Search results for: fire damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2888

Search results for: fire damage

2348 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.

Keywords: fracture criterion, mixed mode loading, damage zone, micro cracks

Procedia PDF Downloads 292
2347 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Authors: O. Hassoon, M. Tarfoui, A. El Malk

Abstract:

Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.

Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring

Procedia PDF Downloads 358
2346 The Effects of Wood Ash on Ignition Point of Wood

Authors: K. A. Ibe, J. I. Mbonu, G. K. Umukoro

Abstract:

The effects of wood ash on the ignition point of five common tropical woods in Nigeria were investigated. The ash and moisture contents of the wood saw dust from Mahogany (Khaya ivorensis), Opepe (Sarcocephalus latifolius), Abura (Hallealedermannii verdc), Rubber (Heavea brasilensis) and Poroporo (Sorghum bicolour) were determined using a furnace (Vecstar furnaces, model ECF2, serial no. f3077) and oven (Genlab laboratory oven, model MINO/040) respectively. The metal contents of the five wood sawdust ash samples were determined using a Perkin Elmer optima 3000 dv atomic absorption spectrometer while the ignition points were determined using Vecstar furnaces model ECF2. Poroporo had the highest ash content, 2.263 g while rubber had the least, 0.710 g. The results for the moisture content range from 2.971 g to 0.903 g. Magnesium metal had the highest concentration of all the metals, in all the wood ash samples; with mahogany ash having the highest concentration, 9.196 ppm while rubber ash had the least concentration of magnesium metal, 2.196 ppm. The ignition point results showed that the wood ashes from mahogany and opepe increased the ignition points of the test wood samples when coated on them while the ashes from poroporo, rubber and abura decreased the ignition points of the test wood samples when coated on them. However, Opepe saw dust ash decreased the ignition point in one of the test wood samples, suggesting that the metal content of the test wood sample was more than that of the Opepe saw dust ash. Therefore, Mahogany and Opepe saw dust ashes could be used in the surface treatment of wood to enhance their fire resistance or retardancy. However, the caution to be exercised in this application is that the metal content of the test wood samples should be evaluated as well.

Keywords: ash, fire, ignition point, retardant, wood saw dust

Procedia PDF Downloads 378
2345 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis

Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon

Abstract:

Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.

Keywords: electromagnetism, finite element method, sensitivity analysis, submarine power cables

Procedia PDF Downloads 349
2344 Localization of Pyrolysis and Burning of Ground Forest Fires

Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov

Abstract:

This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.

Keywords: forest fire, barrier water lines, pyrolysis front, flame front

Procedia PDF Downloads 127
2343 Role of Physical Properties of Maize Grains Towards Resistance to Sitotroga Cerealella (OLIV.) (Gelechiidae: Lepidoptera) in No Choice

Authors: Sohail Ahmed, Ahmad Raza

Abstract:

Physical properties of maize grains were correlated with levels of the life history of Sitotroga cerealella (Oliv.) (Gelechiidae: Lepidoptera) in no choice test to find out relative resistance in different varieties. Eight maize varieties /lines (EV-6089, Sahiwal-2002, Golden, 34N43, EV-1098, Sultan, China-1, EV-20) including seven yellow and one white were obtained from Maize and Millet Research Institute, Yousaf Wala, Sahiwal, Punjab, Pakistan. Freshly laid eggs (one day old) of S. cerealella were obtained and cultured on a susceptible maize variety for two generations for later on shifting to test varieties. Results showed that maximum moth emergence (10.33), fecundity (35.66), hatching (87.66%), moth weight (5.05 mg), development time (36.0 days) damage (93.35%) and grain weight loss (38.84%) was found in varieties, 34N43 and Golden, Sultan, Sahiwal 2002, 34N43, EV-6089, 34N43 and EV-1089, respectively. Varieties had significant difference with other varieties in these parameters (P<0.05). The varieties had positive as well as negative correlation between hardness index, grain weight and bulk density with the biological parameters of S. cerealella, percent grain damage and weight loss. Possible involvement of these grain properties in the resistance of maize grains towards S. cerealella is discussed.

