Search results for: learning creatively
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7281

Search results for: learning creatively

1791 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 193
1790 Knowledge Management Factors Affecting the Level of Commitment

Authors: Abbas Keramati, Abtin Boostani, Mohammad Jamal Sadeghi

Abstract:

This paper examines the influence of knowledge management factors on organizational commitment for employees in the oil and gas drilling industry of Iran. We determine what knowledge factors have the greatest impact on the personnel loyalty and commitment to the organization using collected data from a survey of over 300 full-time personnel working in three large companies active in oil and gas drilling industry of Iran. To specify the effect of knowledge factors in the organizational commitment of the personnel in the studied organizations, the Principal Component Analysis (PCA) is used. Findings of our study show that the factors such as knowledge and expertise, in-service training, the knowledge value and the application of individuals’ knowledge in the organization as the factor “learning and perception of personnel from the value of knowledge within the organization” has the greatest impact on the organizational commitment. After this factor, “existence of knowledge and knowledge sharing environment in the organization”; “existence of potential knowledge exchanging in the organization”; and “organizational knowledge level” factors have the most impact on the organizational commitment of personnel, respectively.

Keywords: drilling industry, knowledge management, organizational commitment, loyalty, principle component analysis

Procedia PDF Downloads 353
1789 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification

Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor

Abstract:

Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.

Keywords: additive parameter, angular softmax, speaker verification, PLDA

Procedia PDF Downloads 106
1788 Maintaining the Formal Type of West Java's Heritage Language with Sundanese Language Lesson in Senior High School

Authors: Dinda N. Lestari

Abstract:

Sundanese language is one of heritage language in Indonesia that must be maintained especially the formal type of it because teenagers nowadays do not speak Sundanese language formally in their daily lives. To maintain it, Cultural and Education Ministry of Indonesia has input Sundanese language lesson at senior high school in West Java area. The aim of this study was to observe whether the existence of Sundanese language lesson in senior high school in the big town of Karawang, West Java - Indonesia give the contribution to the formal type of Sundanese language maintenance or not. For gathering the data, the researcher interviewed the senior high school students who have learned Sundanese language to observe their acquisition of it. As a result of the interview, the data was presented in qualitative research by using the interviewing method. Then, the finding indicated that the existence of Sundanese language in Senior High School also the educational program which is related to it, for instance, Kemis Nyunda seemed to do not effective enough in maintaining the formal type of Sundanese language. Therefore, West Java government must revise the learning strategy of it, including the role of the Sundanese language teacher.

Keywords: heritage language, language maintenance and shift, senior high school, Sundanese language, Sundanese language lesson

Procedia PDF Downloads 152
1787 Integrating HOTS Activities with Geogebra in Pre-Service Teachers' Preparation

Authors: Wajeeh Daher, Nimer Baya'a

Abstract:

High Order Thinking Skills (HOTS) are suggested today as essential for the cognitive development of students and as preparing them for real life skills. Teachers are encouraged to use HOTS activities in the classroom to help their students develop higher order skills and deep thinking. So it is essential to prepare pre-service teachers to write and use HOTS activities for their students. This paper describes a model for integrating HOTS activities with GeoGebra in pre-service teachers’ preparation. This model describes four aspects of HOTS activities and working with them: Activity components, preparation procedure, strategies and processes used in writing a HOTS activity and types of the HOTS activities. In addition, the paper describes the pre-service teachers' difficulties in preparing and working with HOTS activities, as well as their perceptions regarding the use of these activities and GeoGebra in the mathematics classroom. The paper also describes the contribution of a HOTS activity to pupils' learning of mathematics, where this HOTS activity was prepared and taught by one pre-service teacher.

