Search results for: teaching and learning empathy
2983 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines
Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso
Abstract:
The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.Keywords: feature extraction, machine learning, OBIA, remote sensing
Procedia PDF Downloads 3632982 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 1612981 Corruption and Economic Performance in Nigeria: The Role of Forensic Accounting
Authors: Jamila Garba Audu, Peter Adamu
Abstract:
This study investigates the role of forensic accounting in the fight against corruption in Nigeria for better utilization of public funds and economic growth and development of the Country. We adopted a trend analysis to show the performance of the Nigerian economy as well as the quality of institutions which government economic and political activities in the country. It is an established fact that Nigeria has performed badly since the 1960s to date in terms of institutional quality and economic development despite large amount of money obtained from the export of crude oil. It was revealed also that the fight against corruption has not been very successful in recent times because experts in the field of forensic accounting have not been utilized. With the successes recorded in dealing with fraud and embezzlement using forensic accounting, it has become imperative for the EFCC to use forensic accountants in the fight against corruption in the country. Also, there is the need to introduce very seriously, the teaching of forensic accounting in Nigerian Universities to train experts.Keywords: corruption, economic performance, forensic accounting, Nigeria
Procedia PDF Downloads 3792980 Machine Learning Based Digitalization of Validated Traditional Cognitive Tests and Their Integration to Multi-User Digital Support System for Alzheimer’s Patients
Authors: Ramazan Bakir, Gizem Kayar
Abstract:
It is known that Alzheimer and Dementia are the two most common types of Neurodegenerative diseases and their visibility is getting accelerated for the last couple of years. As the population sees older ages all over the world, researchers expect to see the rate of this acceleration much higher. However, unfortunately, there is no known pharmacological cure for both, although some help to reduce the rate of cognitive decline speed. This is why we encounter with non-pharmacological treatment and tracking methods more for the last five years. Many researchers, including well-known associations and hospitals, lean towards using non-pharmacological methods to support cognitive function and improve the patient’s life quality. As the dementia symptoms related to mind, learning, memory, speaking, problem-solving, social abilities and daily activities gradually worsen over the years, many researchers know that cognitive support should start from the very beginning of the symptoms in order to slow down the decline. At this point, life of a patient and caregiver can be improved with some daily activities and applications. These activities include but not limited to basic word puzzles, daily cleaning activities, taking notes. Later, these activities and their results should be observed carefully and it is only possible during patient/caregiver and M.D. in-person meetings in hospitals. These meetings can be quite time-consuming, exhausting and financially ineffective for hospitals, medical doctors, caregivers and especially for patients. On the other hand, digital support systems are showing positive results for all stakeholders of healthcare systems. This can be observed in countries that started Telemedicine systems. The biggest potential of our system is setting the inter-user communication up in the best possible way. In our project, we propose Machine Learning based digitalization of validated traditional cognitive tests (e.g. MOCA, Afazi, left-right hemisphere), their analyses for high-quality follow-up and communication systems for all stakeholders. R. Bakir and G. Kayar are with Gefeasoft, Inc, R&D – Software Development and Health Technologies company. Emails: ramazan, gizem @ gefeasoft.com This platform has a high potential not only for patient tracking but also for making all stakeholders feel safe through all stages. As the registered hospitals assign corresponding medical doctors to the system, these MDs are able to register their own patients and assign special tasks for each patient. With our integrated machine learning support, MDs are able to track the failure and success rates of each patient and also see general averages among similarly progressed patients. In addition, our platform also supports multi-player technology which helps patients play with their caregivers so that they feel much safer at any point they are uncomfortable. By also gamifying the daily household activities, the patients will be able to repeat their social tasks and we will provide non-pharmacological reminiscence therapy (RT – life review therapy). All collected data will be mined by our data scientists and analyzed meaningfully. In addition, we will also add gamification modules for caregivers based on Naomi Feil’s Validation Therapy. Both are behaving positively to the patient and keeping yourself mentally healthy is important for caregivers. We aim to provide a therapy system based on gamification for them, too. When this project accomplishes all the above-written tasks, patients will have the chance to do many tasks at home remotely and MDs will be able to follow them up very effectively. We propose a complete platform and the whole project is both time and cost-effective for supporting all stakeholders.Keywords: alzheimer’s, dementia, cognitive functionality, cognitive tests, serious games, machine learning, artificial intelligence, digitalization, non-pharmacological, data analysis, telemedicine, e-health, health-tech, gamification
Procedia PDF Downloads 1382979 Improving Internal Efficiency of Local Universities and Colleges: Asseessing the Impact of the 085 Project in Shanghai
Authors: Qing Hui Wang, You Lin Fang, Min Chen
Abstract:
In 2003 the percentage of students in Shanghai taking part in tertiary education reached 53% of the age cohort, which is at the universal level according to Trow's typology. This achievement led to a conscientious effort by the government to improve internal efficiency of local universities and colleges through a series of programs, the most important of which is the 085 Project. This paper considers the effects of the 085 Project- the 5 initiatives launched in 2008 on increasing the investment to improve institutional overall visibilities, teaching excellence, knowledge innovation, faculty development as well as internationalization. Using the approach of ERC (a theory of equality, reciprocity, and competition) model, it was found that the initiatives helped the lower tier universities and colleges make full play in the aspects of strategic planning and identifying themselves. It was also found that the rate of growth of social resources for universities as a whole increased more quickly after the implementation of the 085 Project.Keywords: 085 Project, impact, internal efficiency, local universities and colleges