Keywords: sitotroga cerealella, hardness index, grain damage, maize, varieties

Procedia PDF Downloads 373
2342 Analysis of Conflict and Acceptance Factors on Water and Land Photovoltaic Facility

Authors: Taehyun Kim, Taehyun Kim, Hyunjoo Park

Abstract:

Photovoltaic facility occurs conflicts and disputes over environmental issues such as soil runoff, landscapes damage, and ecosystems damage. Because of these problems, huge social and economic cost occurred. The purpose of this study is to analyze resident‘s acceptability and conflict factors on the location of PV facilities, and suggest ways to promote resident’s acceptability and solutions for conflicts. Literature review, cases analysis, and expert interview on the acceptance and conflict factors related to the location of PV facilities are used to derive results. The results of this study are expected to contribute to the minimization of environmental impact and social conflict due to the development of renewable energy in the future.

Keywords: acceptance factor, conflict factor, factor analysis, photovoltaic facility

Procedia PDF Downloads 172
2341 Detecting Nitrogen Deficiency and Potato Leafhopper (Hemiptera, Cicadellidae) Infestation in Green Bean Using Multispectral Imagery from Unmanned Aerial Vehicle

Authors: Bivek Bhusal, Ana Legrand

Abstract:

Detection of crop stress is one of the major applications of remote sensing in agriculture. Multiple studies have demonstrated the capability of remote sensing using Unmanned Aerial Vehicle (UAV)-based multispectral imagery for detection of plant stress, but none so far on Nitrogen (N) stress and PLH feeding stress on green beans. In view of its wide host range, geographical distribution, and damage potential, Potato leafhopper- Empoasca fabae (Harris) has been emerging as a key pest in several countries. Monitoring methods for potato leafhopper (PLH) damage, as well as the laboratory techniques for detecting Nitrogen deficiency, are time-consuming and not always easily affordable. A study was initiated to demonstrate if the multispectral sensor attached to a drone can detect PLH stress and N deficiency in beans. Small-plot trials were conducted in the summer of 2023, where cages were used to manipulate PLH infestation in green beans (Provider cultivar) at their first-trifoliate stage. Half of the bean plots were introduced with PLH, and the others were kept insect-free. Half of these plots were grown with the recommended amount of N, and the others were grown without N. Canopy reflectance was captured using a five-band multispectral sensor. Our findings indicate that drone imagery could detect stress due to a lack of N and PLH damage in beans.

Keywords: potato leafhopper, nitrogen, remote sensing, spectral reflectance, beans

Procedia PDF Downloads 52
2340 Stubble and Senesced Leaves Are the Primary Sites of Ice Nucleation Activity in Wheat

Authors: Amanuel Bekuma, Rebecca Swift, Sarah Jackson, Ben Biddulph

Abstract:

Economic loss to frost damage is increasing over the past years in the Western Australian Wheatbelt. Agronomic, genetic, and climatic works have still found a weak correlation between temperature and frost damage. One possibility that has not been explored within the Australian cropping system is whether ice nucleation active bacteria (INB) either present in situ on crop residue or introduced by rainfall could be responsible for the increased sensitivity of cereal plants to frost at different stages of development. This study investigated upper and lower leaf canopy, stubble, and soil as a potential site of ice nucleation activity (INA) and tracked the changes in INA during the plant development. We found that older leaves of wheat are the primary sites of ice nucleation (-4.7 to -6.3°C) followed by stubble (-5.7 to -6.7°C) which increases the risk of frost damage during heading and flowering (the most susceptible stages). However, healthy and green upper canopy leaves (flag and flag-2) and the soil have lower INA (< -11°C) during the frost-sensitive stage of wheat. We anticipate the higher INA on the stubble and older leaves to be due to the presence of biologically active ice-nucleating bacteria (INB), known to cause frost injury to sensitive plants at -5°C. Stubble retained or applied during the growing season further exacerbates additional frost risk by potentially increasing the INB load. The implications of the result for stubble and frost risk management in a frost-prone landscape will be discussed.

Keywords: frost, ice-nucleation-activity, stubble, wheat

Procedia PDF Downloads 129
2339 Aspects on the Problems of Road Asset Management and Maintenance in Albania

Authors: Diana Bardhi

Abstract:

Road safety is an essential part of the economic and social development of any industrialized country. Decisions to maintain and improve the reliability, functionality of infrastructure structures can only be achieved through integrated road life cycle planning and management. There has always been a tendency to review road maintenance strategies, but there is still no serious and reliable administration due to not only insufficient funds but also problems in the proper reorganization of this system. The safety and performance of the road system depend on the ongoing activity of road maintenance management. For it to be effective, it is necessary to intervene before the degradation has caused irreparable damage or damage with a high economic cost of repairs. Investments in road infrastructure during 2006-2014 show that the life of these projects presents problems related to the maintenance and management of life cycle performance in a wide range of constituent elements. Maintenance planning includes various problems that depend on the degree of degradation of asphalt layers, the degree of damage to road structures (bridges, tunnels, culverts, and the economic planning of resources for their repair). The purpose of this study is first to provide a brief overview of the problems in the field of maintenance and life cycle management of road infrastructure investments, proposing ways to reorganize the sector of administration and maintenance of ongoing roads and secondly testing and evaluating the work and nature of standards of different types of road infrastructure projects, through a methodology consisting of a) development, b) data collection, and c) analysis.