Keywords: high order thinking skills, HOTS activities, pre-service teachers, professional development

Procedia PDF Downloads 350
1786 Assessment of Natural Flood Management Potential of Sheffield Lakeland to Flood Risks Using GIS: A Case Study of Selected Farms on the Upper Don Catchment

Authors: Samuel Olajide Babawale, Jonathan Bridge

Abstract:

Natural Flood Management (NFM) is promoted as part of sustainable flood management (SFM) in response to climate change adaptation. Stakeholder engagement is central to this approach, and current trends are progressively moving towards a collaborative learning approach where stakeholder participation is perceived as one of the indicators of sustainable development. Within this methodology, participation embraces a diversity of knowledge and values underpinned by a philosophy of empowerment, equity, trust, and learning. To identify barriers to NFM uptake, there is a need for a new understanding of how stakeholder participation could be enhanced to benefit individual and community resilience within SFM. This is crucial in light of climate change threats and scientific reliability concerns. In contributing to this new understanding, this research evaluated the proposed interventions on six (6) UK NFM in a catchment known as the Sheffield Lakeland Partnership Area with reference to the Environment Agency Working with Natural Processes (WWNP) Potentials/Opportunities. Three of the opportunities, namely Run-off Attenuation Potential of 1%, Run-off Attenuation Potential of 3.3% and Riparian Woodland Potential, were modeled. In all the models, the interventions, though they have been proposed or already in place, are not in agreement with the data presented by EA WWNP. Findings show some institutional weaknesses, which are seen to inhibit the development of adequate flood management solutions locally with damaging implications for vulnerable communities. The gap in communication from practitioners poses a challenge to the implementation of real flood mitigating measures that align with the lead agency’s nationally accepted measures which are identified as not feasible by the farm management officers within this context. Findings highlight a dominant top-bottom approach to management with very minimal indication of local interactions. Current WWNP opportunities have been termed as not realistic by the people directly involved in the daily management of the farms, with less emphasis on prevention and mitigation. The targeted approach suggested by the EA WWNP is set against adaptive flood management and community development. The study explores dimensions of participation using the self-reliance and self-help approach to develop a methodology that facilitates reflections of currently institutionalized practices and the need to reshape spaces of interactions to enable empowered and meaningful participation. Stakeholder engagement and resilience planning underpin this research. The findings of the study suggest different agencies have different perspectives on “community participation”. It also shows communities in the case study area appear to be least influential, denied a real chance of discussing their situations and influencing the decisions. This is against the background that the communities are in the most productive regions, contributing massively to national food supplies. The results are discussed concerning practical implications for addressing interagency partnerships and conducting grassroots collaborations that empower local communities and seek solutions to sustainable development challenges. This study takes a critical look into the challenges and progress made locally in sustainable flood risk management and adaptation to climate change by the United Kingdom towards achieving the global 2030 agenda for sustainable development.

Keywords: natural flood management, sustainable flood management, sustainable development, working with natural processes, environment agency, run-off attenuation potential, climate change

Procedia PDF Downloads 75
1785 Unsupervised Approaches for Traffic Sign Image Segmentation in Autonomous Driving

Authors: B. Vishnupriya, R. Josphineleela

Abstract:

Road sign recognition is a key element in advanced driver-assistance systems (ADAS) and self-driving technologies, as it is fundamental to maintaining safe and effective navigation. Conventional supervised learning approaches rely heavily on extensive labeled datasets for training, which can be resource-intensive and challenging to obtain. This study examines the effectiveness of three unsupervised image segmentation approaches—K- means clustering, GrabCut, and Gaussian Mixture Model (GMM)—in detecting road signs within complex settings. Using a publicly available Road Sign dataset from Kaggle, we assess the effectiveness of these methods based on clustering performance metrics. Our results indicate that GMM achieves the highest performance across these metrics, demonstrating superior segmentation accuracy under diverse lighting and weather conditions, followed by GrabCut and K-means clustering. This research highlights the potential of unsupervised techniques in reducing the dependency on labeled data, offering insights for future advancements in road sign detection systems for ADAS and autonomous vehicles.