Procedia PDF Downloads 4712978 Teachers and Innovations in Information and Communication Technology
Authors: Martina Manenova, Lukas Cirus
Abstract:
This article introduces research focused on elementary school teachers’ approach to innovations in ICT. The diffusion of innovations theory, which was written by E. M. Rogers, captures the processes of innovation adoption. The research method derived from this theory and the Rogers’ questionnaire focused on the diffusion of innovations was used as the basic research method. The research sample consisted of elementary school teachers. The comparison of results with the Rogers’ results shows that among the teachers in the research sample the so-called early majority, as well as the overall division of the data, was rather central (early adopter, early majority, and later majority). The teachers very rarely appeared on the edge positions (innovator, laggard). The obtained results can be applied to teaching practice and used especially in the implementation of new technologies and techniques into the educational process.Keywords: innovation, diffusion of innovation, information and communication technology, teachers
Procedia PDF Downloads 2932977 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach
Authors: Gong Zhilin, Jing Yang, Jian Yin
Abstract:
The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).Keywords: credit card, data mining, fraud detection, money transactions
Procedia PDF Downloads 1312976 Advances and Challenges in Assessing Students’ Learning Competencies in 21st Century Higher Education
Authors: O. Zlatkin-Troitschanskaia, J. Fischer, C. Lautenbach, H. A. Pant
Abstract:
In 21st century higher education (HE), the diversity among students has increased in recent years due to the internationalization and higher mobility. Offering and providing equal and fair opportunities based on students’ individual skills and abilities instead of their social or cultural background is one of the major aims of HE. In this context, valid, objective and transparent assessments of students’ preconditions and academic competencies in HE are required. However, as analyses of the current states of research and practice show, a substantial research gap on assessment practices in HE still exists, calling for the development of effective solutions. These demands lead to significant conceptual and methodological challenges. Funded by the German Federal Ministry of Education and Research, the research program 'Modeling and Measuring Competencies in Higher Education – Validation and Methodological Challenges' (KoKoHs) focusses on addressing these challenges in HE assessment practice by modeling and validating objective test instruments. Including 16 cross-university collaborative projects, the German-wide research program contributes to bridging the research gap in current assessment research and practice by concentrating on practical and policy-related challenges of assessment in HE. In this paper, we present a differentiated overview of existing assessments of HE at the national and international level. Based on the state of research, we describe the theoretical and conceptual framework of the KoKoHs Program as well as results of the validation studies, including their key outcomes. More precisely, this includes an insight into more than 40 developed assessments covering a broad range of transparent and objective methods for validly measuring domain-specific and generic knowledge and skills for five major study areas (Economics, Social Science, Teacher Education, Medicine and Psychology). Computer-, video- and simulation-based instruments have been applied and validated to measure over 20,000 students at the beginning, middle and end of their (bachelor and master) studies at more than 300 HE institutions throughout Germany or during their practical training phase, traineeship or occupation. Focussing on the validity of the assessments, all test instruments have been analyzed comprehensively, using a broad range of methods and observing the validity criteria of the Standards for Psychological and Educational Testing developed by the American Educational Research Association, the American Economic Association and the National Council on Measurement. The results of the developed assessments presented in this paper, provide valuable outcomes to predict students’ skills and abilities at the beginning and the end of their studies as well as their learning development and performance. This allows for a differentiated view of the diversity among students. Based on the given research results practical implications and recommendations are formulated. In particular, appropriate and effective learning opportunities for students can be created to support the learning development of students, promote their individual potential and reduce knowledge and skill gaps. Overall, the presented research on competency assessment is highly relevant to national and international HE practice.Keywords: 21st century skills, academic competencies, innovative assessments, KoKoHs
Procedia PDF Downloads 1422975 Enhancing Students' Utilization of Written Corrective Feedback through Teacher-Student Writing Conferences: A Case Study in English Writing Instruction
Authors: Tsao Jui-Jung
Abstract:
Previous research findings have shown that most students do not fully utilize the written corrective feedback provided by teachers (Stone, 2014). This common phenomenon results in the ineffective utilization of teachers' written corrective feedback. As Ellis (2010) points out, the effectiveness of written corrective feedback depends on the level of student engagement with it. Therefore, it is crucial to understand how students utilize the written corrective feedback from their teachers. Previous studies have confirmed the positive impact of teacher-student writing conferences on students' engagement in the writing process and their writing abilities (Hum, 2021; Nosratinia & Nikpanjeh, 2019; Wong, 1996; Yeh, 2016, 2019). However, due to practical constraints such as time limitations, this instructional activity is not fully utilized in writing classrooms (Alfalagg, 2020). Therefore, to address this research gap, the purpose of this study was to explore several aspects of teacher-student writing conferences, including the frequency of meaning negotiation (i.e., comprehension checks, confirmation checks, and