Keywords: infrastructure, maintenance, depreciation, efficiency

Procedia PDF Downloads 149
2338 A New Mathematical Method for Heart Attack Forecasting

Authors: Razi Khalafi

Abstract:

Myocardial Infarction (MI) or acute Myocardial Infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analysing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behaviour of these signals were checked. Results show this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: heart attack, ECG, random walk, correlation dimension, forecasting

Procedia PDF Downloads 500
2337 Current Approach in Biodosimetry: Electrochemical Detection of DNA Damage

Authors: Marcela Jelicova, Anna Lierova, Zuzana Sinkorova, Radovan Metelka

Abstract:

At present, electrochemical methods are used in various research fields, especially for analysis of biological molecules. The fact offers the possibility of using the detection of oxidative damage induced indirectly by γ rays in DNA in biodosimentry. The main goal of our study is to optimize the detection of 8-hydroxyguanine by differential pulse voltammetry. The level of this stable and specific indicator of DNA damage could be determined in DNA isolated from peripheral blood lymphocytes, plasma or urine of irradiated individuals. Screen-printed carbon electrodes modified with carboxy-functionalized multi-walled carbon nanotubes were utilized for highly sensitive electrochemical detection of 8-hydroxyguanine. Electrochemical oxidation of 8-hydroxoguanine monitored by differential pulse voltammetry was found pH-dependent and the most intensive signal was recorded at pH 7. After recalculating the current density, several times higher sensitivity was attained in comparison with already published results, which were obtained using screen-printed carbon electrodes with unmodified carbon ink. Subsequently, the modified electrochemical technique was used for the detection of 8-hydroxoguanine in calf thymus DNA samples irradiated by 60Co gamma source in the dose range from 0.5 to 20 Gy using by various types of sample pretreatment and measurement conditions. This method could serve for fast retrospective quantification of absorbed dose in cases of accidental exposure to ionizing radiation and may play an important role in biodosimetry.

Keywords: biodosimetry, electrochemical detection, voltametry, 8-hydroxyguanine

Procedia PDF Downloads 270
2336 Proposition Model of Micromechanical Damage to Predict Reduction in Stiffness of a Fatigued A-SMC Composite

Authors: Houssem Ayari

Abstract:

Sheet molding compounds (SMC) are high strength thermoset moulding materials reinforced with glass treated with thermocompression. SMC composites combine fibreglass resins and polyester/phenolic/vinyl and unsaturated acrylic to produce a high strength moulding compound. These materials are usually formulated to meet the performance requirements of the moulding part. In addition, the vinyl ester resins used in the new advanced SMC systems (A-SMC) have many desirable features, including mechanical properties comparable to epoxy, excellent chemical resistance and tensile resistance, and cost competitiveness. In this paper, a proposed model is used to take into account the Young modulus evolutions of advanced SMC systems (A-SMC) composite under fatigue tests. The proposed model and the used approach are in good agreement with the experimental results.

Keywords: composites SFRC, damage, fatigue, Mori-Tanaka

Procedia PDF Downloads 110
2335 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 95
2334 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 84
2333 Effect of Oral Immonoglobulin (IgY) Ingestion on Post Exercise Muscle Soreness and Muscle Damage Markers in Females

Authors: Bert H. Jacobson, Taylor Monaghan, John Sellers

Abstract:

Intense resistance-type activity generally elicits delayed onset muscle soreness (DOMS) in individuals unaccustomed to such action. DOMS is a combination of contractile tissue microtrauma, osmotic pressure changes, alteration calcium regulation, and inflammation. Elevated muscle-specific enzyme creatine kinase (CK) is a marker of striated muscle damage. Avian immunoglobulin (IgY) mediates inflammation and may thereby reduce post-exercise DOMS. Purpose: The aim of this study was to compare the effect of oral IgY and placebo (Pl) on CK, serum relevels, and perceived pain following induced DOMS. Methods: Healthy college-aged females (N=16) were randomly divided into an experimental group (IgY) and a control group (PL). CK serum levels were recorded followed by 14 days of supplementation of either IgY or Pl at the following doses: days 1-2 =4.5 g, days 3-5 =9.0 g, and days 6-14 =13.5 g. Following the 14 d, lower limb DOMS was induced using two methods of resistance training. After 48 hours, subjects reported for a second blood draw. Results: One-way ANOVA resulted in the IgY group posting significantly less (p < 0.05) serum CK than the PL group. Furthermore, the IgY group experienced significantly less post-test perceived soreness than the Pl group. Conclusion: IgY supplementation lessens muscle CK levels and perceived muscle soreness following exercise, possibly due to an anti-inflammatory effect. It was suggested that IgY may serve as a buffer for DOMS thereby allowing the participant to continue vigorous exercise without discomfort.

Keywords: muscle, soreness, damage, serum

Procedia PDF Downloads 192
2332 Influence of Shock Absorber Condition on the Vertical Dynamic Load Applied on the Pavement by a Truck’s Front Suspension

Authors: Pablo Kubo, Cassio Paiva, Adelino Ferreira

Abstract:

The main objective of this research study is to present the results of the influence of shock absorber condition, from a truck front suspension, on the vertical dynamic load applied on the pavement. For the measurements, it has been used a durability test track located in Brazil. The shock absorber conditions were new, used and failed with a constant load of 6 tons on the front suspension, the maximum allowed load for front axle according to Brazilian legislation. By applying relative damage concept, it is possible to conclude that the variation on the shock absorber conditions will significantly affect the load applied on the pavement. Although, it is recommended to repeat the same methodology in order to analyze the influence on the variation of the quarter car model variants.

Keywords: damage, shock absorber, vertical dynamic load, absorber

Procedia PDF Downloads 479
2331 Investigating the Properties of Asphalt Concrete Containing Recycled Fillers

Authors: Hasan Taherkhani

Abstract:

Increasingly accumulation of the solid waste materials has become a major environmental problem of communities. In addition to the protection of environment, the recycling and reusing of the waste materials are financially beneficial. Waste materials can be used in highway construction. This study aimed to investigate the applicability of recycled concrete, asphalt and steel slag powder, as a replacement of the primary mineral filler in asphalt concrete has been investigated. The primary natural siliceous aggregate filler, as control, has been replaced with the secondary recycled concrete, asphalt and steel slag powders, and some engineering properties of the mixtures have been evaluated. Marshal Stability, flow, indirect tensile strength, moisture damage, static creep and volumetric properties of the mixtures have been evaluated. The results show that, the Marshal Stability of the mixtures containing recycled powders is higher than that of the control mixture. The flow of the mixtures containing recycled steel slag is lower, and that of the mixtures containing recycled asphalt and cement concrete powder is found to be higher than that of the control mixture. It is also found that the resistance against moisture damage and permanent deformation of the mixture can be improved by replacing the natural filler with the recycled powders. The volumetric properties of the mixtures are not significantly influenced by replacing the natural filler with the recycled powders.

Keywords: filler, steel slag, recycled concrete, recycled asphalt concrete, tensile strength, moisture damage, creep

Procedia PDF Downloads 273
2330 Magnesium Ameliorates Lipopolysaccharide-Induced Liver Injury in Mice

Authors: D. M. El-Tanbouly, R. M. Abdelsalam, A. S. Attia, M. T. Abdel-Aziz

Abstract:

Lipopolysaccharide (LPS) endotoxin, a component of the outer membrane of Gram-negative bacteria, is involved in the pathogenesis of sepsis. LPS administration induces systemic inflammation that mimics many of the initial clinical features of sepsis and has deleterious effects on several organs including the liver and eventually leading to septic shock and death. The present study aimed to investigate the protective effect of magnesium, a well-known cofactor in many enzymatic reactions and a critical component of the antioxidant system, on hepatic damage associated with LPS induced- endotoxima in mice. Mg (20 and 40 mg/kg, po) was administered for 7 consecutive days. Systemic inflammation was induced one hour after the last dose of Mg by a single dose of LPS (2 mg/kg, ip) and three hours thereafter plasma was separated, animals were sacrificed and their livers were isolated. LPS-treated mice suffered from hepatic dysfunction revealed by histological observation, elevation in plasma transaminases activities, C-reactive protein content and caspase-3, a critical marker of apoptosis. Liver inflammation was evident by elevation in liver cytokines contents (TNF-α and IL-10) and myeloperoxidase (MPO) activity. Additionally, oxidative stress was manifested by increased liver lipoperoxidation, glutathione depletion, elevated total nitrate/nitrite (NOx) content and glutathione peroxidase (GPx) activity. Pretreatment with Mg largely mitigated these alternations through its anti-inflammatory and antioxidant potentials. Mg, therefore, could be regarded as an effective strategy for prevention of liver damage associated with septicemia.

