Search results for: distributed sensor networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5815

Search results for: distributed sensor networks

175 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW

Authors: Meena Agrawal, Chaitanya P. Agrawal

Abstract:

The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.

Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid

Procedia PDF Downloads 336
174 Story of Per-: The Radial Network of One Lithuanian Prefix

Authors: Samanta Kietytė

Abstract:

The object of this study is the verbal derivatives stemming from the Lithuanian prefix per-. The prefix under examination can be classified as prepositional, having descended from the preposition per, thereby sharing the same prototypical meaning – denoting movement OVER. These frequently co-occur within sentences (1). The aim of this paper is to conduct a semantic analysis of the prefix per- and to propose a possible radial network of its meanings. In essence, the aim is to identify the interrelationships existing between its meanings. 1) Jis peršoko per tvorą/ 3SG.NOM.M jump.PST.3 over fence.ACC.SG. /ʻHe jumped over the fenceʼ. The foundation of this work lies in the methodological and theoretical framework of cognitive linguistics. The prototypical meaning of prefixes consistently embodies spatial dimensions that can be described through image schemas. This entails the identification of the trajectory, the landmark, and the relation between them in the situation described by the prefixed verb. The meanings of linguistic units are not perceived as arbitrary, but rather, they are interconnected through semantic motivation. According to this perspective, a singular meaning within linguistic units is considered as prototypical, while additional meanings are descended (not necessarily directly) from it. For example, one of the per- meanings TRANSFER (2) is derived from the prototypical meaning OVER. 2) Prašau persiųsti vadovo laišką man./ Ask.PRS.1 forward.INF manager.GEN.SG email.ACC.SG 1.SG.DAT/ ʻPlease forward the manager‘s email to meʼ. Certain semantic relations are explained by the conceptual metaphor and metonymy theory. For instances, when prefixed verb has a meaning WIN (3) it is related to the prototypical meaning. In this case, the prefixed verb describes situations of winning in various ways. In the prototypical meaning, the trajector moves higher than the landmark, and winning is metaphorically perceived as being higher. 3) Sūnus peraugo tėvą./ Son.NOM.SG outgrow.PST.3 father.ACC.SG/ ʻThe son has outgrown the fatherʼ. The data utilized for this study was collected from the 2014 grammatically annotated text "Lithuanian Web (LithuanianWaC v2)", consisting of 63,645,700 words. Given that the corpus is grammatically lemmatized, the list of the 793 items was obtained using the wordlist function and specifying that verbs starting with per were searched. The list included not only prefixed verbs but also other verbs whose roots have the same letter sequences as prefixes. Also, words with misspellings, without diacritical marks, and words listed for lemmatization errors were rejected, and a total of 475 derivatives were left for further analysis. The semantic analysis revealed that there are 12 distinct meanings of the prefix per-. The spatial meanings were extracted by determining what a trajector is, what a landmark is, and what the relation between them is. The connection between non-spatial meanings and spatial ones occurs through semantic motivation established by identifying elements that correspond to the trajector and landmark. The analysis reveals that there are no strict boundaries among these meanings, instead showing a continuum that encompasses a central core and a peripheral association with their internal structure, i.e., some derivatives are more prototypical of a particular meaning than others.

Keywords: word-formation, cognitive semantics, metaphor, radial networks, prototype theory, prefix

Procedia PDF Downloads 79
173 The Cultural Shift in Pre-owned Fashion as Sustainable Consumerism in Vietnam

Authors: Lam Hong Lan

Abstract:

The textile industry is said to be the second-largest polluter, responsible for 92 million tonnes of waste annually. There is an urgent need to practice the circular economy to increase the use and reuse around the world. By its nature, the pre-owned fashion business is considered part of the circular economy as it helps to eliminate waste and circulate products. Second-hand clothes and accessories used to be associated with a ‘cheap image’ that carried ‘old energy’ in Vietnam. This perception has been shifted, especially amongst the younger generation. Vietnamese consumer is spending more on products and services that increase self-esteem. The same consumer is moving away from a collectivist social identity towards a ‘me, not we’ outlook as they look for a way to express their individual identity. And pre-owned fashion is one of their solutions as it values money, can create a unique personal style for the wearer and links with sustainability. The design of this study is based on the second-hand shopping motivation theory. A semi-structured online survey with 100 consumers from one pre-owned clothing community and one pre-owned e-commerce site in Vietnam. The findings show that in contrast with Vietnamese older consumers (55+yo) who, in the previous study, generally associated pre-owned fashion with ‘low-cost’, ‘cheap image’ that carried ‘old energy’, young customers (20-30 yo) were actively promoted their pre-owned fashion items to the public via outlet’s social platforms and their social media. This cultural shift comes from the impact of global and local discourse around sustainable fashion and the growth of digital platforms in the pre-owned fashion business in the last five years, which has generally supported wider interest in pre-owned fashion in Vietnam. It can be summarised in three areas: (1) global and local celebrity influencers. A number of celebrities have been photographed wearing vintage items in music videos, photoshoots or at red carpet events. (2) E-commerce and intermediaries. International e-commerce sites – e.g., Vinted, TheRealReal – and/or local apps – e.g., Re.Loved – can influence attitudes and behaviors towards pre-owned consumption. (3) Eco-awareness. The increased online coverage of climate change and environmental pollution has encouraged customers to adopt a more eco-friendly approach to their wardrobes. While sustainable biomaterials and designs are still navigating their way into sustainability, sustainable consumerism via pre-owned fashion seems to be an immediate solution to lengthen the clothes lifecycle. This study has found that young consumers are primarily seeking value for money and/or a unique personal style from pre-owned/vintage fashion while using these purchases to promote their own “eco-awareness” via their social media networks. This is a good indication for fashion designers to keep in mind in their design process and for fashion enterprises in their business model’s choice to not overproduce fashion items.

Keywords: cultural shift, pre-owned fashion, sustainable consumption, sustainable fashion.

