper set out the pre-existing international legal instruments on arms to ascertain the domestic laws of South Africa and Nigeria relating to arms with the relevant provisions of the Charter in order to establish whether any legal steps are required to ensure that South Africa and Nigeria comply with its obligations under the Lomé Charter should it decide to ratify it. The legal steps include cooperating in establishing policies, as well as a regional and continental institution, and ensuring the implementation of such policies. The paper concludes ratifying the Lomé Charter is a step in the right direction in suppressing arms trafficking at sea, in addition to filling those gaps or limitations in their relevant legislation.Keywords: cooperation against arms trafficking at sea, Lomé Charter, maritime security, Nigerian and South Africa legislation on arms
Procedia PDF Downloads 923472 Biases in Macroprudential Supervision and Their Legal Implications
Authors: Anat Keller
Abstract:
Given that macro-prudential supervision is a relatively new policy area and its empirical and analytical research are still in their infancy, its theoretical foundations are also lagging behind. This paper contributes to the developing discussion on effective legal and institutional macroprudential supervision frameworks. In the first part of the paper, it is argued that effectiveness as a key benchmark poses some challenges in the context of macroprudential supervision such as the difficulty in proving causality between supervisory actions and the achievement of the supervisor’s mission. The paper suggests that effectiveness in the macroprudential context should, therefore, be assessed at the supervisory decision-making process (to be differentiated from the supervisory outcomes). The second part of the essay examines whether insights from behavioural economics can point to biases in the macroprudential decision-making process. These biases include, inter alia, preference bias, groupthink bias and inaction bias. It is argued that these biases are exacerbated in the multilateral setting of the macroprudential supervision framework in the EU. The paper then examines how legal and institutional frameworks should be designed to acknowledge and perhaps contain these identified biases. The paper suggests that the effectiveness of macroprudential policy will largely depend on the existence of clear and robust transparency and accountability arrangements. Accountability arrangements can be used as a vehicle for identifying and addressing potential biases in the macro-prudential framework, in particular, inaction bias. Inclusiveness of the public in the supervisory process in the form of transparency and awareness of the logic behind policy decisions may assist in minimising their potential unpopularity thus promoting their effectiveness. Furthermore, a governance structure which facilitates coordination of the macroprudential supervisor with other policymakers and incorporates outside perspectives and opinions could ‘break-down’ groupthink bias as well as inaction bias.Keywords: behavioural economics and biases, effectiveness of macroprudential supervision, legal and institutional macroprudential frameworks, macroprudential decision-making process
Procedia PDF Downloads 2823471 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 3113470 Establishment of a Nomogram Prediction Model for Postpartum Hemorrhage during Vaginal Delivery
Authors: Yinglisong, Jingge Chen, Jingxuan Chen, Yan Wang, Hui Huang, Jing Zhnag, Qianqian Zhang, Zhenzhen Zhang, Ji Zhang
Abstract:
Purpose: The study aims to establish a nomogram prediction model for postpartum hemorrhage (PPH) in vaginal delivery. Patients and Methods: Clinical data were retrospectively collected from vaginal delivery patients admitted to a hospital in Zhengzhou, China, from June 1, 2022 - October 31, 2022. Univariate and multivariate logistic regression were used to filter out independent risk factors. A nomogram model was established for PPH in vaginal delivery based on the risk factors coefficient. Bootstrapping was used for internal validation. To assess discrimination and calibration, receiver operator characteristics (ROC) and calibration curves were generated in the derivation and validation groups. Results: A total of 1340 cases of vaginal delivery were enrolled, with 81 (6.04%) having PPH. Logistic regression indicated that history of uterine surgery, induction of labor, duration of first labor, neonatal weight, WBC value (during the first stage of labor), and cervical lacerations were all independent risk factors of hemorrhage (P <0.05). The area-under-curve (AUC) of ROC curves of the derivation group and the validation group were 0.817 and 0.821, respectively, indicating good discrimination. Two calibration curves showed that nomogram prediction and practical results were highly consistent (P = 0.105, P = 0.113). Conclusion: The developed individualized risk prediction nomogram model can assist midwives in recognizing and diagnosing high-risk groups of PPH and initiating early warning to reduce PPH incidence.Keywords: vaginal delivery, postpartum hemorrhage, risk factor, nomogram