clarification checks) and teacher scaffolding techniques (i.e., feedback, prompts, guidance, explanations, and demonstrations) in teacher-student writing conferences, examining students’ self-assessment of their writing strengths and weaknesses in post-conference journals and their experiences with teacher-student writing conferences (i.e., interaction styles, communication levels, how teachers addressed errors, and overall perspectives on the conferences), and gathering insights from their responses to open-ended questions in the final stage of the study (i.e., their preferences and reasons for different written corrective feedback techniques used by teachers and their perspectives and suggestions on teacher-student writing conferences). Data collection methods included transcripts of audio recordings of teacher-student writing conferences, students’ post-conference journals, and open-ended questionnaires. The participants of this study were sophomore students enrolled in an English writing course for a duration of one school year. Key research findings are as follows: Firstly, in terms of meaning negotiation, students attempted to clearly understand the corrective feedback provided by the teacher-researcher twice as often as the teacher-researcher attempted to clearly understand the students' writing content. Secondly, the most commonly used scaffolding technique in the conferences was prompting (indirect feedback). Thirdly, the majority of participants believed that teacher-student writing conferences had a positive impact on their writing abilities. Fourthly, most students preferred direct feedback from the teacher-research as it directly pointed out their errors and saved them time in revision. However, some students still preferred indirect feedback, as they believed it encouraged them to think and self-correct. Based on the research findings, this study proposes effective teaching recommendations for English writing instruction aimed at optimizing teaching strategies and enhancing students' writing abilities.Keywords: written corrective feedback, student engagement, teacher-student writing conferences, action research
Procedia PDF Downloads 802974 The Practical Application of Sensory Awareness in Developing Healthy Communication, Emotional Regulation, and Emotional Introspection
Authors: Node Smith
Abstract:
Developmental psychology has long focused on modeling consciousness, often neglecting practical application and clinical utility. This paper aims to bridge this gap by exploring the practical application of physical and sensory tracking and awareness in fostering essential skills for conscious development. Higher conscious development requires practical skills such as self-agency, the ability to hold multiple perspectives, and genuine altruism. These are not personality characteristics but areas of skillfulness that address many cultural deficiencies impacting our world. They are intertwined with individual as well as collective conscious development. Physical, sensory tracking and awareness are crucial for developing these skills and offer the added benefit of cultivating healthy communication, emotional regulation, and introspection. Unlike skills such as throwing a baseball, which can be developed through practice or innate ability, the ability to introspect, track physical sensations, and observe oneself objectively is essential for advancing consciousness. Lacking these skills leads to cultural and individual anxiety, helplessness, and a lack of agency, manifesting as blame-shifting and irresponsibility. The inability to hold multiple perspectives stifles altruism, as genuine consideration for a global community requires accepting other perspectives without conditions. Physical and sensory tracking enhances self-awareness by grounding individuals in their bodily experiences. This grounding is critical for emotional regulation, allowing individuals to identify and process emotions in real-time, preventing overwhelm and fostering balance. Techniques like mindfulness meditation and body scan exercises attune individuals to their physical sensations, providing insights into their emotional states. Sensory awareness also facilitates healthy communication by fostering empathy and active listening. When individuals are in tune with their physical sensations, they become more present in interactions, picking up on subtle cues and responding thoughtfully. This presence reduces misunderstandings and conflicts, promoting more effective communication. The ability to introspect and observe oneself objectively is key to emotional introspection. This skill allows individuals to reflect on their thoughts, feelings, and behaviors, identify patterns, recognize areas for growth, and make conscious choices aligned with their values and goals. In conclusion, physical and sensory tracking and awareness are vital for developing the skills necessary for higher consciousness development. By fostering self-agency, emotional regulation, and the ability to hold multiple perspectives, these practices contribute to healthier communication, deeper emotional introspection, and a more altruistic and connected global community. Integrating these practices into developmental psychology and therapeutic interventions holds significant promise for both individual and societal transformation.Keywords: conscious development, emotional introspection, emotional regulation, self-agency, stages of development
Procedia PDF Downloads 482973 Co-Creation of Content with the Students in Entrepreneurship Education to Capture Entrepreneurship Phenomenon in an Innovative Way
Authors: Prema Basargekar
Abstract:
Facilitating the subject ‘Entrepreneurship Education’ in higher education, such as management studies, can be exhilarating as well as challenging. It is a multi-disciplinary and ever-evolving subject. Capturing entrepreneurship as a phenomenon in a holistic manner is a daunting task as it requires covering various dimensions such as new ideas generation, entrepreneurial traits, business opportunities scanning, the role of policymakers, value creation, etc., to name a few. Implicit entrepreneurship theory and effectuation are two different theories that focus on engaging the participants to create content by using their own experiences, perceptions, and belief systems. It helps in understanding the phenomenon holistically. The assumption here is that all of us are part of the entrepreneurial ecosystem, and effective learning can come through active engagement and peer learning by all the participants together. The present study is an attempt to use these theories in the class assignment given to the students at the beginning of the course to build the course content and understand entrepreneurship as a phenomenon in a better way through peer learning. The