Keywords: LPS, liver damage, magnesium, septicemia

Procedia PDF Downloads 393
2329 Strategies to Promote Safety and Reduce the Vulnerability of Urban Worn-out Textures to the Potential Risk of Earthquake

Authors: Bahareh Montakhabi

Abstract:

Earthquake is known as one of the deadliest natural disasters, with a high potential for damage to life and property. Some of Iran's cities were completely destroyed after major earthquakes, and the people of the region suffered a lot of mental, financial and psychological damage. Tehran is one of the cities located on the fault line. According to experts, the only city that could be severely damaged by a moderate earthquake in Earthquake Engineering Intensity Scale (EEIS) (70% destruction) is Tehran because Tehran is built precisely on the fault. Seismic risk assessment (SRA) of cities in the scale of urban areas and neighborhoods is the first phase of the earthquake crisis management process, which can provide the information required to make optimal use of available resources and facilities in order to reduce the destructive effects and consequences of an earthquake. This study has investigated strategies to promote safety and reduce the vulnerability of worn-out urban textures in the District 12 of Tehran to the potential risk of earthquake aimed at prioritizing the factors affecting the vulnerability of worn-out urban textures to earthquake crises and how to reduce them, using the analytical-exploratory method, analytical hierarchy process (AHP), Expert choice and SWOT technique. The results of SWAT and AHP analysis of the vulnerability of the worn-out textures of District 12 to internal threats (1.70) and external threats (2.40) indicate weak safety of the textures of District 12 regarding internal and external factors and a high possibility of damage.

Keywords: risk management, vulnerability, worn-out textures, earthquake

Procedia PDF Downloads 191
2328 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members

Authors: I. Gkolfinopoulos, N. Chijiwa

Abstract:

To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.

Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon

Procedia PDF Downloads 141
2327 Cu Voids Detection of Electron Beam Inspection at the 5nm Node

Authors: Byungsik Moon

Abstract:

Electron beam inspection (EBI) has played an important role in detecting defects during the Fab process. The study focused on capturing buried Cu metal voids for 5nm technology nodes in Qualcomm Snapdragon mass production. This paper illustrates a case study where Cu metal voids can be detected without side effects with optimized EBI scanning conditions. The voids were buried in the VIA and not detected effectively by bright field inspection. EBI showed higher detectability, about 10 times that of bright fields, and a lower landing energy of EBI can avoid film damage. A comparison of detectability between EBI and bright field inspection was performed, and TEM confirmed voids that were detected by EBI. Therefore, a much higher detectability of buried Cu metal voids can be achieved without causing film damage.

Keywords: electron beam inspection, EBI, landing energy, Cu metal voids, bright field inspection

Procedia PDF Downloads 69
2326 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading

Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke

Abstract:

In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.

Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading

Procedia PDF Downloads 142
2325 Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery

Authors: Meet Bhatia

Abstract:

Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs.

Keywords: hydrogen peroxide, well stimulation, heavy oil recovery, steam injection

Procedia PDF Downloads 333
2324 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 156
2323 Thorium-Doped PbS Thin Films for Radiation Damage Studies

Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel

Abstract:

We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.

Keywords: thin films, doping, radiation damage, chemical bath deposition

Procedia PDF Downloads 388
2322 Monitoring and Analysis of Bridge Crossing Ground Fissures

Authors: Zhiqing Zhang, Xiangong Zhou, Zihan Zhou

Abstract:

Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling.