Procedia PDF Downloads 86
172 Women’s Experience of Managing Pre-Existing Lymphoedema during Pregnancy and the Early Postnatal Period

Authors: Kim Toyer, Belinda Thompson, Louise Koelmeyer

Abstract:

Lymphoedema is a chronic condition caused by dysfunction of the lymphatic system, which limits the drainage of fluid and tissue waste from the interstitial space of the affected body part. The normal physiological changes in pregnancy cause an increased load on a normal lymphatic system which can result in a transient lymphatic overload (oedema). The interaction between lymphoedema and pregnancy oedema is unclear. Women with pre-existing lymphoedema require accurate information and additional strategies to manage their lymphoedema during pregnancy. Currently, no resources are available to guide women or their healthcare providers with accurate advice and additional management strategies for coping with lymphoedema during pregnancy until they have recovered postnatally. This study explored the experiences of Australian women with pre-existing lymphoedema during recent pregnancy and the early postnatal period to determine how their usual lymphoedema management strategies were adapted and what were their additional or unmet needs. Interactions with their obstetric care providers, the hospital maternity services, and usual lymphoedema therapy services were detailed. Participants were sourced from several Australian lymphoedema community groups, including therapist networks. Opportunistic sampling is appropriate to explore this topic in a small target population as lymphoedema in women of childbearing age is uncommon, with prevalence data unavailable. Inclusion criteria were aged over 18 years, diagnosed with primary or secondary lymphoedema of the arm or leg, pregnant within the preceding ten years (since 2012), and had their pregnancy and postnatal care in Australia. Exclusion criteria were a diagnosis of lipedema and if unable to read or understand a reasonable level of English. A mixed-method qualitative design was used in two phases. This involved an online survey (REDCap platform) of the participants followed by online semi-structured interviews or focus groups to provide the transcript data for inductive thematic analysis to gain an in-depth understanding of issues raised. Women with well-managed pre-existing lymphoedema coped well with the additional oedema load of pregnancy; however, those with limited access to quality conservative care prior to pregnancy were found to be significantly impacted by pregnancy, including many reporting deterioration of their chronic lymphoedema. Misinformation and a lack of support increased fear and apprehension in planning and enjoying their pregnancy experience. Collaboration between maternity and lymphoedema therapy services did not happen despite study participants suggesting it. Helpful resources and unmet needs were identified in the recent Australian context to inform further research and the development of resources to assist women with lymphoedema who are considering or are pregnant and their supporters, including health care providers.

Keywords: lymphoedema, management strategies, pregnancy, qualitative

Procedia PDF Downloads 90
171 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System

Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji

Abstract:

Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.

Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources

Procedia PDF Downloads 144
170 Continuous Professional Development of Teachers: Implementation Mechanisms in the Republic of Kazakhstan Based on the Professional Standard 'Teacher'

Authors: Yelena Agranovich, Larissa Ageyeva, Aigul Syzdykbayeva, Violetta Tyan

Abstract:

The modernization of the education system in the Republic of Kazakhstan is aimed at improving the quality of teacher training and enhancing key competencies among teachers. The current professional standard ‘Teacher’ defines the general characteristics of teachers’ activities, key competencies, and criteria according to relevant qualification categories structured on the principle of progression, thereby enabling Continuous Professional Development (CPD). The essence of CPD lies in the constant integration of new knowledge and skills that help teachers adapt to changes in the education system, in technologies, and teaching methods. This developmental process enables teachers to stay updated on recent scientific achievements, innovations, and modern pedagogical practices. Continuous learning helps teachers remain flexible and open to new developments, creating conditions for improving educational quality and fostering students' personal growth. This study aims to address the following objectives: analysis of international CPD practices, identification of conceptual foundations, and investigation of CPD implementation mechanisms in Kazakhstan. The core principles of CPD are identified as longitudinality, systematicity, and fragmentation. CPD implementation is based on various theoretical approaches: axiological, systemic, competency-based, activity-based, and learner-centered. The study analyzes leading models of teacher CPD, with a target sample that includes countries such as Australia, Japan, South Korea, England, Singapore, Sweden, Finland, and Kazakhstan. The research methods include analysis (comparative, historical, content analysis, systematic), case studies of CPD models, and synthesis and systematization of scientific data. As research results, the mechanisms for CPD implementation in Kazakhstan will be identified, along with further perspectives on transforming resources within the teacher professional development system. In comparing CPD models from various countries, it is noted that teacher CPD in the Republic of Kazakhstan: (1) is implemented through educational programs, professional development courses, teacher certification, professional networks, in-school professional development, self-education, and self-assessment; (2) includes the development of pedagogical values and competencies (tolerance, inclusivity, communication, critical thinking, creativity, reflection, etc.); (3) is carried out based on traditional forms (professional development courses, retraining) and informal forms (self-learning, self-development, experience sharing and exchange). Further research will focus on creating a digital ecosystem for teacher CPD, based on an educational platform that facilitates individualized professional development pathways for teachers (competency diagnostics, course selection, and a methodological system of course and post-course support for teachers).

Keywords: continuous professional development, CPD models, professional development, professional upgrading, teacher, teacher training

Procedia PDF Downloads 25
169 Consensual A-Monogamous Relationships: Challenges and Ways of Coping

Authors: Tal Braverman Uriel, Tal Litvak Hirsch

Abstract:

Background and Objectives: Little or only partial emphasis has been placed on exploring the complexity of consensual non-monogamous relationships. The term "polyamory" refers to consensual non-monogamy, and it is defined as having emotional and/or sexual relations simultaneously with two or more people, the consent and knowledge of all the partners concerned. Managing multiple romantic relationships with different people evokes more emotions, leads to more emotional conflicts arising from different interests, and demands practical strategies. An individual's transition from a monogamous lifestyle to a consensual non-monogamous lifestyle yields new challenges, accompanied by stress, uncertainty, and question marks, as do other life-changing events, such as divorce or transition to parenthood. The study examines both the process of transition and adaptation to a consensually non-monogamous relationship, as well as the coping mechanism involved in the daily conduct of this lifestyle. The research focuses on understanding the consequences, challenges, and coping methods from a personal, marital, and familial point of view and focuses on 40 middle-aged individuals (20 men and 20 women ages 40-60). The research sheds light on a way of life that has not been previously studied in Israel and is still considered unacceptable. Theories of crisis (e.g., as Folkman and Lazarus) were applied, and as a result, a deeper understanding of the subject was reached, all while focusing on multiple aspects of dealing with stress. The basic research question examines the consequences of entering a polyamorous life from a personal point of view as an individual, partner, and parent and the ways of coping with these consequences. Method: The research is conducted with a narrative qualitative approach in the interpretive paradigm, including semi-structured in-depth interviews. The method of analysis is thematic. Results: The findings indicate that in most cases, an individual's motivation to open the relationship is mainly a longing for better sexuality and for an added layer of excitement to their lives. Most of the interviewees were assisted by their spouses in the process, as well as by social networks and podcasts on the subject. Some of them therapeutic professionals from the field are helpful. It also clearly emerged that among those who experienced acute emotional crises with the primary partner or painful separations from secondary partners, all believed polyamory to be the adequate way of life for them. Finally, a key resource for managing tension and stress is the ability to share and communicate with the primary partner. Conclusions: The study points to the challenges and benefits of a non-monogamous lifestyle as well as the use of coping mechanisms and resources that are consistent with the existing theory and research in the field in the context of life changes. The study indicates the need to expand the research canvas in the future in the context of parenting and the consequences for children.

Keywords: a-monogamy, consent, family, stress, tension

Procedia PDF Downloads 79
168 Local Energy and Flexibility Markets to Foster Demand Response Services within the Energy Community

Authors: Eduardo Rodrigues, Gisela Mendes, José M. Torres, José E. Sousa

Abstract:

In the sequence of the liberalisation of the electricity sector a progressive engagement of consumers has been considered and targeted by sector regulatory policies. With the objective of promoting market competition while protecting consumers interests, by transferring some of the upstream benefits to the end users while reaching a fair distribution of system costs, different market models to value consumers’ demand flexibility at the energy community level are envisioned. Local Energy and Flexibility Markets (LEFM) involve stakeholders interested in providing or procure local flexibility for community, services and markets’ value. Under the scope of DOMINOES, a European research project supported by Horizon 2020, the local market concept developed is expected to: • Enable consumers/prosumers empowerment, by allowing them to value their demand flexibility and Distributed Energy Resources (DER); • Value local liquid flexibility to support innovative distribution grid management, e.g., local balancing and congestion management, voltage control and grid restoration; • Ease the wholesale market uptake of DER, namely small-scale flexible loads aggregation as Virtual Power Plants (VPPs), facilitating Demand Response (DR) service provision; • Optimise the management and local sharing of Renewable Energy Sources (RES) in Medium Voltage (MV) and Low Voltage (LV) grids, trough energy transactions within an energy community; • Enhance the development of energy markets through innovative business models, compatible with ongoing policy developments, that promote the easy access of retailers and other service providers to the local markets, allowing them to take advantage of communities’ flexibility to optimise their portfolio and subsequently their participation in external markets. The general concept proposed foresees a flow of market actions, technical validations, subsequent deliveries of energy and/or flexibility and balance settlements. Since the market operation should be dynamic and capable of addressing different requests, either prioritising balancing and prosumer services or system’s operation, direct procurement of flexibility within the local market must also be considered. This paper aims to highlight the research on the definition of suitable DR models to be used by the Distribution System Operator (DSO), in case of technical needs, and by the retailer, mainly for portfolio optimisation and solve unbalances. The models to be proposed and implemented within relevant smart distribution grid and microgrid validation environments, are focused on day-ahead and intraday operation scenarios, for predictive management and near-real-time control respectively under the DSO’s perspective. At local level, the DSO will be able to procure flexibility in advance to tackle different grid constrains (e.g., demand peaks, forecasted voltage and current problems and maintenance works), or during the operating day-to-day, to answer unpredictable constraints (e.g., outages, frequency deviations and voltage problems). Due to the inherent risks of their active market participation retailers may resort to DR models to manage their portfolio, by optimising their market actions and solve unbalances. The interaction among the market actors involved in the DR activation and in flexibility exchange is explained by a set of sequence diagrams for the DR modes of use from the DSO and the energy provider perspectives. • DR for DSO’s predictive management – before the operating day; • DR for DSO’s real-time control – during the operating day; • DR for retailer’s day-ahead operation; • DR for retailer’s intraday operation.

Keywords: demand response, energy communities, flexible demand, local energy and flexibility markets

Procedia PDF Downloads 103
167 Changing the Landscape of Fungal Genomics: New Trends

Authors: Igor V. Grigoriev

Abstract:

Understanding of biological processes encoded in fungi is instrumental in addressing future food, feed, and energy demands of the growing human population. Genomics is a powerful and quickly evolving tool to understand these processes. The Fungal Genomics Program of the US Department of Energy Joint Genome Institute (JGI) partners with researchers around the world to explore fungi in several large scale genomics projects, changing the fungal genomics landscape. The key trends of these changes include: (i) rapidly increasing scale of sequencing and analysis, (ii) developing approaches to go beyond culturable fungi and explore fungal ‘dark matter,’ or unculturables, and (iii) functional genomics and multi-omics data integration. Power of comparative genomics has been recently demonstrated in several JGI projects targeting mycorrhizae, plant pathogens, wood decay fungi, and sugar fermenting yeasts. The largest JGI project ‘1000 Fungal Genomes’ aims at exploring the diversity across the Fungal Tree of Life in order to better understand fungal evolution and to build a catalogue of genes, enzymes, and pathways for biotechnological applications. At this point, at least 65% of over 700 known families have one or more reference genomes sequenced, enabling metagenomics studies of microbial communities and their interactions with plants. For many of the remaining families no representative species are available from culture collections. To sequence genomes of unculturable fungi two approaches have been developed: (a) sequencing DNA from fruiting bodies of ‘macro’ and (b) single cell genomics using fungal spores. The latter has been tested using zoospores from the early diverging fungi and resulted in several near-complete genomes from underexplored branches of the Fungal Tree, including the first genomes of Zoopagomycotina. Genome sequence serves as a reference for transcriptomics studies, the first step towards functional genomics. In the JGI fungal mini-ENCODE project transcriptomes of the model fungus Neurospora crassa grown on a spectrum of carbon sources have been collected to build regulatory gene networks. Epigenomics is another tool to understand gene regulation and recently introduced single molecule sequencing platforms not only provide better genome assemblies but can also detect DNA modifications. For example, 6mC methylome was surveyed across many diverse fungi and the highest among Eukaryota levels of 6mC methylation has been reported. Finally, data production at such scale requires data integration to enable efficient data analysis. Over 700 fungal genomes and other -omes have been integrated in JGI MycoCosm portal and equipped with comparative genomics tools to enable researchers addressing a broad spectrum of biological questions and applications for bioenergy and biotechnology.