assignment was given to three batches of MBA post-graduate students doing the program in one of the private business schools in India. The subject of ‘Entrepreneurship Management’ is facilitated in the third trimester of the first year. At the beginning of the course, the students were given the assignment to submit a brief write-up/ collage/picture/poem or in any other format about “What entrepreneurship means to you?” They were asked to give their candid opinions about entrepreneurship as a phenomenon as they perceive it. Nearly 156 students doing post-graduate MBA submitted the assignment. These assignments were further used to find answers to two research questions. – 1) Are students able to use divergent and innovative forms to express their opinions, such as poetry, illustrations, videos, etc.? 2) What are various dimensions of entrepreneurship which are emerging to understand the phenomenon in a better way? The study uses the Brawn and Clark framework of reflective thematic analysis for qualitative analysis. The study finds that students responded to this assignment enthusiastically and expressed their thoughts in multiple ways, such as poetry, illustration, personal narrative, videos, etc. The content analysis revealed that there could be seven dimensions to looking at entrepreneurship as a phenomenon. They are 1) entrepreneurial traits, 2) entrepreneurship as a journey, 3) value creation by entrepreneurs in terms of economic and social value, 4) entrepreneurial role models, 5) new business ideas and innovations, 6) personal entrepreneurial experiences and aspirations, and 7) entrepreneurial ecosystem. The study concludes that an implicit approach to facilitate entrepreneurship education helps in understanding it as a live phenomenon. It also encourages students to apply divergent and convergent thinking. It also helps in triggering new business ideas or stimulating the entrepreneurial aspirations of the students. The significance of the study lies in the application of implicit theories in the classroom to make higher education more engaging and effective.Keywords: co-creation of content, divergent thinking, entrepreneurship education, implicit theory
Procedia PDF Downloads 752972 The Effect of Prior Characteristic on Perceived Prosocial Content in Media
Authors: Pawit Monkolprasit, Proud Arunrangsiwed
Abstract:
It was important to understand the impact of media in young adolescents. The animated film, Khun Tong Dang the Inspirations (2015), was purposefully created for teaching young children to have a positive personal trait. The current study used this film as the case study. The objective is to understand the relationship between the good characteristic of movie audiences and their perception of the good characteristic of a movie character. One-hundred students from various age ranges responded to quantitative questionnaires. The questions included their age, gender, perception about their own personal traits, perception about their experiences with others, and perception about the bravery, intelligence, and gratefulness of the character. It was found that a good personal trait has a strong relationship with the perception of bravery, intelligence, and gratefulness of the character.Keywords: impact of media, children, personal trait, prosocial content
Procedia PDF Downloads 2982971 Psychophysiological Synchronization between the Manager and the Subordinate during a Performance Review Discussion
Authors: Mikko Salminen, Niklas Ravaja
Abstract:
Previous studies have shown that emotional intelligence (EI) has an important role in leadership and social interaction. On the other hand, physiological synchronization between two interacting participants has been related to, for example, intensity of the interaction, and interestingly also to empathy. It is suggested that the amount of covariation in physiological signals between the two interacting persons would also be related to how the discussion is perceived subjectively. To study the interrelations between physiological synchronization, emotional intelligence, and subjective perception of the interaction, performance review discussions between real manager – subordinate dyads were studied using psychophysiological measurements and self-reports. The participants consisted of 40 managers, of which 24 were female, and 78 of their subordinates, of which 45 were female. The participants worked in various fields, for example banking, education, and engineering. The managers had a normal performance review discussion with two subordinates, except two managers who, due to scheduling issues, had discussion with only one subordinate. The managers were on average 44.5 years old, and the subordinates on average 45.5 years old. Written consent, in accordance with the Declaration of Helsinki, was obtained from all the participants. After the discussion, the participants filled a questionnaire assessing their emotions during the discussion. This included a self-assessment manikin (SAM) scale for the emotional valence during the discussion, with a 9-point graphical scale representing a manikin whose facial expressions ranged from smiling and happy to frowning and unhappy. In addition, the managers filled EI360, a 37-item self-report trait emotional intelligence questionnaire. The psychophysiological activity of the participants was recorded using two Varioport-B portable recording devices. Cardiac activity (ECG, electrocardiogram) was measured with two electrodes placed on the torso. Inter-beat interval (IBI, time between two successive heart beats) was calculated from the ECG signals. The facial muscle activation (EMG, electromyography) was recorded on three sites of the left side of the face: zygomaticus major (cheek muscle), orbicularis oculi (periocular muscle), and corrugator supercilii (frowning muscle). The facial-EMG signals were rectified and smoothed, and cross-coherences were calculated between members of each dyad, for all the three EMG signals, for the baseline and discussion periods. The values were natural-log transformed to normalize the distributions. Higher cross-coherence during the discussion between the manager’s and the subordinate’s zygomatic muscles was related to more positive valence self-reported emotions, F(1; 66,137) = 7,051; p=0,01. Thus, synchronized cheek muscle activation, either due to synchronous smiling or talking, was related to more positive perception of the discussion. In addition, higher IBI synchronization between the manager and the subordinate during the discussion was related to the manager’s higher self-reported emotional intelligence, F(1; 27,981)=4,58; p=0,041. That is, the EI was related to synchronous cardiac activity and possibly to similar physiological arousal levels. The results imply that the psychophysiological synchronization could be a potentially useful index in the study of social interaction and a valuable tool in the coaching of leadership skills in organizational contexts.Keywords: emotional intelligence, leadership, psychophysiology, social interaction, synchronization