Procedia PDF Downloads 793469 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation
Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim
Abstract:
Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time
Procedia PDF Downloads 733468 Offshore Outsourcing: Global Data Privacy Controls and International Compliance Issues
Authors: Michelle J. Miller
Abstract:
In recent year, there has been a rise of two emerging issues that impact the global employment and business market that the legal community must review closer: offshore outsourcing and data privacy. These two issues intersect because employment opportunities are shifting due to offshore outsourcing and some States, like the United States, anti-outsourcing legislation has been passed or presented to retain jobs within the country. In addition, the legal requirements to retain the privacy of data as a global employer extends to employees and third party service provides, including services outsourced to offshore locations. For this reason, this paper will review the intersection of these two issues with a specific focus on data privacy.Keywords: outsourcing, data privacy, international compliance, multinational corporations
Procedia PDF Downloads 4123467 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 6283466 Equivalent Circuit Representation of Lossless and Lossy Power Transmission Systems Including Discrete Sampler
Authors: Yuichi Kida, Takuro Kida
Abstract:
In a new smart society supported by the recent development of 5G and 6G Communication systems, the im- portance of wireless power transmission is increasing. These systems contain discrete sampling systems in the middle of the transmission path and equivalent circuit representation of lossless or lossy power transmission through these systems is an important issue in circuit theory. In this paper, for the given weight function, we show that a lossless power transmission system with the given weight is expressed by an equivalent circuit representation of the Kida’s optimal signal prediction system followed by a reactance multi-port circuit behind it. Further, it is shown that, when the system is lossy, the system has an equivalent circuit in the form of connecting a multi-port positive-real circuit behind the Kida’s optimal signal prediction system. Also, for the convenience of the reader, in this paper, the equivalent circuit expression of the reactance multi-port circuit and the positive- real multi-port circuit by Cauer and Ohno, whose information is currently being lost even in the world of the Internet.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, power transmission
Procedia PDF Downloads 1233465 Exploring Legal Liabilities of Mining Companies for Human Rights Abuses: Case Study of Mongolian Mine
Authors: Azzaya Enkhjargal
Abstract:
Context: The mining industry has a long history of human rights abuses, including forced labor, environmental pollution, and displacement of communities. In recent years, there has been growing international pressure to hold mining companies accountable for these abuses. Research Aim: This study explores the legal liabilities of mining companies for human rights abuses. The study specifically examines the case of Erdenet Mining Corporation (EMC), a large mining company in Mongolia that has been accused of human rights abuses. Methodology: The study used a mixed-methods approach, which included a review of legal literature, interviews with community members and NGOs, and a case study of EMC. Findings: The study found that mining companies can be held liable for human rights abuses under a variety of regulatory frameworks, including soft law and self-regulatory instruments in the mining industry, international law, national law, and corporate law. The study also found that there are a number of challenges to holding mining companies accountable for human rights abuses, including the lack of effective enforcement mechanisms and the difficulty of proving causation. Theoretical Importance: The study contributes to the growing body of literature on the legal liabilities of mining companies for human rights abuses. The study also provides insights into the challenges of holding mining companies accountable for human rights abuses. Data Collection: The data for the study was collected through a variety of methods, including a review of legal literature, interviews with community members and NGOs, and a case study of EMC. Analysis Procedures: The data was analyzed using a variety of methods, including content analysis, thematic analysis, and case study analysis. Conclusion: The study concludes that mining companies can be held liable for human rights abuses under a variety of legal and regulatory frameworks. There are positive developments in ensuring greater accountability and protection of affected communities and the environment in countries with a strong economy. Regrettably, access to avenues of redress is reasonably low in less developed countries, where the governments have not implemented a robust mechanism to enforce liability requirements in the mining industry. The study recommends that governments and mining companies take more ambitious steps to enhance corporate accountability.Keywords: human rights, human rights abuses, ESG, litigation, Erdenet Mining Corporation, corporate social responsibility, soft law, self-regulation, mining industry, parent company liability, sustainability, environment, UN