Keywords: fungal genomics, single cell genomics, DNA methylation, comparative genomics

Procedia PDF Downloads 210
166 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China

Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding

Abstract:

The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.

Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2

Procedia PDF Downloads 315
165 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region

Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho

Abstract:

The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.

Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon

Procedia PDF Downloads 72
164 Existential Affordances and Psychopathology: A Gibsonian Analysis of Dissociative Identity Disorder

Authors: S. Alina Wang

Abstract:

A Gibsonian approach is used to understand the existential dimensions of the human ecological niche. Then, this existential-Gibsonian framework is applied to rethinking Hacking’s historical analysis of multiple personality disorder. This research culminates in a generalized account of psychiatric illness from an enactivist lens. In conclusion, reflections on the implications of this account on approaches to psychiatric treatment are mentioned. J.J. Gibson’s theory of affordances centered on affordances of sensorimotor varieties, which guide basic behaviors relative to organisms’ vital needs and physiological capacities (1979). Later theorists, notably Neisser (1988) and Rietveld (2014), expanded on the theory of affordances to account for uniquely human activities relative to the emotional, intersubjective, cultural, and narrative aspects of the human ecological niche. This research shows that these affordances are structured by what Haugeland (1998) calls existential commitments, which draws on Heidegger’s notion of dasein (1927) and Merleau-Ponty’s account of existential freedom (1945). These commitments organize the existential affordances that fill an individual’s environment and guide their thoughts, emotions, and behaviors. This system of a priori existential commitments and a posteriori affordances is called existential enactivism. For humans, affordances do not only elicit motor responses and appear as objects with instrumental significance. Affordances also, and possibly primarily, determine so-called affective and cognitive activities and structure the wide range of kinds (e.g., instrumental, aesthetic, ethical) of significances of objects found in the world. Then existential enactivism is applied to understanding the psychiatric phenomenon of multiple personality disorder (precursor of the current diagnosis of dissociative identity disorder). A reinterpretation of Hacking’s (1998) insights into the history of this particular disorder and his generalizations on the constructed nature of most psychiatric illness is taken on. Enactivist approaches sensitive to existential phenomenology can provide a deeper understanding of these matters. Conceptualizing psychiatric illness as strictly a disorder in the head (whether parsed as a disorder of brain chemicals or meaning-making capacities encoded in psychological modules) is incomplete. Rather, psychiatric illness must also be understood as a disorder in the world, or in the interconnected networks of existential affordances that regulate one’s emotional, intersubjective, and narrative capacities. All of this suggests that an adequate account of psychiatric illness must involve (1) the affordances that are the sources of existential hindrance, (2) the existential commitments structuring these affordances, and (3) the conditions of these existential commitments. Approaches to treatment of psychiatric illness would be more effective by centering on the interruption of normalized behaviors corresponding to affordances targeted as sources of hindrance, the development of new existential commitments, and the practice of new behaviors that erect affordances relative to these reformed commitments.

Keywords: affordance, enaction, phenomenology, psychiatry, psychopathology

Procedia PDF Downloads 139
163 Verification of Geophysical Investigation during Subsea Tunnelling in Qatar

Authors: Gary Peach, Furqan Hameed

Abstract:

Musaimeer outfall tunnel is one of the longest storm water tunnels in the world, with a total length of 10.15 km. The tunnel will accommodate surface and rain water received from the drainage networks from 270 km of urban areas in southern Doha with a pumping capacity of 19.7m³/sec. The tunnel is excavated by Tunnel Boring Machine (TBM) through Rus Formation, Midra Shales, and Simsima Limestone. Water inflows at high pressure, complex mixed ground, and weaker ground strata prone to karstification with the presence of vertical and lateral fractures connected to the sea bed were also encountered during mining. In addition to pre-tender geotechnical investigations, the Contractor carried out a supplementary offshore geophysical investigation in order to fine-tune the existing results of geophysical and geotechnical investigations. Electric resistivity tomography (ERT) and Seismic Reflection survey was carried out. Offshore geophysical survey was performed, and interpretations of rock mass conditions were made to provide an overall picture of underground conditions along the tunnel alignment. This allowed the critical tunnelling area and cutter head intervention to be planned accordingly. Karstification was monitored with a non-intrusive radar system facility installed on the TBM. The Boring Electric Ahead Monitoring(BEAM) was installed at the cutter head and was able to predict the rock mass up to 3 tunnel diameters ahead of the cutter head. BEAM system was provided with an online system for real time monitoring of rock mass condition and then correlated with the rock mass conditions predicted during the interpretation phase of offshore geophysical surveys. The further correlation was carried by Samples of the rock mass taken from tunnel face inspections and excavated material produced by the TBM. The BEAM data was continuously monitored to check the variations in resistivity and percentage frequency effect (PFE) of the ground. This system provided information about rock mass condition, potential karst risk, and potential of water inflow. BEAM system was found to be more than 50% accurate in picking up the difficult ground conditions and faults as predicted in the geotechnical interpretative report before the start of tunnelling operations. Upon completion of the project, it was concluded that the combined use of different geophysical investigation results can make the execution stage be carried out in a more confident way with the less geotechnical risk involved. The approach used for the prediction of rock mass condition in Geotechnical Interpretative Report (GIR) and Geophysical Reflection and electric resistivity tomography survey (ERT) Geophysical Reflection surveys were concluded to be reliable as the same rock mass conditions were encountered during tunnelling operations.