Procedia PDF Downloads 3202970 Economic Recession and its Psychological Effects on Educated Youth: A Case Study of Pakistan
Authors: Aroona Hashmi
Abstract:
An economic recession can lead people to feel more insecure about their financial situation. The series of events leading into a recession can be especially distressing for Educated Youth. One of the most salient factors linking economic recession to psychological distress is unemployment. It is proved that a large number of educated young people are facing higher unemployment rate in Pakistan. Young people are likely to get frustrated at the lack of opportunities made available to them. If the young population increases more rapidly than job opportunities, then number of unemployment is likely to increase. The aim of present study was to investigate the relationship between economic instability, growing rate of aggression and frustration among educated youth. The study aimed to find out the impact of increased economic instability on the learning abilities of the students. Data was gathered from six university students of Punjab, Pakistan. The sample of the study consisted of three hundred male and female university students. The data was analyzed by applying Chi -square test. The results of the research indicate that there is a significant relationship between low household income and growing rate of aggression among educated youth. The increasing trend of economic instability significantly influences the learning abilities of the students. The study concludes that feeling of deprivation produce frustration and could be expressed through aggression. Therefore, if factors that are responsible for youth unemployment in Pakistan are addressed, psychological effects will be reduced. The right way of tackling the youth bulge is to turn the youth into a productive workforce. There is a dire need to transform the education system to societal needs. At the same time creating demand for the young workforce is achieved through dynamic changes in the economic structure.Keywords: psychological effects, economic recession, educated youth, environmental factors
Procedia PDF Downloads 3912969 Epistemological Functions of Emotions and Their Relevance to the Formation of Citizens and Scientists
Authors: Dení Stincer Gómez, Zuraya Monroy Nasr
Abstract:
Pedagogy of science historically has given priority to teaching strategies that mobilize the cognitive mechanisms leaving out emotional. Modern epistemology, cognitive psychology and psychoanalysis begin to argue and prove that emotions are relevant epistemological functions. They are 1) the selection function: that allows the perception and reason choose, to multiple alternative explanation of a particular fact, those are relevant and discard those that are not, 2) heuristic function: that is related to the activation cognitive processes that are effective in the process of knowing; and 3) the function that called carrier content: on the latter it arises that emotions give the material reasoning that later transformed into linguistic propositions. According to these hypotheses, scientific knowledge seems to come from emotions that meet these functions. In this paper I argue that science education should start from the presence of certain emotions in the learner if it is to form citizens with scientific or cultural future scientists.Keywords: epistemic emotions, science education, formation of citizens and scientists., philosophy of emotions
Procedia PDF Downloads 1312968 Effect of the Diverse Standardized Patient Simulation Cultural Competence Education Strategy on Nursing Students' Transcultural Self-Efficacy Perceptions
Authors: Eda Ozkara San
Abstract:
Nurse educators have been charged by several nursing organizations and accrediting bodies to provide innovative and evidence-based educational experiences, both didactic and clinical, to help students to develop the knowledge, skills, and attitudes needed to provide culturally competent nursing care to patients. Clinical simulation, which offers the opportunity for students to practice nursing skills in a risk-free, controlled environment and helps develop self-efficacy (confidence) within the nursing role. As one simulation method, the standardized patients (SPs) simulation helps educators to teach nursing students variety of skills in nursing, medicine, and other health professions. It can be a helpful tool for nurse educators to enhance cultural competence of nursing students. An alarming gap exists within the literature concerning the effectiveness of SP strategy to enhance cultural competence development of diverse student groups, who must work with patients from various backgrounds. This grant-supported, longitudinal, one-group, pretest and post-test educational intervention study aimed to examine the effect of the Diverse Standardized Patient Simulation (DSPS) cultural competence education strategy on students’ (n = 53) transcultural self-efficacy (TSE). The researcher-developed multidimensional DSPS strategy involved careful integration of transcultural nursing skills guided by the Cultural Competence and Confidence (CCC) model. As a carefully orchestrated teaching and learning strategy by specifically utilizing the SP pedagogy, the DSPS also followed international guidelines and standards for the design, implementation, evaluation, and SP training; and had content validity review. The DSPS strategy involved two simulation scenarios targeting underrepresented patient populations (Muslim immigrant woman with limited English proficiency and Irish-Italian American gay man with his partner (Puerto Rican) to be utilized in a second-semester, nine-credit, 15-week medical-surgical nursing course at an urban public US university. Five doctorally prepared content experts reviewed the DSPS strategy for content validity. The item-level content validity index (I-CVI) score was calculated between .80-1.0 on the evaluation forms. Jeffreys’ Transcultural Self-Efficacy Tool (TSET) was administered as a pretest and post-test to assess students’ changes in cognitive, practical, and affective dimensions of TSE. Results gained from this study support that the DSPS cultural competence education strategy assisted students to develop cultural competence and caused statistically significant changes (increase) in students’ TSE perceptions. Results also supported that all students, regardless of their background, benefit (and require) well designed cultural competence education strategies. The multidimensional DSPS strategy is found to be an effective way to foster nursing students’ cultural competence development. Step-by-step description of the DSPS provides an easy adaptation of this strategy with different student populations and settings.Keywords: cultural competence development, the cultural competence and confidence model, CCC model, educational intervention, transcultural self-efficacy, TSE, transcultural self-efficacy tool, TSET