Keywords: bridge monitoring, ground fissures, typical disease, structural displacement

Procedia PDF Downloads 211
2321 Cross-Sectional Study of Critical Parameters on RSET and Decision-Making of At-Risk Groups in Fire Evacuation

Authors: Naser Kazemi Eilaki, Ilona Heldal, Carolyn Ahmer, Bjarne Christian Hagen

Abstract:

Elderly people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to a safe place. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. While earlier studies have frequently addressed quantitative measurements regarding at-risk groups' physical characteristics (e.g., their speed of travel), this paper considers the influence of at-risk groups’ characteristics on their decision and determining better escape routes. Most of evacuation models are based on mapping people's movement and their behaviour to summation times for common activity types on a timeline. Usually, timeline models estimate required safe egress time (RSET) as a sum of four timespans: detection, alarm, premovement, and movement time, and compare this with the available safe egress time (ASET) to determine what is influencing the margin of safety.This paper presents a cross-sectional study for identifying the most critical items on RSET and people's decision-making and with possibilities to include safety knowledge regarding people with physical or cognitive functional impairments. The result will contribute to increased knowledge on considering at-risk groups and disabilities for designing and developing safe escape routes. The expected results can be an asset to predict the probabilistic behavioural pattern of at-risk groups and necessary components for defining a framework for understanding how stakeholders can consider various disabilities when determining the margin of safety for a safe escape route.

Keywords: fire safety, evacuation, decision-making, at-risk groups

Procedia PDF Downloads 95
2320 Development of Highly Repellent Silica Nanoparticles Treatment for Protection of Bio-Based Insulation Composite Material

Authors: Nadia Sid, Alan Taylor, Marion Bourebrab

Abstract:

The construction sector is on the critical path to decarbonise the European economy by 2050. In order to achieve this objective it must enable reducing its CO2 emission by 90% and its energy consumption by as much as 50%. For this reason, a new class of low environmental impact construction materials named “eco-material” are becoming increasingly important in the struggle against climate change. A European funded collaborative project ISOBIO coordinated by TWI is aimed at taking a radical approach to the use of bio-based aggregates to create novel construction materials that are usable in high volume in using traditional methods, as well as developing markets such as exterior insulation of existing house stocks. The approach taken for this project is to use finely chopped material protected from bio-degradation through the use of functionalized silica nanoparticles. TWI is exploring the development of novel inorganic-organic hybrid nano-materials, to be applied as a surface treatment onto bio-based aggregates. These nanoparticles are synthesized by sol-gel processing and then functionalised with silanes to impart multifunctionality e.g. hydrophobicity, fire resistance and chemical bonding between the silica nanoparticles and the bio-based aggregates. This talk will illustrate the approach taken by TWI to design the functionalized silica nanoparticles by using a material-by-design approach. The formulation and synthesize process will be presented together with the challenges addressed by those hybrid nano-materials. The results obtained with regards to the water repellence and fire resistance will be displayed together with preliminary public results of the ISOBIO project. (This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641927).

Keywords: bio-sourced material, composite material, durable insulation panel, water repellent material

Procedia PDF Downloads 235
2319 Risk Analysis of Flood Physical Vulnerability in Residential Areas of Mathare Nairobi, Kenya

Authors: James Kinyua Gitonga, Toshio Fujimi

Abstract:

Vulnerability assessment and analysis is essential to solving the degree of damage and loss as a result of natural disasters. Urban flooding causes a major economic loss and casualties, at Mathare residential area in Nairobi, Kenya. High population caused by rural-urban migration, Unemployment, and unplanned urban development are among factors that increase flood vulnerability in Mathare area. This study aims to analyse flood risk physical vulnerabilities in Mathare based on scientific data, research data that includes the Rainfall data, River Mathare discharge rate data, Water runoff data, field survey data and questionnaire survey through sampling of the study area have been used to develop the risk curves. Three structural types of building were identified in the study area, vulnerability and risk curves were made for these three structural types by plotting the relationship between flood depth and damage for each structural type. The results indicate that the structural type with mud wall and mud floor is the most vulnerable building to flooding while the structural type with stone walls and concrete floor is least vulnerable. The vulnerability of building contents is mainly determined by the number of floors, where households with two floors are least vulnerable, and households with a one floor are most vulnerable. Therefore more than 80% of the residential buildings including the property in the building are highly vulnerable to floods consequently exposed to high risk. When estimating the potential casualties/injuries we discovered that the structural types of houses were major determinants where the mud/adobe structural type had casualties of 83.7% while the Masonry structural type had casualties of 10.71% of the people living in these houses. This research concludes that flood awareness, warnings and observing the building codes will enable reduce damage to the structural types of building, deaths and reduce damage to the building contents.

Keywords: flood loss, Mathare Nairobi, risk curve analysis, vulnerability

Procedia PDF Downloads 232