Search results for: language learning strategies
8500 An Inquiry into the Usage of Complex Systems Models to Examine the Effects of the Agent Interaction in a Political Economic Environment
Authors: Ujjwall Sai Sunder Uppuluri
Abstract:
Group theory is a powerful tool that researchers can use to provide a structural foundation for their Agent Based Models. These Agent Based models are argued by this paper to be the future of the Social Science Disciplines. More specifically, researchers can use them to apply evolutionary theory to the study of complex social systems. This paper illustrates one such example of how theoretically an Agent Based Model can be formulated from the application of Group Theory, Systems Dynamics, and Evolutionary Biology to analyze the strategies pursued by states to mitigate risk and maximize usage of resources to achieve the objective of economic growth. This example can be applied to other social phenomena and this makes group theory so useful to the analysis of complex systems, because the theory provides the mathematical formulaic proof for validating the complex system models that researchers build and this will be discussed by the paper. The aim of this research, is to also provide researchers with a framework that can be used to model political entities such as states on a 3-dimensional plane. The x-axis representing resources (tangible and intangible) available to them, y the risks, and z the objective. There also exist other states with different constraints pursuing different strategies to climb the mountain. This mountain’s environment is made up of risks the state faces and resource endowments. This mountain is also layered in the sense that it has multiple peaks that must be overcome to reach the tallest peak. A state that sticks to a single strategy or pursues a strategy that is not conducive to the climbing of that specific peak it has reached is not able to continue advancement. To overcome the obstacle in the state’s path, it must innovate. Based on the definition of a group, we can categorize each state as being its own group. Each state is a closed system, one which is made up of micro level agents who have their own vectors and pursue strategies (actions) to achieve some sub objectives. The state also has an identity, the inverse being anarchy and/or inaction. Finally, the agents making up a state interact with each other through competition and collaboration to mitigate risks and achieve sub objectives that fall within the primary objective. Thus, researchers can categorize the state as an organism that reflects the sum of the output of the interactions pursued by agents at the micro level. When states compete, they employ a strategy and that state which has the better strategy (reflected by the strategies pursued by her parts) is able to out-compete her counterpart to acquire some resource, mitigate some risk or fulfil some objective. This paper will attempt to illustrate how group theory combined with evolutionary theory and systems dynamics can allow researchers to model the long run development, evolution, and growth of political entities through the use of a bottom up approach.Keywords: complex systems, evolutionary theory, group theory, international political economy
Procedia PDF Downloads 1428499 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 1118498 British Aristocratic Irony on Screen: Subtitling Shifts in Downton Abbey
Authors: Nahed Almutairi
Abstract:
The subtitling process for period dramas implies a set of linguistic challenges. Audio-visual (AV) texts in this genre weave a rich tapestry of verbal irony blended with humor. The famous TV series Downtown Abbey contains such irony as one of the British aristocracy's linguistic markers. This study aims to examine subtitling strategies utilized in rendering such verbal irony. To counteract the negative postulated by Berman with the positive shifts, a qualitative analysis is conducted to examine the impact of the presence and absence of negative deforming tendencies in the Arabic subtitles of the first season of the British drama. This research is significant because it contributes to the discipline of translation studies, specifically the realm of AV translation. It seeks to provide a set of guidelines for optimal subtitling strategies that maintain the stylistic peculiarities of a social class that don’t exist in the target culture while also considering the practical aspects of translating subtitles. The findings indicate that negative shifts in the use of ironic expressions distort not only the stylistic elements of British aristocracy's utterances but also result in a loss of the intended meaning. This implies that what Berman’s model identifies as negative is also perceived as negative linguistic shifts in the Arabic subtitles of the British aristocracy’s verbal irony.Keywords: Downton Abbey, deforming tendencies, berman, subtitling shifts, verbal irony
Procedia PDF Downloads 858497 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique
Authors: Sandhya Baskaran, Hari Kumar Nagabushanam
Abstract:
Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer
Procedia PDF Downloads 2958496 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 1268495 Application of Thermal Dimensioning Tools to Consider Different Strategies for the Disposal of High-Heat-Generating Waste
Authors: David Holton, Michelle Dickinson, Giovanni Carta
Abstract:
The principle of geological disposal is to isolate higher-activity radioactive wastes deep inside a suitable rock formation to ensure that no harmful quantities of radioactivity reach the surface environment. To achieve this, wastes will be placed in an engineered underground containment facility – the geological disposal facility (GDF) – which will be designed so that natural and man-made barriers work together to minimise the escape of radioactivity. Internationally, various multi-barrier concepts have been developed for the disposal of higher-activity radioactive wastes. High-heat-generating wastes (HLW, spent fuel and Pu) provide a number of different technical challenges to those associated with the disposal of low-heat-generating waste. Thermal management of the disposal system must be taken into consideration in GDF design; temperature constraints might apply to the wasteform, container, buffer and host rock. Of these, the temperature limit placed on the buffer component of the engineered barrier system (EBS) can be the most constraining factor. The heat must therefore be managed such that the properties of the buffer are not compromised to the extent that it cannot deliver the required level of safety. The maximum temperature of a buffer surrounding a container at the centre of a fixed array of heat-generating sources, arises due to heat diffusing from neighbouring heat-generating wastes, incrementally contributing to the temperature of the EBS. A range of strategies can be employed for managing heat in a GDF, including the spatial arrangements or patterns of those containers; different geometrical configurations can influence the overall thermal density in a disposal facility (or area within a facility) and therefore the maximum buffer temperature. A semi-analytical thermal dimensioning tool and methodology have been applied at a generic stage to explore a range of strategies to manage the disposal of high-heat-generating waste. A number of examples, including different geometrical layouts and chequer-boarding, have been illustrated to demonstrate how these tools can be used to consider safety margins and inform strategic disposal options when faced with uncertainty, at a generic stage of the development of a GDF.Keywords: buffer, geological disposal facility, high-heat-generating waste, spent fuel