Procedia PDF Downloads 1502967 Investigating Students' Understanding about Mathematical Concept through Concept Map
Authors: Rizky Oktaviana
Abstract:
The main purpose of studying lies in improving students’ understanding. Teachers usually use written test to measure students’ understanding about learning material especially mathematical learning material. This common method actually has a lack point, such that in mathematics content, written test only show procedural steps to solve mathematical problems. Therefore, teachers unable to see whether students actually understand about mathematical concepts and the relation between concepts or not. One of the best tools to observe students’ understanding about the mathematical concepts is concept map. The goal of this research is to describe junior high school students understanding about mathematical concepts through Concept Maps based on the difference of mathematical ability. There were three steps in this research; the first step was choosing the research subjects by giving mathematical ability test to students. The subjects of this research are three students with difference mathematical ability, high, intermediate and low mathematical ability. The second step was giving concept mapping training to the chosen subjects. The last step was giving concept mapping task about the function to the subjects. Nodes which are the representation of concepts of function were provided in concept mapping task. The subjects had to use the nodes in concept mapping. Based on data analysis, the result of this research shows that subject with high mathematical ability has formal understanding, due to that subject could see the connection between concepts of function and arranged the concepts become concept map with valid hierarchy. Subject with intermediate mathematical ability has relational understanding, because subject could arranged all the given concepts and gave appropriate label between concepts though it did not represent the connection specifically yet. Whereas subject with low mathematical ability has poor understanding about function, it can be seen from the concept map which is only used few of the given concepts because subject could not see the connection between concepts. All subjects have instrumental understanding for the relation between linear function concept, quadratic function concept and domain, co domain, range.Keywords: concept map, concept mapping, mathematical concepts, understanding
Procedia PDF Downloads 2712966 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 1922965 Play Based Practices in Early Childhood Curriculum: The Contribution of High Scope, Modern School Movement and Pedagogy of Participation
Authors: Dalila Lino
Abstract:
The power of play for learning and development in early childhood education is beyond question. The main goal of this study is to analyse how three contemporary early childhood pedagogical approaches, the High Scope, the Modern School Movement (MEM) and the Pedagogy of Participation integrate play in their curriculum development. From this main goal the following objectives emerged: (i) to characterize how play is integrated in the daily routine of the pedagogical approaches under study; (ii) to analyse the teachers’ role during children’s playing situations; (iii) to identify the types of play that children are more often involved. The methodology used is the qualitative approach and is situated under the interpretative paradigm. Data is collected through semi-structured interviews to 30 preschool teachers and through observations of typical daily routines. The participants are 30 Portuguese preschool classrooms attending children from 3 to 6 years and working with the High Scope curriculum (10 classrooms), the MEM (10 classrooms) and the Pedagogy of Participation (10 classrooms). The qualitative method of content analysis was used to analyse the data. To ensure confidentiality, no information is disclosed without participants' consent, and the interviews were transcribed and sent to the participants for a final revision. The results show that there are differences how play is integrated and promoted in the three pedagogical approaches. The teachers’ role when children are at play varies according the pedagogical approach adopted, and also according to the teachers’ understanding about the meaning of play. The study highlights the key role that early childhood curriculum models have to promote opportunities for children to play, and therefore to be involved in meaningful learning.Keywords: curriculum models, early childhood education, pedagogy, play
Procedia PDF Downloads 2072964 The Effectiveness of Social Story with the Help Smart Board use to Teach Social Skills for Preschool Children with ASD
Authors: Dilay Akgun Giray
Abstract:
Basic insuffiency spaces of ASD diagnosed individuals can be grouped as cognitive and academic characteristics, communicational characteristics, social characteristics and emotional characteristics. Referring to the features that children with ASD exhibit on social events, it is clear they have limitations for several social skills. One of the evidence based practices which has been developed and used for the limitations of definite social skills for individuals with autism is “Social Story Method”. Social stories was designed and applied for the first time in 1991, a special education teacher, in order to acquire social skills and improve the existing social skills for children with ASD. Many studies have revealed the effectiveness of social stories for teaching the social skills to individuals with ASD. In this study, three social skills that the child ,who was diagnosed ASD, is going to need primarily will be studied with smart board. This study is multiple probe across-behavior design which is one of the single subject research models.Keywords: authism spectrum disorders, social skills, social story, smart board
Procedia PDF Downloads 4862963 An Integrated Label Propagation Network for Structural Condition Assessment
Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong
Abstract:
Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation
Procedia PDF Downloads 982962 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 1602961 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach
Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier
Abstract:
Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube
Procedia PDF Downloads 1562960 The Preparation and Training of Expert Studio Reviewers
Authors: Diane M. Bender
Abstract:
In design education, professional education is delivered in a studio, where students learn and understand their discipline. This learning methodology culminates in a final review, where students present their work before instructors and invited reviewers, known as jurors. These jurors are recognized experts who add a wide diversity of opinions in their feedback to students. This feedback can be provided in multiple formats, mainly a verbal critique of the work. To better understand how these expert reviewers prepare for a studio review, a survey was distributed to reviewers at a multi-disciplinary design school within the United States. Five design disciplines are involved in this case study: architecture, graphic design, industrial design, interior design, and landscape architecture. Respondents (n=122) provided information about if and how they received training on how to critique and participate in a final review. Common forms of training included mentorship, modeled behavior from other designers/past professors, workshops on critique from the instructing faculty prior to the crit session, and by being a practicing design professional. Respondents also gave feedback about how much the instructor provided course materials prior to the review in order to better prepare for student interaction. Finally, respondents indicated if they had interaction, and in what format, with students prior to the final review. Typical responses included participation in studio desk crits, a midterm jury member, meetings with students, and email or social media correspondence. While the focus of this study is the studio review, the findings are equally applicable to other disciplines. Suggestions will be provided on how to improve the preparation of guests in the learning process and how their interaction can positively influence student engagement.Keywords: critique, design, education, evaluation, juror
Procedia PDF Downloads 822959 The Spanish Didactic Book 'El Calculo Y La Medida en El Primer Grado De La Escuela Decroly' (1934): A Look at the Mathematical Knowledge
Authors: Juliana Chiarini Balbino Fernandes
Abstract:
This article aims to investigate the Spanish didactic book, entitled ‘El Calculo y La Medida en El Primer Grado de La Escuela Decroly’, written by Dr. O. Decroly and A. Hamaide, published in Madrid, in the year 1934. In addition to analyzing how mathematical knowledge is present in the proposed Centers of Interest. The textbooks, in addition to pedagogical tools, reflect a certain moment in society and allow the analysis of the theoretical-methodological proposal that can be implemented by the teacher. The study proposed here will be carried out by the lens of Cultural History, supported by Roger Chartier (1991) and by the concepts on textbooks, based on Alain Choppin (2004). The textbook selected for this study exposes a program of ideas associated with the method of Centers of Interest and arithmetic is linked to these interests. In the first courses (six to eight years), most centers can be considered to correspond to occasional calls, as they take advantage of events that arise spontaneously to work with observation, measurement, association and expression exercises. The program of ideas associated with Centers of Interest addresses the biological and social aspects of children, as long as they can express their needs for activities and games, satisfying the natural curiosity. Still, the program of associated ideas offers occasions for problems whose data are taken in observation exercises and concrete expressions (manuals, drawings). In the method applied at the school of L'Ermitage, school created by Decroly in Belgium in 1907, observation, is the basis of each center of interest. It offers the chance to compare and measure. To observe is more than to perceive; it is also to establish relations between the graded aspects of the same object, to seek relations between different intensities; is to verify successions, special and temporary relationships; is to make comparisons, to notice differences and similarities in block or datable (analysis), is to establish a bridge between the world and the thought. To make the observation more precise, it is important to compare, measure, and resort to considered objects as natural units of measure. Measurement and calculation are, therefore, quite naturally subject to observation. Thus, it is possible to make the child enter into the interest in the calculation, linking it to the observation. It was observed that the Centers of Interest, according to Decroly, should respond to the concerns and attend to the motivations of the students and the teaching of arithmetical must obey a logical seriation, considering the interest and the experience of the children. The teaching of arithmetical should not be limited to the schedule, it should cover every quantitative aspect that arises in the other disciplines. The feeling of unity is established in observation, association and expression, which coordinate a whole program of cultural activities, concentrating it around a central idea.Keywords: didactic book, centers of interest, mathematical knowledge, primary education
Procedia PDF Downloads 1082958 Developing and Testing a Questionnaire of Music Memorization and Practice
Authors: Diana Santiago, Tania Lisboa, Sophie Lee, Alexander P. Demos, Monica C. S. Vasconcelos
Abstract:
Memorization has long been recognized as an arduous and anxiety-evoking task for musicians, and yet, it is an essential aspect of performance. Research shows that musicians are often not taught how to memorize. While memorization and practice strategies of professionals have been studied, little research has been done to examine how student musicians learn to practice and memorize music in different cultural settings. We present the process of developing and testing a questionnaire of music memorization and musical practice for student musicians in the UK and Brazil. A survey was developed for a cross-cultural research project aiming at examining how young orchestral musicians (aged 7–18 years) in different learning environments and cultures engage in instrumental practice and memorization. The questionnaire development included members of a UK/US/Brazil research team of music educators and performance science researchers. A pool of items was developed for each aspect of practice and memorization identified, based on literature, personal experiences, and adapted from existing questionnaires. Item development took the varying levels of cognitive and social development of the target populations into consideration. It also considered the diverse target learning environments. Items