Keywords: tunnel boring machine (TBM), subsea, karstification, seismic reflection survey

Procedia PDF Downloads 253
162 Application of 2D Electrical Resistivity Tomographic Imaging Technique to Study Climate Induced Landslide and Slope Stability through the Analysis of Factor of Safety: A Case Study in Ooty Area, Tamil Nadu, India

Authors: S. Maniruzzaman, N. Ramanujam, Qazi Akhter Rasool, Swapan Kumar Biswas, P. Prasad, Chandrakanta Ojha

Abstract:

Landslide is one of the major natural disasters in South Asian countries. Applying 2D Electrical Resistivity Tomographic Imaging estimation of geometry, thickness, and depth of failure zone of the landslide can be made. Landslide is a pertinent problem in Nilgris plateau next to Himalaya. Nilgris range consists of hard Archean metamorphic rocks. Intense weathering prevailed during the Pre-Cambrian time had deformed the rocks up to 45m depth. The landslides are dominant in the southern and eastern part of plateau of is comparatively smaller than the northern drainage basins, as it has low density of drainage; coarse texture permitted the more of infiltration of rainwater, whereas in the northern part of the plateau entombed with high density of drainage pattern and fine texture with less infiltration than run off, and low to the susceptible to landslide. To get comprehensive information about the landslide zone 2D Electrical Resistivity Tomographic imaging study with CRM 500 Resistivity meter are used in Coonoor– Mettupalyam sector of Nilgiris plateau. To calculate Factor of Safety the infinite slope model of Brunsden and Prior is used. Factor of Safety can be expressed (FS) as the ratio of resisting forces to disturbing forces. If FS < 1 disturbing forces are larger than resisting forces and failure may occur. The geotechnical parameters of soil samples are calculated on the basis upon the apparent resistivity values for litho units of measured from 2D ERT image of the landslide zone. Relationship between friction angles for various soil properties is established by simple regression analysis from apparent resistivity data. Increase of water content in slide zone reduces the effectiveness of the shearing resistance and increase the sliding movement. Time-lapse resistivity changes to slope failure is determined through geophysical Factor of Safety which depends on resistivity and site topography. This ERT technique infers soil property at variable depths in wider areas. This approach to retrieve the soil property and overcomes the limit of the point of information provided by rain gauges and porous probes. Monitoring of slope stability without altering soil structure through the ERT technique is non-invasive with low cost. In landslide prone area an automated Electrical Resistivity Tomographic Imaging system should be installed permanently with electrode networks to monitor the hydraulic precursors to monitor landslide movement.

Keywords: 2D ERT, landslide, safety factor, slope stability

Procedia PDF Downloads 323
161 Geospatial Modeling Framework for Enhancing Urban Roadway Intersection Safety

Authors: Neeti Nayak, Khalid Duri

Abstract:

Despite the many advances made in transportation planning, the number of injuries and fatalities in the United States which involve motorized vehicles near intersections remain largely unchanged year over year. Data from the National Highway Traffic Safety Administration for 2018 indicates accidents involving motorized vehicles at traffic intersections accounted for 8,245 deaths and 914,811 injuries. Furthermore, collisions involving pedal cyclists killed 861 people (38% at intersections) and injured 46,295 (68% at intersections), while accidents involving pedestrians claimed 6,247 lives (25% at intersections) and injured 71,887 (56% at intersections)- the highest tallies registered in nearly 20 years. Some of the causes attributed to the rising number of accidents relate to increasing populations and the associated changes in land and traffic usage patterns, insufficient visibility conditions, and inadequate applications of traffic controls. Intersections that were initially designed with a particular land use pattern in mind may be rendered obsolete by subsequent developments. Many accidents involving pedestrians are accounted for by locations which should have been designed for safe crosswalks. Conventional solutions for evaluating intersection safety often require costly deployment of engineering surveys and analysis, which limit the capacity of resource-constrained administrations to satisfy their community’s needs for safe roadways adequately, effectively relegating mitigation efforts for high-risk areas to post-incident responses. This paper demonstrates how geospatial technology can identify high-risk locations and evaluate the viability of specific intersection management techniques. GIS is used to simulate relevant real-world conditions- the presence of traffic controls, zoning records, locations of interest for human activity, design speed of roadways, topographic details and immovable structures. The proposed methodology provides a low-cost mechanism for empowering urban planners to reduce the risks of accidents using 2-dimensional data representing multi-modal street networks, parcels, crosswalks and demographic information alongside 3-dimensional models of buildings, elevation, slope and aspect surfaces to evaluate visibility and lighting conditions and estimate probabilities for jaywalking and risks posed by blind or uncontrolled intersections. The proposed tools were developed using sample areas of Southern California, but the model will scale to other cities which conform to similar transportation standards given the availability of relevant GIS data.