Procedia PDF Downloads 2918494 Telepsychiatry for Asian Americans
Authors: Jami Wang, Brian Kao, Davin Agustines
Abstract:
COVID-19 highlighted the active discrimination against the Asian American population easily seen through media, social tension, and increased crimes against the specific population. It is well known that long-term racism can also have a large impact on both emotional and psychological well-being. However, the healthcare disparity during this time also revealed how the Asian American community lacked the research data, political support, and medical infrastructure for this particular population. During a time when Asian American fear for safety with decreasing mental health, telepsychiatry is particularly promising. COVID-19 demonstrated how well psychiatry could integrate with telemedicine, with psychiatry being the second most utilized telemedicine visits. However, the Asian American community did not utilize the telepsychiatry resources as much as other groups. Because of this, we wanted to understand why the patient population who was affected the most by COVID-19 mentally did not seek out care. To do this, we decided to study the top top telepsychiatry platforms. The current top telepsychiatry companies in the United States include Teladoc and BetterHelp. In the Teladoc mental health sector, they only had 4 available languages (English, Spanish, French, and Danis,) with none of them being an Asian language. In a similar manner, Teladoc’s top competitor in the telepsychiatry space, BetterHelp, only listed a total of 3 Asian languages, including Mandarin, Japanese, and Malaysian. However, this is still a short list considering they have over 20 languages available. The shortage of available physicians that speak multiple languages is concerning, as it could be difficult for the Asian American community to relate with. There are limited mental health resources that cater to their likely cultural needs, further exacerbating the structural racism and institutional barriers to appropriate care. It is important to note that these companies do provide interpreters to comply with the nondiscrimination and language assistance federal law. However, interactions with an interpreter are not only more time-consuming but also less personal than talking directly with a physician. Psychiatry is the field that emphasizes interpersonal relationships. The trust between a physician and the patient is critical in developing patient rapport to guide in better understanding the clinical picture and treating the patient appropriately. The language barrier creates an additional barrier between the physician and patient. Because Asian Americans are one of the largest growing patient population bases, these telehealth companies have much to gain by catering to the Asian American market. Without providing adequate access to bilingual and bicultural physicians, the current system will only further exacerbate the growing disparity. The healthcare community and telehealth companies need to recognize that the Asian American population is a severely underserved population in mental health and has much to gain from telepsychiatry. The lack of language is one of many reasons why there is a disparity for Asian Americans in the mental health space.Keywords: telemedicine, psychiatry, Asian American, disparity
Procedia PDF Downloads 1108493 Small and Medium Sized Ports between Specialisation and Diversification: A Framework Tool for Sustainable Development
Authors: Christopher Meyer, Laima Gerlitz
Abstract:
European ports are facing high political pressure through the implementation of initiatives such as the European Green Deal or IMO's 2030 targets (Fit for 55). However, small and medium-sized ports face even higher challenges compared to bigger ones due to lower capacities in various fields such as investments, infra-structure, Human Resources, and funding opportunities. Small and Medium-Sized Ports (SMPs) roles in economic systems are various depending on their specific functionality in maritime ecosystems. Depending on their different situations, being an actor in multiport gateways, aligned to core ports, regional nodes in peripheries for the hinterland, specialized cluster members, or logistical nodes, different strategic business models may be applied to increase SMPs' competitiveness among other bigger ports. Additionally, SMPs are facing more challenges for future development in terms of digital and green transition of their operations. Thus, it is necessary to evaluate the own strategical position and apply management strategies alongside the regional growth and innovation strategies for diversification or specialisation of own port businesses. The research uses inductive perspectives to set up a transferable framework based on case studies to be analysed. In line with particular research and document analysis, qualitative approaches were considered. The research is based on a deep literature review on SMPs as well as theories on diversification and specialisation. Existing theories from different fields are evaluated on their application for the port sector and these specific maritime actors, paying respect to enabling innovation incorporation to enhance digital and environmental transition with fu-ture perspectives for SMPs. The paper aims to provide a decision-making matrix for the strategic positioning of SMPs in Europe, including opportunities to get access to particular EU funds for future development alongside the Regional In-novation Strategies on Smart Specialisation.Keywords: strategic planning, sustainability transition, competitiveness portfolio, EU green deal
Procedia PDF Downloads 848492 Planning Fore Stress II: Study on Resiliency of New Architectural Patterns in Urban Scale
Authors: Amir Shouri, Fereshteh Tabe
Abstract:
Master planning and urban infrastructure’s thoughtful and sequential design strategies will play the major role in reducing the damages of natural disasters, war and or social/population related conflicts for cities. Defensive strategies have been revised during the history of mankind after having damages from natural depressions, war experiences and terrorist attacks on cities. Lessons learnt from Earthquakes, from 2 world war casualties in 20th century and terrorist activities of all times. Particularly, after Hurricane Sandy of New York in 2012 and September 11th attack on New York’s World Trade Centre (WTC) in 21st century, there have been series of serious collaborations between law making authorities, urban planners and architects and defence related organizations to firstly, getting prepared and/or prevent such activities and secondly, reduce the human loss and economic damages to minimum. This study will work on developing a model of planning for New York City, where its citizens will get minimum impacts in threat-full time with minimum economic damages to the city after the stress is passed. The main discussion in this proposal will focus on pre-hazard, hazard-time and post-hazard transformative policies and strategies that will reduce the “Life casualties” and will ease “Economic Recovery” in post-hazard conditions. This proposal is going to scrutinize that one of the key solutions in this path might be focusing on all overlaying possibilities on architectural platforms of three fundamental infrastructures, the transportation, the power related sources and defensive abilities on a dynamic-transformative framework that will provide maximum safety, high level of flexibility and fastest action-reaction opportunities in stressful periods of time. “Planning Fore Stress” is going to be done in an analytical, qualitative and quantitative work frame, where it will study cases from all over the world. Technology, Organic Design, Materiality, Urban forms, city politics and sustainability will be discussed in deferent cases in international scale. From the modern strategies of Copenhagen for living friendly with nature to traditional approaches of Indonesian old urban planning patterns, the “Iron Dome” of Israel to “Tunnels” in Gaza, from “Ultra-high-performance quartz-infused concrete” of Iran to peaceful and nature-friendly strategies of Switzerland, from “Urban Geopolitics” in cities, war and terrorism to “Design of Sustainable Cities” in the world, will all be studied with references and detailed look to analysis of each case in order to propose the most resourceful, practical and realistic solutions to questions on “New City Divisions”, “New City Planning and social activities” and “New Strategic Architecture for Safe Cities”. This study is a developed version of a proposal that was announced as winner at MoMA in 2013 in call for ideas for Rockaway after Sandy Hurricane took place.Keywords: urban scale, city safety, natural disaster, war and terrorism, city divisions, architecture for safe cities
Procedia PDF Downloads 4888491 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks
Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka
Abstract:
Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management
Procedia PDF Downloads 718490 The Application of Cognitive Linguistics to Teaching EFL Students to Understand Spoken Coinages: Based on an Experiment with Speakers of Russian
Authors: Ekaterina Lukianchenko
Abstract:
The present article addresses the nuances of teaching English vocabulary to Russian-speaking students. The experiment involving 39 participants aged 17 to 21 proves that the key to understanding spoken coinages is not only the knowledge of their constituents, but rather the understanding of the context and co-text. The volunteers who took part knew the constituents, but did not know the meaning of the words. The assumption of the authors consists in the fact that the structure of the concept has a direct relation with the form of the particular vocabulary unit, but its form is secondary to its meaning, if the word is a spoken coinage, which is partly proved by the fact that in modern slang words have multiple meanings, as well as one notion can have various embodiments that have virtually nothing in common. The choice of vocabulary items that youngsters use is not exactly arbitrary, but, even if complex nominals are taken into consideration, whose meaning seems clear, as it looks like a sum of their constituents’ meanings, they are still impossible to understand without any context or co-text, as a lot of them are idiomatic, non-transparent. It is further explained what methods might be effective in teaching students how to deal with new words they encounter in real-life situations and how student’s knowledge of vocabulary might be enhanced.Keywords: spoken language, cognitive linguistics, complex nominals, nominals with the incorporated object, concept, EFL, communicative language teaching
Procedia PDF Downloads 2828489 Anti-Corruption Strategies for Private Sector Development: Case Study for the Brazilian Automotive Industry
Authors: Rogerio Vieira Dos Reis
Abstract:
Countries like Brazil that despite fighting hard against corruption are not improving their corruption perception, especially due to systemic political corruption, should review their corruption prevention strategies. This thesis brings a case study based on an alternative way of preventing corruption: addressing the corruption drivers in public policies that lead to poor economic performance. After discussing the Brazilian industrial policies adopted recently, especially the measures towards the automotive sector, two corruption issues in this sector are analyzed: facilitating payment for fiscal benefits and buying the extension of fiscal benefits. In-depth interviews conducted with a policymaker and an executive of the automobile sector provide insights for identifying three main corruption drivers: excessive and unnecessary bureaucracy, a complex tax system and the existence of a closed market without setting performance requirements to be achieved by the benefited firms. Both the identification of the drivers of successful industrial policies and the proposal of anti-corruption strategies to ensure developmental outcomes are based on the economic perspective of industrial policy advocated by developmental authors and on the successful South Korean economic development experience. Structural anti-corruption measures include tax reform, the regulation of lobbying and legislation to allow corporate political contribution. Besides improving policymakers’ technical capabilities, measures at the ministry level include redesigning the automotive regimes as long-term policies focused on national investment with simple and clear rules and making fiscal benefits conditional upon performance targets focused on suppliers. This case study is of broader interest because it recommends the importance of adapting performance audits conducted by anti-corruption agencies, to focus not only on the delivery of public services, but also on the identification of potentially highly damaging corruption drivers in public policies that grant fiscal benefits to achieve developmental outcomes.Keywords: Brazilian automotive sector, corruption, economic development, industrial policy, Inovar-Auto