were initially grouped in accordance with a single underlying construct/behavior. The questionnaire comprised three sections: a demographics section, a section on practice (containing 29 items), and a section on memorization (containing 40 items). Next, the response process was considered and a 5-point Likert scale ranging from ‘always’ to ‘never’ with a verbal label and an image assigned to each response option was selected, following effective questionnaire design for children and youths. Finally, a pilot study was conducted with young orchestral musicians from diverse learning environments in Brazil and the United Kingdom. Data collection took place in either one-to-one or group settings to facilitate the participants. Cognitive interviews were utilized to establish response process validity by confirming the readability and accurate comprehension of the questionnaire items or highlighting the need for item revision. Internal reliability was investigated by measuring the consistency of the item groups using the statistical test Cronbach’s alpha. The pilot study successfully relied on the questionnaire to generate data about the engagement of young musicians of different levels and instruments, across different learning and cultural environments, in instrumental practice and memorization. Interaction analysis of the cognitive interviews undertaken with these participants, however, exposed the fact that certain items, and the response scale, could be interpreted in multiple ways. The questionnaire text was, therefore, revised accordingly. The low Cronbach’s Alpha scores of many item groups indicated another issue with the original questionnaire: its low level of internal reliability. Several reasons for each poor reliability can be suggested, including the issues with item interpretation revealed through interaction analysis of the cognitive interviews, the small number of participants (34), and the elusive nature of the construct in question. The revised questionnaire measures 78 specific behaviors or opinions. It can be seen to provide an efficient means of gathering information about the engagement of young musicians in practice and memorization on a large scale.Keywords: cross-cultural, memorization, practice, questionnaire, young musicians
Procedia PDF Downloads 1232957 University of Bejaia, Algeria
Authors: Geoffrey Sinha
Abstract:
Today’s students are connected to the digital generation and technology is an integral part of their everyday lives. Clearly, this is one social revolution that is here to stay and the language classroom has been no exception. Furthermore, today’s teachers are also expected to connect with technology and online tools in their curriculum. However, it’s often difficult for teachers to know where to start, what resources and tools are available, what students should use, and most importantly, how to effectively use them in the classroom.Keywords: language learning, new media, social media, technology
Procedia PDF Downloads 4652956 Developing an Edutainment Game for Children with ADHD Based on SAwD and VCIA Model
Authors: Bruno Gontijo Batista
Abstract:
This paper analyzes how the Socially Aware Design (SAwD) and the Value-oriented and Culturally Informed Approach (VCIA) design model can be used to develop an edutainment game for children with Attention Deficit Hyperactivity Disorder (ADHD). The SAwD approach seeks a design that considers new dimensions in human-computer interaction, such as culture, aesthetics, emotional and social aspects of the user's everyday experience. From this perspective, the game development was VCIA model-based, including the users in the design process through participatory methodologies, considering their behavioral patterns, culture, and values. This is because values, beliefs, and behavioral patterns influence how technology is understood and used and the way it impacts people's lives. This model can be applied at different stages of design, which goes from explaining the problem and organizing the requirements to the evaluation of the prototype and the final solution. Thus, this paper aims to understand how this model can be used in the development of an edutainment game for children with ADHD. In the area of education and learning, children with ADHD have difficulties both in behavior and in school performance, as they are easily distracted, which is reflected both in classes and on tests. Therefore, they must perform tasks that are exciting or interesting for them, once the pleasure center in the brain is activated, it reinforces the center of attention, leaving the child more relaxed and focused. In this context, serious games have been used as part of the treatment of ADHD in children aiming to improve focus and attention, stimulate concentration, as well as be a tool for improving learning in areas such as math and reading, combining education and entertainment (edutainment). Thereby, as a result of the research, it was developed, in a participatory way, applying the VCIA model, an edutainment game prototype, for a mobile platform, for children between 8 and 12 years old.Keywords: ADHD, edutainment, SAwD, VCIA
Procedia PDF Downloads 1922955 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI
Authors: James Rigor Camacho, Wansu Lim
Abstract:
Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors
Procedia PDF Downloads 1072954 The Influence of COVID-19 Pandemic: Global Policies Towards Chinese International Students
Authors: Xuefan Li, Donghua Li, Juanjuan Li
Abstract:
This study explores the changes in policies toward Chinese students studying abroad in different countries during the pre-pandemic, pandemic, and post-pandemic periods. Interviews and questionnaire surveys were conducted with participating institutions at the China International Education Exhibition. The results indicate that institutions were impacted by the pandemic differently, with a gradual recovery in the two years following the initial outbreak. Institutions encourage and support Chinese students to resume offline studies during the post-pandemic period. The impact of the pandemic on the recruitment of Chinese students by international institutions varied, with different measures being adopted by different institutions. Compared with universities, colleges were more affected in terms of student employment rates. Some institutions were able to respond quickly and effectively to the pandemic due to their online teaching platforms. Overall, this study is expected to provide insights into the changes in policies toward Chinese students studying abroad during the pandemic and highlights the diverse responses of international institutions.Keywords: international education, Chinese international education, COVID-19 pandemic, international institutions
Procedia PDF Downloads 88