Procedia PDF Downloads 813464 A Neural Network System for Predicting the Hardness of Titanium Aluminum Nitrite (TiAlN) Coatings
Authors: Omar M. Elmabrouk
Abstract:
The cutting tool, in the high-speed machining process, is consistently dealing with high localized stress at the tool tip, tip temperature exceeds 800°C and the chip slides along the rake face. These conditions are affecting the tool wear, the cutting tool performances, the quality of the produced parts and the tool life. Therefore, a thin film coating on the cutting tool should be considered to improve the tool surface properties while maintaining its bulks properties. One of the general coating processes in applying thin film for hard coating purpose is PVD magnetron sputtering. In this paper, the prediction of the effects of PVD magnetron sputtering coating process parameters, sputter power in the range of (4.81-7.19 kW), bias voltage in the range of (50.00-300.00 Volts) and substrate temperature in the range of (281.08-600.00 °C), were studied using artificial neural network (ANN). The results were compared with previously published results using RSM model. It was found that the ANN is more accurate in prediction of tool hardness, and hence, it will not only improve the tool life of the tool but also significantly enhances the efficiency of the machining processes.Keywords: artificial neural network, hardness, prediction, titanium aluminium nitrate coating
Procedia PDF Downloads 5543463 Prediction of Disability-Adjustment Mental Illness Using Machine Learning
Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad
Abstract:
Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population. Procedia PDF Downloads 383462 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards
Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia
Abstract:
Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.Keywords: aquaponics, deep learning, internet of things, vermiponics
Procedia PDF Downloads 723461 Demystifying the Legitimacy of the International Court of Justice
Authors: Roger-Claude Liwanga
Abstract:
Over the last seven decades, there has been a proliferation of international tribunals. Yet, they have not received unanimous approval, raising a question about their legitimacy. A legitimate international tribunal is one whose authority to adjudicate international disputes is perceived as justified. Using the case study of the International Court of Justice (ICJ), this article highlights the three criteria that should be considered in assessing the legitimacy of an international tribunal, which include legal, sociological, and moral elements. It also contends that the ICJ cannot claim 'full' legitimacy if any of these components of legitimacy is missing in its decisions. The article further suggests that the legitimacy of the ICJ has a dynamic nature, as litigating parties may constantly change their perception of the court’s authority at any time before, during, or after the judicial process. The article equally describes other factors that can contribute to maintaining the international court’s legitimacy, including fairness and unbiasedness, sound interpretation of international legal norms, and transparency.Keywords: international tribunals, legitimacy, human rights, international law
Procedia PDF Downloads 3783460 Information Technology Service Management System Measurement Using ISO20000-1 and ISO15504-8
Authors: Imam Asrowardi, Septafiansyah Dwi Putra, Eko Subyantoro
Abstract:
Process assessments can improve IT service management system (IT SMS) processes but the assessment method is not always transparent. This paper outlines a project to develop a solution- mediated process assessment tool to enable transparent and objective SMS process assessment. Using the international standards for SMS and process assessment, the tool is being developed following the International standard approach in collaboration and evaluate by expert judgment from committee members and ITSM practitioners.Keywords: SMS, tools evaluation, ITIL, ISO service
Procedia PDF Downloads 4823459 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 703458 Role of Spatial Variability in the Service Life Prediction of Reinforced Concrete Bridges Affected by Corrosion
Authors: Omran M. Kenshel, Alan J. O'Connor