Procedia PDF Downloads 2148488 Mood Choices and Modality Patterns in Donald Trump’s Inaugural Presidential Speech
Authors: Mary Titilayo Olowe
Abstract:
The controversies that trailed the political campaign and eventual choice of Donald Trump as the American president is so great that expectations are high as to what the content of his inaugural speech will portray. Given the fact that language is a dynamic vehicle of expressing intentions, the speech needs to be objectively assessed so as to access its content in the manner intended through the three strands of meaning postulated by the Systemic Functional Grammar (SFG): the ideational, the interpersonal and the textual. The focus of this paper, however, is on the interpersonal meaning which deals with how language exhibits social roles and relationship. This paper, therefore, attempts to analyse President Donald Trump’s inaugural speech to elicit interpersonal meaning in it. The analysis is done from the perspective of mood and modality which are housed in SFG. Results of the mood choice which is basically declarative, reveal an information-centered speech while the high option for the modal verb operator ‘will’ shows president Donald Trump’s ability to establish an equal and reliant relationship with his audience, i.e., the Americans. In conclusion, the appeal of the speech to different levels of Interpersonal meaning is largely responsible for its overall effectiveness. One can, therefore, understand the reason for the massive reaction it generates at the center of global discourse.Keywords: interpersonal, modality, mood, systemic functional grammar
Procedia PDF Downloads 2328487 Chronic Cognitive Impacts of Mild Traumatic Brain Injury during Aging
Authors: Camille Charlebois-Plante, Marie-Ève Bourassa, Gaelle Dumel, Meriem Sabir, Louis De Beaumont
Abstract:
To the extent of our knowledge, there has been little interest in the chronic effects of mild traumatic brain injury (mTBI) on cognition during normal aging. This is rather surprising considering the impacts on daily and social functioning. In addition, sustaining a mTBI during late adulthood may increase the effect of normal biological aging in individuals who consider themselves normal and healthy. The objective of this study was to characterize the persistent neuropsychological repercussions of mTBI sustained during late adulthood, on average 12 months prior to testing. To this end, 35 mTBI patients and 42 controls between the ages of 50 and 69 completed an exhaustive neuropsychological assessment lasting three hours. All mTBI patients were asymptomatic and all participants had a score ≥ 27 at the MoCA. The evaluation consisted of 20 standardized neuropsychological tests measuring memory, attention, executive and language functions, as well as information processing speed. Performance on tests of visual (Brief Visuospatial Memory Test Revised) and verbal memory (Rey Auditory Verbal Learning Test and WMS-IV Logical Memory subtest), lexical access (Boston Naming Test) and response inhibition (Stroop) revealed to be significantly lower in the mTBI group. These findings suggest that a mTBI sustained during late adulthood induces lasting effects on cognitive function. Episodic memory and executive functions seem to be particularly vulnerable to enduring mTBI effects.Keywords: cognitive function, late adulthood, mild traumatic brain injury, neuropsychology
Procedia PDF Downloads 1708486 Maintenance Objective-Based Asset Maintenance Maturity Model
Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Peter Chemweno
Abstract:
The fast-changing business and operational environment are forcing organizations to adopt asset performance management strategies, not only to reduce costs but also maintain operational and production policies while addressing demand. To attain optimal asset performance management, a framework that ensures a continuous and systematic approach to analyzing an organization’s current maturity level and expected improvement regarding asset maintenance processes, strategies, technologies, capabilities, and systems is essential. Moreover, this framework while addressing maintenance-intensive organizations should consider the diverse business, operational and technical context (often dynamic) an organization is in and realistically prescribe or relate to the appropriate tools and systems the organization can potentially employ in the respective level, to improve and attain their maturity goals. This paper proposes an asset maintenance maturity model to assess the current capabilities, strength and weaknesses of maintenance processes an organization is using and analyze gaps for improvement via structuring set levels of achievement. At the epicentre of the proposed framework is the utilization of maintenance objective selected by an organization for various maintenance optimization programs. The framework adapts the Capability Maturity Model of assessing the maintenance process maturity levels in the organization.Keywords: asset maintenance, maturity models, maintenance objectives, optimization
Procedia PDF Downloads 2338485 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.Keywords: politics, personality traits, LIWC, machine learning
Procedia PDF Downloads 4988484 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier
Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim
Abstract:
There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.Keywords: data mining, document classifier, text mining, topic modeling
Procedia PDF Downloads 4068483 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN
Authors: Kwangmin Joo
Abstract:
Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique
Procedia PDF Downloads 1298482 Assessing Circularity Potentials and Customer Education to Drive Ecologically and Economically Effective Materials Design for Circular Economy - A Case Study
Authors: Mateusz Wielopolski, Asia Guerreschi
Abstract:
Circular Economy, as the counterargument to the ‘make-take-dispose’ linear model, is an approach that includes a variety of schools of thought looking at environmental, economic, and social sustainability. This, in turn, leads to a variety of strategies and often confusion when it comes to choosing the right one to make a circular transition as effective as possible. Due to the close interplay of circular product design, business model and social responsibility, companies often struggle to develop strategies that comply with all three triple-bottom-line criteria. Hence, to transition to circularity effectively, product design approaches must become more inclusive. In a case study conducted with the University of Bayreuth and the ISPO, we correlated aspects of material choice in product design, labeling and technological innovation with customer preferences and education about specific material and technology features. The study revealed those attributes of the consumers’ environmental awareness that directly translate into an increase of purchase power - primarily connected with individual preferences regarding sports activity and technical knowledge. Based on this outcome, we constituted a product development approach that incorporates the consumers’ individual preferences towards sustainable product features as well as their awareness about materials and technology. It allows deploying targeted customer education campaigns to raise the willingness to pay for sustainability. Next, we implemented the customer preference and education analysis into a circularity assessment tool that takes into account inherent company assets as well as subjective parameters like customer awareness. The outcome is a detailed but not cumbersome scoring system, which provides guidance for material and technology choices for circular product design while considering business model and communication strategy to the attentive customers. By including customer knowledge and complying with corresponding labels, companies develop more effective circular design strategies, while simultaneously increasing customers’ trust and loyalty.Keywords: circularity, sustainability, product design, material choice, education, awareness, willingness to pay
Procedia PDF Downloads 2048481 The Predictive Utility of Subjective Cognitive Decline Using Item Level Data from the Everyday Cognition (ECog) Scales
Authors: J. Fox, J. Randhawa, M. Chan, L. Campbell, A. Weakely, D. J. Harvey, S. Tomaszewski Farias
Abstract:
Early identification of individuals at risk for conversion to dementia provides an opportunity for preventative treatment. Many older adults (30-60%) report specific subjective cognitive decline (SCD); however, previous research is inconsistent in terms of what types of complaints predict future cognitive decline. The purpose of this study is to identify which specific complaints from the Everyday Cognition Scales (ECog) scales, a measure of self-reported concerns for everyday abilities across six cognitive domains, are associated with: 1) conversion from a clinical diagnosis of normal to either MCI or dementia (categorical variable) and 2) progressive cognitive decline in memory and executive function (continuous variables). 415 cognitively normal older adults were monitored annually for an average of 5 years. Cox proportional hazards models were used to assess associations between self-reported ECog items and progression to impairment (MCI or dementia). A total of 114 individuals progressed to impairment; the mean time to progression was 4.9 years (SD=3.4 years, range=0.8-13.8). Follow-up models were run controlling for depression. A subset of individuals (n=352) underwent repeat cognitive assessments for an average of 5.3 years. For those individuals, mixed effects models with random intercepts and slopes were used to assess associations between ECog items and change in neuropsychological measures of episodic memory or executive function. Prior to controlling for depression, subjective concerns on five of the eight Everyday Memory items, three of the nine Everyday Language items, one of the seven Everyday Visuospatial items, two of the five Everyday Planning items, and one of the six Everyday Organization items were associated with subsequent diagnostic conversion (HR=1.25 to 1.59, p=0.003 to 0.03). However, after controlling for depression, only two specific complaints of remembering appointments, meetings, and engagements and understanding spoken directions and instructions were associated with subsequent diagnostic conversion. Episodic memory in individuals reporting no concern on ECog items did not significantly change over time (p>0.4). More complaints on seven of the eight Everyday Memory items, three of the nine Everyday Language items, and three of the seven Everyday Visuospatial items were associated with a decline in episodic memory (Interaction estimate=-0.055 to 0.001, p=0.003 to 0.04). Executive function in those reporting no concern on ECog items declined slightly (p <0.001 to 0.06). More complaints on three of the eight Everyday Memory items and three of the nine Everyday Language items were associated with a decline in executive function (Interaction estimate=-0.021 to -0.012, p=0.002 to 0.04). These findings suggest that specific complaints across several cognitive domains are associated with diagnostic conversion. Specific complaints in the domains of Everyday Memory and Language are associated with a decline in both episodic memory and executive function. Increased monitoring and treatment of individuals with these specific SCD may be warranted.Keywords: alzheimer’s disease, dementia, memory complaints, mild cognitive impairment, risk factors, subjective cognitive decline
Procedia PDF Downloads 848480 The Relationship Between Teachers’ Attachment Insecurity and Their Classroom Management Efficacy
Authors: Amber Hatch, Eric Wright, Feihong Wang
Abstract:
Research suggests that attachment in close relationships affects one’s emotional processes, mindfulness, conflict-management behaviors, and interpersonal interactions. Attachment insecurity is often associated with maladaptive social interactions and suboptimal relationship qualities. Past studies have considered how the nature of emotion regulation and mindfulness in teachers may be related to student or classroom outcomes. Still, no research has examined how the relationship between such internal experiences and classroom management outcomes may also be related to teachers’ attachment insecurity. This study examined the interrelationships between teachers’ attachment insecurity, mindfulness tendencies, emotion regulation abilities, and classroom management efficacy as indexed by students’ classroom behavior and teachers’ response effectiveness. Teachers’ attachment insecurity was evaluated using the global ECRS-SF, which measures both attachment anxiety and avoidance. The present study includes a convenient sample of 357 American elementary school teachers who responded to a survey regarding their classroom management efficacy, attachment in/security, dispositional mindfulness, emotion regulation strategies, and difficulties in emotion