Keywords: crosswalks, cyclist safety, geotechnology, GIS, intersection safety, pedestrian safety, roadway safety, transportation planning, urban design

Procedia PDF Downloads 111
160 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 489
159 The Effect of Mindfulness-Based Interventions for Individuals with Tourette Syndrome: A Scoping Review

Authors: Ilana Singer, Anastasia Lučić, Julie Leclerc

Abstract:

Introduction: Tics, characterized by repetitive, sudden, non-voluntary motor movements or vocalizations, are prevalent in chronic tic disorder (CT) and Tourette Syndrome (TS). These neurodevelopmental disorders often coexist with various psychiatric conditions, leading to challenges and reduced quality of life. While medication in conjunction with behavioral interventions, such as Habit Reversal Training (HRT), Exposure Response Prevention (ERP), and Comprehensive Behavioral Intervention for Tics (CBIT), has shown efficacy, a significant proportion of patients experience persistent tics. Thus, innovative treatment approaches are necessary to improve therapeutic outcomes, such as mindfulness-based approaches. Nonetheless, the effectiveness of mindfulness-based interventions in the context of CT and TS remains understudied. Objective: The objective of this scoping review is to provide an overview of the current state of research on mindfulness-based interventions for CT and TS, identify knowledge and evidence gaps, discuss the effectiveness of mindfulness-based interventions with other treatment options, and discuss implications for clinical practice and policy development. Method: Using guidelines from Peters (2020) and the PRISMA-ScR, a scoping review was conducted. Multiple electronic databases were searched from inception until June 2023, including MEDLINE, EMBASE, PsychInfo, Global Health, PubMed, Web of Science, and Érudit. Inclusion criteria were applied to select relevant studies, and data extraction was independently performed by two reviewers. Results: Five papers were included in the study. Firstly, we found that mindfulness interventions were found to be effective in reducing anxiety and depression while enhancing overall well-being in individuals with tics. Furthermore, the review highlighted the potential role of mindfulness in enhancing functional connectivity within the Default Mode Network (DMN) as a compensatory function in TS patients. This suggests that mindfulness interventions may complement and support traditional therapeutic approaches, particularly HRT, by positively influencing brain networks associated with tic regulation and control. Conclusion: This scoping review contributes to the understanding of the effectiveness of mindfulness-based interventions in managing CT and TS. By identifying research gaps, this review can guide future investigations and interventions to improve outcomes for individuals with CT or TS. Overall, these findings emphasize the potential benefits of incorporating mindfulness-based interventions as a smaller subset within comprehensive treatment strategies. However, it is essential to acknowledge the limitations of this scoping review, such as the exclusion of a pre-established protocol and the limited number of studies available for inclusion. Further research and clinical exploration are necessary to better understand the specific mechanisms and optimal integration of mindfulness-based interventions with existing behavioral interventions for this population.

Keywords: scoping reviews, Tourette Syndrome, tics, mindfulness-based, therapy, intervention

Procedia PDF Downloads 86
158 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 127
157 In Search of Innovation: Exploring the Dynamics of Innovation

Authors: Michal Lysek, Mike Danilovic, Jasmine Lihua Liu

Abstract:

HMS Industrial Networks AB has been recognized as one of the most innovative companies in the industrial communication industry worldwide. The creation of their Anybus innovation during the 1990s contributed considerably to the company’s success. From inception, HMS’ employees were innovating for the purpose of creating new business (the creation phase). After the Anybus innovation, they began the process of internationalization (the commercialization phase), which in turn led them to concentrate on cost reduction, product quality, delivery precision, operational efficiency, and increasing growth (the growth phase). As a result of this transformation, performing new radical innovations have become more complicated. The purpose of our research was to explore the dynamics of innovation at HMS from the aspect of key actors, activities, and events, over the three phases, in order to understand what led to the creation of their Anybus innovation, and why it has become increasingly challenging for HMS to create new radical innovations for the future. Our research methodology was based on a longitudinal, retrospective study from the inception of HMS in 1988 to 2014, a single case study inspired by the grounded theory approach. We conducted 47 interviews and collected 1 024 historical documents for our research. Our analysis has revealed that HMS’ success in creating the Anybus, and developing a successful business around the innovation, was based on three main capabilities – cultivating customer relations on different managerial and organizational levels, inspiring business relations, and balancing complementary human assets for the purpose of business creation. The success of HMS has turned the management’s attention away from past activities of key actors, of their behavior, and how they influenced and stimulated the creation of radical innovations. Nowadays, they are rhetorically focusing on creativity and innovation. All the while, their real actions put emphasis on growth, cost reduction, product quality, delivery precision, operational efficiency, and moneymaking. In the process of becoming an international company, HMS gradually refocused. In so doing they became profitable and successful, but they also forgot what made them innovative in the first place. Fortunately, HMS’ management has come to realize that this is the case and they are now in search of recapturing innovation once again. Our analysis indicates that HMS’ management is facing several barriers to innovation related path dependency and other lock-in phenomena. HMS’ management has been captured, trapped in their mindset and actions, by the success of the past. But now their future has to be secured, and they have come to realize that moneymaking is not everything. In recent years, HMS’ management have begun to search for innovation once more, in order to recapture their past capabilities for creating radical innovations. In order to unlock their managerial perceptions of customer needs and their counter-innovation driven activities and events, to utilize the full potential of their employees and capture the innovation opportunity for the future.

Keywords: barriers to innovation, dynamics of innovation, in search of excellence and innovation, radical innovation

Procedia PDF Downloads 380
156 A Top-down vs a Bottom-up Approach on Lower Extremity Motor Recovery and Balance Following Acute Stroke: A Randomized Clinical Trial

Authors: Vijaya Kumar, Vidayasagar Pagilla, Abraham Joshua, Rakshith Kedambadi, Prasanna Mithra

Abstract:

Background: Post stroke rehabilitation are aimed to accelerate for optimal sensorimotor recovery, functional gain and to reduce long-term dependency. Intensive physical therapy interventions can enhance this recovery as experience-dependent neural plastic changes either directly act at cortical neural networks or at distal peripheral level (muscular components). Neuromuscular Electrical Stimulation (NMES), a traditional bottom-up approach, mirror therapy (MT), a relatively new top down approach have found to be an effective adjuvant treatment methods for lower extremity motor and functional recovery in stroke rehabilitation. However there is a scarcity of evidence to compare their therapeutic gain in stroke recovery.Aim: To compare the efficacy of neuromuscular electrical stimulation (NMES) and mirror therapy (MT) in very early phase of post stroke rehabilitation addressed to lower extremity motor recovery and balance. Design: observer blinded Randomized Clinical Trial. Setting: Neurorehabilitation Unit, Department of Physical Therapy, Tertiary Care Hospitals. Subjects: 32 acute stroke subjects with first episode of unilateral stroke with hemiparesis, referred for rehabilitation (onset < 3 weeks), Brunnstorm lower extremity recovery stages ≥3 and MMSE score more than 24 were randomized into two group [Group A-NMES and Group B-MT]. Interventions: Both the groups received eclectic approach to remediate lower extremity recovery which includes treatment components of Roods, Bobath and Motor learning approaches for 30 minutes a day for 6 days. Following which Group A (N=16) received 30 minutes of surface NMES training for six major paretic muscle groups (gluteus maximus and medius,quadriceps, hamstrings, tibialis anterior and gastrocnemius). Group B (N=16) was administered with 30 minutes of mirror therapy sessions to facilitate lower extremity motor recovery. Outcome measures: Lower extremity motor recovery, balance and activities of daily life (ADLs) were measured by Fugyl Meyer Assessment (FMA-LE), Berg Balance Scale (BBS), Barthel Index (BI) before and after intervention. Results: Pre Post analysis of either group across the time revealed statistically significant improvement (p < 0.001) for all the outcome variables for the either group. All parameters of NMES had greater change scores compared to MT group as follows: FMA-LE (25.12±3.01 vs. 23.31±2.38), BBS (35.12±4.61 vs. 34.68±5.42) and BI (40.00±10.32 vs. 37.18±7.73). Between the groups comparison of pre post values showed no significance with FMA-LE (p=0.09), BBS (p=0.80) and BI (p=0.39) respectively. Conclusion: Though either groups had significant improvement (pre to post intervention), none of them were superior to other in lower extremity motor recovery and balance among acute stroke subjects. We conclude that eclectic approach is an effective treatment irrespective of NMES or MT as an adjunct.

Keywords: balance, motor recovery, mirror therapy, neuromuscular electrical stimulation, stroke

Procedia PDF Downloads 283
155 Understanding the Impact of Out-of-Sequence Thrust Dynamics on Earthquake Mitigation: Implications for Hazard Assessment and Disaster Planning

Authors: Rajkumar Ghosh

Abstract:

Earthquakes pose significant risks to human life and infrastructure, highlighting the importance of effective earthquake mitigation strategies. Traditional earthquake modelling and mitigation efforts have largely focused on the primary fault segments and their slip behaviour. However, earthquakes can exhibit complex rupture dynamics, including out-of-sequence thrust (OOST) events, which occur on secondary or subsidiary faults. This abstract examines the impact of OOST dynamics on earthquake mitigation strategies and their implications for hazard assessment and disaster planning. OOST events challenge conventional seismic hazard assessments by introducing additional fault segments and potential rupture scenarios that were previously unrecognized or underestimated. Consequently, these events may increase the overall seismic hazard in affected regions. The study reviews recent case studies and research findings that illustrate the occurrence and characteristics of OOST events. It explores the factors contributing to OOST dynamics, such as stress interactions between fault segments, fault geometry, and mechanical properties of fault materials. Moreover, it investigates the potential triggers and precursory signals associated with OOST events to enhance early warning systems and emergency response preparedness. The abstract also highlights the significance of incorporating OOST dynamics into seismic hazard assessment methodologies. It discusses the challenges associated with accurately modelling OOST events, including the need for improved understanding of fault interactions, stress transfer mechanisms, and rupture propagation patterns. Additionally, the abstract explores the potential for advanced geophysical techniques, such as high-resolution imaging and seismic monitoring networks, to detect and characterize OOST events. Furthermore, the abstract emphasizes the practical implications of OOST dynamics for earthquake mitigation strategies and urban planning. It addresses the need for revising building codes, land-use regulations, and infrastructure designs to account for the increased seismic hazard associated with OOST events. It also underscores the importance of public awareness campaigns to educate communities about the potential risks and safety measures specific to OOST-induced earthquakes. This sheds light on the impact of out-of-sequence thrust dynamics in earthquake mitigation. By recognizing and understanding OOST events, researchers, engineers, and policymakers can improve hazard assessment methodologies, enhance early warning systems, and implement effective mitigation measures. By integrating knowledge of OOST dynamics into urban planning and infrastructure development, societies can strive for greater resilience in the face of earthquakes, ultimately minimizing the potential for loss of life and infrastructure damage.

Keywords: earthquake mitigation, out-of-sequence thrust, seismic, satellite imagery

Procedia PDF Downloads 91
154 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 174
153 Exploring Accessible Filmmaking and Video for Deafblind Audiences through Multisensory Participatory Design

Authors: Aikaterini Tavoulari, Mike Richardson

Abstract:

Objective: This abstract presents a multisensory participatory design project, inspired by a deafblind PhD student's ambition to climb Mount Everest. The project aims to explore accessible routes for filmmaking and video content creation, catering to the needs of individuals with hearing and sight loss. By engaging participants from the Southwest area of England, recruited through multiple networks, the project seeks to gather qualitative data and insights to inform the development of inclusive media practices. Design: It will be a community-based participatory research design. The workshop will feature various stations that stimulate different senses, such as scent, touch, sight, hearing as well as movement. Participants will have the opportunity to engage with these multisensory experiences, providing valuable feedback on their effectiveness and potential for enhancing accessibility in filmmaking and video content. Methods: Brief semi-structured interviews will be conducted to collect qualitative data, allowing participants to share their perspectives, challenges, and suggestions for improvement. The participatory design approach emphasizes the importance of involving the target audience in the creative process. By actively engaging individuals with hearing and sight loss, the project aims to ensure that their needs and preferences are central to the development of accessible filmmaking techniques and video content. This collaborative effort seeks to bridge the gap between content creators and diverse audiences, fostering a more inclusive media landscape. Results: The findings from this study will contribute to the growing body of research on accessible filmmaking and video content creation. Via inductive thematic analysis of the qualitative data collected through interviews and observations, the researchers aim to identify key themes, challenges, and opportunities for creating engaging and inclusive media experiences for deafblind audiences. The insights will inform the development of best practices and guidelines for accessible filmmaking, empowering content creators to produce more inclusive and immersive video content. Conclusion: The abstract targets the hybrid International Conference for Disability and Diversity in Canada (January 2025), as this platform provides an excellent opportunity to share the outcomes of the project with a global audience of researchers, practitioners, and advocates working towards inclusivity and accessibility in various disability domains. By presenting this research at the conference in person, the authors aim to contribute to the ongoing discourse on disability and diversity, highlighting the importance of multisensory experiences and participatory design in creating accessible media content for the deafblind community and the community with sensory impairments more broadly.