Abstract:
Estimating the service life of Reinforced Concrete (RC) bridge structures located in corrosive marine environments of a great importance to their owners/engineers. Traditionally, bridge owners/engineers relied more on subjective engineering judgment, e.g. visual inspection, in their estimation approach. However, because financial resources are often limited, rational calculation methods of estimation are needed to aid in making reliable and more accurate predictions for the service life of RC structures. This is in order to direct funds to bridges found to be the most critical. Criticality of the structure can be considered either form the Structural Capacity (i.e. Ultimate Limit State) or from Serviceability viewpoint whichever is adopted. This paper considers the service life of the structure only from the Structural Capacity viewpoint. Considering the great variability associated with the parameters involved in the estimation process, the probabilistic approach is most suited. The probabilistic modelling adopted here used Monte Carlo simulation technique to estimate the Reliability (i.e. Probability of Failure) of the structure under consideration. In this paper the authors used their own experimental data for the Correlation Length (CL) for the most important deterioration parameters. The CL is a parameter of the Correlation Function (CF) by which the spatial fluctuation of a certain deterioration parameter is described. The CL data used here were produced by analyzing 45 chloride profiles obtained from a 30 years old RC bridge located in a marine environment. The service life of the structure were predicted in terms of the load carrying capacity of an RC bridge beam girder. The analysis showed that the influence of SV is only evident if the reliability of the structure is governed by the Flexure failure rather than by the Shear failure.Keywords: Chloride-induced corrosion, Monte-Carlo simulation, reinforced concrete, spatial variability
Procedia PDF Downloads 4733457 One-Step Time Series Predictions with Recurrent Neural Networks
Authors: Vaidehi Iyer, Konstantin Borozdin
Abstract:
Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning
Procedia PDF Downloads 2333456 Asylum Seekers' Legal Limbo under the Migrant Protection Protocols: Implications from a US-Mexico Border Project
Authors: Tania M. Guerrero, Ileana Cortes Santiago
Abstract:
Estamos Unidos Asylum Project has served more than 2,000 asylum seekers and migrants who are under the Migrant Protection Protocols (MPP) policy in Ciudad Juarez, Mexico. The U.S. policy, implemented in January 2019, has stripped asylum seekers of their rights—forcing people fleeing violence and discrimination to wait in similar or worse conditions from which they fled and navigate their entire asylum process in a different country. Several civil rights groups, including the American Civil Liberties Union (ACLU), challenged MPP in U.S. federal courts in February 2019, arguing a violation of international U.S. obligations towards refugees and asylum-seekers under the 1951 Refugee Convention and the Refugee Act of 1980 in regards to the non-refoulement principle. MPP has influenced Mexico's policies, enforcement, and prioritization of the presence of asylum seekers and migrants; it has also altered the way international non-governmental organizations work at the Mexican Northern border. Estamos Unidos is a project situated in a logistical conundrum, as it provides needed legal services to a population in a legal and humanitarian void, i.e., a liminal space. The liminal space occupied by asylum seekers living under MPP is one that, in today's world, should not be overlooked; it dilutes asylum law and U.S. commitments to international protections. This paper provides analysis of and broader implications from a project whose main goal is to uphold the protections of asylum seekers and international refugee law. The authors identified and analyzed four critical points based on field work conducted since August 2019: (1) strategic coalition building with international, local, and national organizations; (2) brokering between domestic and international contexts and critical legal constraints; (3) flexibility to sudden policy changes and the diverse needs of the multiethnic groups of migrants and asylum seekers served by the project; and (4) the complexity of providing legal assistance to asylum seekers who are survivors of trauma. The authors concur with scholarship when highlighting the erosion of protections of asylum seekers and migrants as a dangerous and unjust global phenomenon.Keywords: asylum, human rights, migrant protection protocols, refugees law
Procedia PDF Downloads 1353455 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model
Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl
Abstract:
Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.Keywords: dexel, process stability, material removal, milling
Procedia PDF Downloads 525