regulation, primarily assessed via pre-existing instruments. Good construct validity was demonstrated for all scales used in the survey. Sample demographics, including gender (94% female), race (92% White), age (M = 41.9 yrs.), years of teaching experience (M = 15.2 yrs.), and education level were similar to the population from which it was drawn, (i.e., American elementary school teachers). However, white women were slightly overrepresented in our sample. Correlational results suggest that teacher attachment insecurity is associated with poorer classroom management efficacy as indexed by students’ disruptive behavior and teachers’ response effectiveness. Attachment anxiety was a much stronger predictor of adverse student behaviors and ineffective teacher responses to adverse behaviors than attachment avoidance. Mindfulness, emotion regulation abilities, and years of teaching experience predicted positive classroom management outcomes. Attachment insecurity and mindfulness were more strongly related to frequent adverse student behaviors, while emotion regulation abilities were more strongly related to teachers’ response effectiveness. The teaching experience was negatively related to attachment insecurity and positively related to mindfulness and emotion regulation abilities. Although the data were cross-sectional, path analyses revealed that attachment insecurity is directly related to classroom management efficacy. Through two routes, this relationship is further mediated by emotion regulation and mindfulness in teachers. The first route of indirect effect suggests double mediation by teacher’s emotion regulation and then teacher mindfulness in the relationship between teacher attachment insecurity and classroom management efficacy. The second indirect effect suggests mindfulness directly mediated the relationship between attachment insecurity and classroom management efficacy, resulting in improved model fit statistics. However, this indirect effect is much smaller than the double mediation route through emotion regulation and mindfulness in teachers. Given the significant predication of teacher attachment insecurity, mindfulness, and emotion regulation on teachers’ classroom management efficacy both directly and indirectly, the authors recommend improving teachers’ classroom management efficacy via a three-pronged approach aiming at enhancing teachers’ secure attachment and supporting their learning adaptive emotion regulation strategies and mindfulness techniques.Keywords: Classroom management efficacy, student behavior, teacher attachment, teacher emotion regulation, teacher mindfulness
Procedia PDF Downloads 898479 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 958478 Tertiary Training of Future Health Educators and Health Professionals Involved in Childhood Obesity Prevention and Treatment Strategies
Authors: Thea Werkhoven, Wayne Cotton
Abstract:
Adult and childhood rates of obesity in Australia are health concerns of high national priority, retaining epidemic status in the populations affected. Attempts to prevent further increases in prevalence of childhood obesity in the population aged below eighteen years have had varied success. A multidisciplinary approach has been used, employing strategies in schools, through established health care system usage and public health campaigns. Over the last decade a plateau in prevalence has been reached in the youth population afflicted by obesity and interest has peaked in school based strategies to prevent and treat overweight and obesity. Of interest to this study is the importance of the tertiary training of future health educators or health professionals destined to be involved in obesity prevention and treatment strategies. Health educators and health professionals are considered instrumental to the success of prevention and treatment strategies, required to possess sufficient and accurate knowledge in order to be effective in their positions. A common influence on the success of school based health promoting activities are the weight based attitudes possessed by health educators, known to be negative and biased towards overweight or obese children during training and practice. Whilst the tertiary training of future health professionals includes minimal nutrition education, there is no mandatory training in health education or nutrition for pre-service health educators in Australian tertiary institutions. This study aimed to assess the impact of a pedagogical intervention on pre-service health educators and health professionals enrolled in a health and wellbeing elective. The intervention aimed to increase nutrition knowledge and decrease weight bias and was embedded in the twelve week elective. Participants (n=98) were tertiary students at a major Australian University who were enrolled in health (47%) and non-health related degrees (53%). A quantitative survey using four valid and reliable instruments was conducted to measured nutrition knowledge, antifat attitudes and weight stereotyping attitudes at baseline and post-intervention. Scores on each instrument were compared between time points to check if they had significantly changed and to determine the effect of the intervention on attitudes and knowledge. Antifat attitudes at baseline were considered low and decreased further over the course of the intervention. Scores representing weight bias did decrease but the change was not significant. Fat stereotyping attitudes became stronger over the course of the intervention and this change was significant. Nutrition knowledge significantly improved from baseline to post-intervention. The design of the nutrition knowledge and attitude amelioration content of the intervention was semi-successful in achieving its outcomes. While the level of nutrition knowledge was improved over the course of the intervention, an unintentional increase was observed in weight based prejudice which is known to occur in interventions that employ stigma reduction methodologies. Further research is required into a structured methodology that increases level of nutrition knowledge and ameliorates weight bias at the tertiary level. In this way training provided would help prepare future health educators with the knowledge, skills and attitudes required to be effective and bias free in their practice.Keywords: education, intervention, nutrition, obesity
Procedia PDF Downloads 2168477 SAR and B₁ Considerations for Multi-Nuclear RF Body Coils
Authors: Ria Forner
Abstract:
Introduction: Due to increases in the SNR at 7T and above, it becomes more favourable to make use of X-nuclear imaging. Integrated body coils tuned to 120MHz for 31P, 79MHz for 23Na, and 75 MHz for 13C at 7T were simulated with a human male, female, or child body model to assess strategies of use for metabolic MR imaging in the body. Methods: B1 and SAR efficiencies in the heart, liver, spleen, and kidneys were assessed using numerical simulations over the three frequencies with phase shimming. Results: B1+ efficiency is highly variable over the different organs, particularly for the highest frequency; however, local SAR efficiency remains relatively constant over the frequencies in all subjects. Although the optimal phase settings vary, one generic phase setting can be identified for each frequency at which the penalty in B1+ is at a max of 10%. Discussion: The simulations provide practical strategies for power optimization, B1 management, and maintaining safety. As expected, the B1 field is similar at 75MHz and 79MHz, but reduced at 120MHz. However, the B1 remains relatively constant when normalised by the square root of the peak local SAR. This is in contradiction to generalized SAR considerations of 1H MRI at different field strengths, which is defined by global SAR instead. Conclusion: Although the B1 decreases with frequency, SAR efficiency remains constant throughout the investigated frequency range. It is possible to shim the body coil to obtain a maximum of 10% extra B1+ in a specific organ in a body when compared to a generic setting.Keywords: birdcage, multi-nuclear, B1 shimming, 7 Tesla MRI, liver, kidneys, heart, spleen
Procedia PDF Downloads 718476 Mobile Marketing Adoption in Pakistan
Authors: Manzoor Ahmad
Abstract:
The rapid advancement of mobile technology has transformed the way businesses engage with consumers, making mobile marketing a crucial strategy for organizations worldwide. This paper presents a comprehensive study on the adoption of mobile marketing in Pakistan, aiming to provide valuable insights into the current landscape, challenges, and opportunities in this emerging market. To achieve this objective, a mixed-methods approach was employed, combining quantitative surveys and qualitative interviews with industry experts, marketers, and consumers. The study encompassed a diverse range of sectors, including retail, telecommunications, banking, and e-commerce, ensuring a comprehensive understanding of mobile marketing practices across different industries. The findings indicate that mobile marketing has gained significant traction in Pakistan, with a growing number of organizations recognizing its potential for reaching and engaging with consumers effectively. Factors such as increasing smartphone penetration, affordable data plans, and the rise of social media usage have contributed to the widespread adoption of mobile marketing strategies. However, several challenges and barriers to mobile marketing adoption were identified. These include issues related to data privacy and security, limited digital literacy among consumers, inadequate infrastructure, and cultural considerations. Additionally, the study highlights the need for tailored and localized mobile marketing strategies to address the diverse cultural and linguistic landscape of Pakistan. Based on the insights gained from the study, practical recommendations are provided to support organizations in optimizing their mobile marketing efforts in Pakistan. These recommendations encompass areas such as consumer targeting, content localization, mobile app development, personalized messaging, and measurement of mobile marketing effectiveness. This research contributes to the existing literature on mobile marketing adoption in developing countries and specifically sheds light on the unique dynamics of the Pakistani market. It serves as a valuable resource for marketers, practitioners, and policymakers seeking to leverage mobile marketing strategies in Pakistan, ultimately fostering the growth and success of businesses operating in this region.Keywords: mobile marketing, digital marketing, mobile advertising, adoption of mobile marketing
Procedia PDF Downloads 1168475 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1408474 Harmonic Analysis to Improve Power Quality
Authors: Rumana Ali
Abstract:
The presence of nonlinear and power electronic switching devices produce distorted output and harmonics into the system. This paper presents a technique to analyze harmonics using digital series oscilloscope (DSO). In power distribution system further measurements are done by DSO, and the waveforms are analyzed using FFT program. The results of this proposed work are helpful for the investigator to install an appropriate compensating device to mitigate the harmonics, in turn, improve the power quality. This case study is carried out at AIT Chikmagalur. It is done as a starting step towards the improvement of energy efficiency at AIT Chikmagalur, and with an overall aim of reducing the electricity bill with a complete energy audit of the institution. Strategies were put forth to reach the above objective: The following strategies were proposed to be implemented to analyze the power quality in EEE department of the institution. Strategy 1: The power factor has to be measured using the energy meter. Power factor improvement may reduce the voltage drop in lines. This brings the voltages at the socket in the labs closer to the nominal voltage of 230V, and thus power quality improves. Strategy 2: The harmonics at the power inlet has to be measured by means of a DSO. The DSO waveform is analyzed using FFT to know the percentage harmonic up to the 13th harmonics of 50Hz. Reduction in the harmonics in the inlet of the EEE department may reduce line losses and therefore reduces energy bill to the institution.Keywords: harmonic analysis, energy bill, power quality, electronic switching devices
Procedia PDF Downloads 3118473 Simulating an Interprofessional Hospital Day Shift: A Student Interprofessional (IP) Collaborative Learning Activity
Authors: Fiona Jensen, Barb Goodwin, Nancy Kleiman, Rhonda Usunier
Abstract:
Background: Clinical simulation is now a common component in many health profession curricula in preparation for clinical practice. In the Rady Faculty of Health Sciences (RFHS) college leads in simulation and interprofessional (IP) education, planned an eight hour simulated hospital day shift, where seventy students from six health professions across two campuses, learned with each other in a safe, realistic environment. Learning about interprofessional collaboration, an expected competency for many health professions upon graduation, was a primary focus of the simulation event. Method: Faculty representatives from the Colleges of Nursing, Medicine, Pharmacy and Rehabilitation Sciences (Physical Therapy, Occupation Therapy, Respiratory Therapy) and Pharmacy worked together to plan the IP event in a simulation facility in the College of Nursing. Each college provided a faculty mentor to guide the same profession students. Students were placed in interprofessional teams consisting of a nurse, physician, pharmacist, and then sharing respiratory, occupational, and physical therapists across the team depending on the needs of the patients. Eight patient scenarios were role played by health profession students, who had been provided with their patient’s story shortly before the event. Each team was guided by a facilitator. Results and Outcomes: On the morning of the event, all students gathered in a large group to meet mentors and facilitators and have a brief overview of the six competencies for effective collaboration and the session objectives. The students assuming their same profession roles were provided with their patient’s chart at the beginning of the shift, met with their team, and then completed professional specific assessments. Shortly into the shift, IP team rounds began, facilitated by the team facilitator. During the shift, each patient role-played a spontaneous health incident, which required collaboration between the IP team members for assessment and management. The afternoon concluded with team rounds, a collaborative management plan, and a facilitated de-brief. Conclusions: During the de-brief sessions, students responded to set questions related to the session learning objectives and expressed many positive learning moments. We believe that we have a sustainable simulation IP collaborative learning opportunity, which can be embedded into curricula, and has the capacity to grow to include more health profession faculties and students. Opportunities are being explored in the RFHS at the administrative level, to offer this event more frequently in the academic year to reach more students. In addition, a formally structured event evaluation tool would provide important feedback and inform the qualitative feedback to event organizers and the colleges about the significance of the simulation event to student learning.Keywords: simulation, collaboration, teams, interprofessional
Procedia PDF Downloads 1338472 Benefits of Gamification in Agile Software Project Courses
Authors: Nina Dzamashvili Fogelström
Abstract:
This paper examines concepts of Game-Based Learning and Gamification. Conducted literature survey found an increased interest in the academia in these concepts, limited evidence of a positive effect on student motivation and academic performance, but also certain scepticism for adding games to traditional educational activities. A small-scale empirical study presented in this paper aims to evaluate student experience and usefulness of GameBased Learning and Gamification for a better understanding of the threshold concepts in software engineering project courses. The participants of the study were 22 second year students from bachelor’s program in software engineering at Blekinge Institute of Technology. As a part of the course instruction, the students were introduced to a digital game specifically designed to simulate agile software project. The game mechanics were designed as to allow manipulation of the agile concept of team velocity. After the application of the game, the students were surveyed to measure the degree of a perceived increase in understanding of the studied threshold concept. The students were also asked whether they would like to have games included in their education. The results show that majority of the students found the game helpful in increasing their understanding of the threshold concept. Most of the students have indicated that they would like to see games included in their education. These results are encouraging. Since the study was of small scale and based on convenience sampling, more studies in the area are recommended.Keywords: agile development, gamification, game based learning, digital games, software engineering, threshold concepts
Procedia PDF Downloads 1738471 Analysis Rescuers' Viewpoint about Victims Tracking in Earthquake by Using Radio Frequency Identification (RFID)
Authors: Sima Ajami, Batool Akbari
Abstract:
Background: Radio frequency identification (RFID) system has been successfully applied to the areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services. The RFID is already used to track and trace the victims in a disaster situation. Data can be collected in real time and be immediately available to emergency personnel and saves time by the RFID. Objectives: The aim of this study was, first, to identify stakeholders and customers for rescuing earthquake victims, second, to list key internal and external factors to use RFID to track earthquake victims, finally, to assess SWOT for rescuers' viewpoint. Materials and Methods: This study was an applied and analytical study. The study population included scholars, experts, planners, policy makers and rescuers in the "red crescent society of Isfahan province", "disaster management Isfahan province", "maintenance and operation department of Isfahan", "fire and safety services organization of Isfahan municipality", and "medical emergencies and disaster management center of Isfahan". After that, researchers held a workshop to teach participants about RFID and its usages in tracking earthquake victims. In the meanwhile of the workshop, participants identified, listed, and weighed key internal factors (strengths and weaknesses; SW) and external factors (opportunities and threats; OT) to use RFID in tracking earthquake victims. Therefore, participants put weigh strengths, weaknesses, opportunities, and threats (SWOT) and their weighted scales were calculated. Then, participants' opinions about this issue were assessed. Finally, according to the SWOT matrix, strategies to solve the weaknesses, problems, challenges, and threats through opportunities and strengths were proposed by participants. Results: The SWOT analysis showed that the total weighted score for internal and external factors were 3.91 (Internal Factor Evaluation) and 3.31 (External Factor Evaluation) respectively. Therefore, it was in a quadrant SO strategies cell in the SWOT analysis matrix and aggressive strategies were resulted. Organizations, scholars, experts, planners, policy makers and rescue workers should plan to use RFID technology in order to save more victims and manage their life. Conclusions: Researchers suppose to apply SO strategies and use a firm’s internal strength to take advantage of external opportunities. It is suggested, policy maker should plan to use the most developed technologies to save earthquake victims and deliver the easiest service to them. To do this, education, informing, and encouraging rescuers to use these technologies is essential. Originality/ Value: This study was a research paper that showed how RFID can be useful to track victims in earthquake.Keywords: frequency identification system, strength, weakness, earthquake, victim
Procedia PDF Downloads 326