Keywords: vision impairment, hearing impairment, deafblindness, accessibility, filmmaking

Procedia PDF Downloads 48
152 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 75
151 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 30
150 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 139
149 Light Sensitive Plasmonic Nanostructures for Photonic Applications

Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi

Abstract:

In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures

Procedia PDF Downloads 308
148 Clinical Staff Perceptions of the Quality of End-of-Life Care in an Acute Private Hospital: A Mixed Methods Design

Authors: Rosemary Saunders, Courtney Glass, Karla Seaman, Karen Gullick, Julie Andrew, Anne Wilkinson, Ashwini Davray

Abstract:

Current literature demonstrates that most Australians receive end-of-life care in a hospital setting, despite most hoping to die within their own home. The necessity for high quality end-of-life care has been emphasised by the Australian Commission on Safety and Quality in Health Care and the National Safety and Quality in Health Services Standards depict the requirement for comprehensive care at the end of life (Action 5.20), reinforcing the obligation for continual organisational assessment to determine if these standards are suitably achieved. Limited research exploring clinical staff perspectives of end-of-life care delivery has been conducted within an Australian private health context. This study aimed to investigate clinical staff member perceptions of end-of-life care delivery at a private hospital in Western Australia. The study comprised of a multi-faceted mixed-methods methodology, part of a larger study. Data was obtained from clinical staff utilising surveys and focus groups. A total of 133 questionnaires were completed by clinical staff, including registered nurses (61.4%), enrolled nurses (22.7%), allied health professionals (9.9%), non-palliative care consultants (3.8%) and junior doctors (2.2%). A total of 14.7% of respondents were palliative care ward staff members. Additionally, seven staff focus groups were conducted with physicians (n=3), nurses (n=26) and allied health professionals including social workers (n=1), dietitians (n=2), physiotherapists (n=5) and speech pathologists (n=3). Key findings from the surveys highlighted that the majority of staff agreed it was part of their role to talk to doctors about the care of patients who they thought may be dying, and recognised the importance of communication, appropriate training and support for clinical staff to provide quality end-of-life care. Thematic analysis of the qualitative data generated three key themes: creating the setting which highlighted the importance of adequate resourcing and conducive physical environments for end-of-life care and to support staff and families; planning and care delivery which emphasised the necessity for collaboration between staff, families and patients to develop care plans and treatment directives; and collaborating in end-of-life care, with effective communication and teamwork leading to achievable care delivery expectations. These findings contribute to health professionals better understanding of end-of-life care provision and the importance of collaborating with patients and families in care delivery. It is crucial that health care providers implement strategies to overcome gaps in care, so quality end-of-life care is provided. Findings from this study have been translated into practice, with the development and implementation of resources, training opportunities, support networks and guidelines for the delivery of quality end-of-life care.

Keywords: clinical staff, end-of-life care, mixed-methods, private hospital.

Procedia PDF Downloads 158
147 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition

Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman

Abstract:

Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.

Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat

Procedia PDF Downloads 148
146 Improving Exchange Rate Forecasting Accuracy Using Ensemble Learning Techniques: A Comparative Study

Authors: Gokcen Ogruk-Maz, Sinan Yildirim

Abstract:

Introduction: Exchange rate forecasting is pivotal for informed financial decision-making, encompassing risk management, investment strategies, and international trade planning. However, traditional forecasting models often fail to capture the complexity and volatility of currency markets. This study explores the potential of ensemble learning techniques such as Random Forest, Gradient Boosting, and AdaBoost to enhance the accuracy and robustness of exchange rate predictions. Research Objectives The primary objective is to evaluate the performance of ensemble methods in comparison to traditional econometric models such as Uncovered Interest Rate Parity, Purchasing Power Parity, and Monetary Models. By integrating advanced machine learning techniques with fundamental macroeconomic indicators, this research seeks to identify optimal approaches for predicting exchange rate movements across major currency pairs. Methodology: Using historical exchange rate data and economic indicators such as interest rates, inflation, money supply, and GDP, the study develops forecasting models leveraging ensemble techniques. Comparative analysis is performed against traditional models and hybrid approaches incorporating Facebook Prophet, Artificial Neural Networks, and XGBoost. The models are evaluated using statistical metrics like Mean Squared Error, Theil Ratio, and Diebold-Mariano tests across five currency pairs (JPY to USD, AUD to USD, CAD to USD, GBP to USD, and NZD to USD). Preliminary Results: Results indicate that ensemble learning models consistently outperform traditional methods in predictive accuracy. XGBoost shows the strongest performance among the techniques evaluated, achieving significant improvements in forecast precision with consistently low p-values and Theil Ratios. Hybrid models integrating macroeconomic fundamentals into machine learning frameworks further enhance predictive accuracy. Discussion: The findings show the potential of ensemble methods to address the limitations of traditional models by capturing non-linear relationships and complex dynamics in exchange rate movements. While Random Forest and Gradient Boosting are effective, the superior performance of XGBoost suggests that its capacity for handling sparse and irregular data offers a distinct advantage in financial forecasting. Conclusion and Implications: This research demonstrates that ensemble learning techniques, particularly when combined with traditional macroeconomic fundamentals, provide a robust framework for improving exchange rate forecasting. The study offers actionable insights for financial practitioners and policymakers, emphasizing the value of integrating machine learning approaches into predictive modeling for monetary economics.

Keywords: exchange rate forecasting, ensemble learning, financial modeling, machine learning, monetary economics, XGBoost

Procedia PDF Downloads 9