Keywords: K-means clustering, unsupervised, Gaussian Mixture Model, segmentation accuracy

Procedia PDF Downloads 10
1784 The Potential Roles of Digital Technologies in Developing Children's Artistic Ability and Promoting Creative Activity in Children Aged

Authors: Aber Aboalgasm, Rupert Ward, Ruth Taylor, Jonathan Glazzard

Abstract:

Teaching art by digital means is a big challenge for the majority of teachers of art and artistic design courses in primary education schools. These courses can clearly identify relationships between art, technology, and creativity in the classroom .The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom in order to improve creative ability in pupils aged between 9 and 11 years; it also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning drawing and using an e-drawing package, and for teachers who are interested in teaching their students modern digital art, and improving children’s creativity. This model is designed to show the strategy of teaching art through technology, in order for children to learn how to be creative. This will also help education providers to make suitable choices about which technological approaches they should choose to teach students and enhance their creative ability. It is also expected that use of this model will help to develop social interactive qualities that may improve intellectual ability.

Keywords: digital tools, motivation, creative activity, education

Procedia PDF Downloads 344
1783 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini

Abstract:

In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.

Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor

Procedia PDF Downloads 64
1782 The Use of Artificial Intelligence in the Context of a Space Traffic Management System: Legal Aspects

Authors: George Kyriakopoulos, Photini Pazartzis, Anthi Koskina, Crystalie Bourcha

Abstract:

The need for securing safe access to and return from outer space, as well as ensuring the viability of outer space operations, maintains vivid the debate over the promotion of organization of space traffic through a Space Traffic Management System (STM). The proliferation of outer space activities in recent years as well as the dynamic emergence of the private sector has gradually resulted in a diverse universe of actors operating in outer space. The said developments created an increased adverse impact on outer space sustainability as the case of the growing number of space debris clearly demonstrates. The above landscape sustains considerable threats to outer space environment and its operators that need to be addressed by a combination of scientific-technological measures and regulatory interventions. In this context, recourse to recent technological advancements and, in particular, to Artificial Intelligence (AI) and machine learning systems, could achieve exponential results in promoting space traffic management with respect to collision avoidance as well as launch and re-entry procedures/phases. New technologies can support the prospects of a successful space traffic management system at an international scale by enabling, inter alia, timely, accurate and analytical processing of large data sets and rapid decision-making, more precise space debris identification and tracking and overall minimization of collision risks and reduction of operational costs. What is more, a significant part of space activities (i.e. launch and/or re-entry phase) takes place in airspace rather than in outer space, hence the overall discussion also involves the highly developed, both technically and legally, international (and national) Air Traffic Management System (ATM). Nonetheless, from a regulatory perspective, the use of AI for the purposes of space traffic management puts forward implications that merit particular attention. Key issues in this regard include the delimitation of AI-based activities as space activities, the designation of the applicable legal regime (international space or air law, national law), the assessment of the nature and extent of international legal obligations regarding space traffic coordination, as well as the appropriate liability regime applicable to AI-based technologies when operating for space traffic coordination, taking into particular consideration the dense regulatory developments at EU level. In addition, the prospects of institutionalizing international cooperation and promoting an international governance system, together with the challenges of establishment of a comprehensive international STM regime are revisited in the light of intervention of AI technologies. This paper aims at examining regulatory implications advanced by the use of AI technology in the context of space traffic management operations and its key correlating concepts (SSA, space debris mitigation) drawing in particular on international and regional considerations in the field of STM (e.g. UNCOPUOS, International Academy of Astronautics, European Space Agency, among other actors), the promising advancements of the EU approach to AI regulation and, last but not least, national approaches regarding the use of AI in the context of space traffic management, in toto. Acknowledgment: The present work was co-funded by the European Union and Greek national funds through the Operational Program "Human Resources Development, Education and Lifelong Learning " (NSRF 2014-2020), under the call "Supporting Researchers with an Emphasis on Young Researchers – Cycle B" (MIS: 5048145).

Keywords: artificial intelligence, space traffic management, space situational awareness, space debris

Procedia PDF Downloads 263
1781 The Effects of Affections and of Personality on Metacognition

Authors: Patricia Silva, Iolanda Costa Galinha, Cristina Costa-Lobo

Abstract:

The present research aims to evaluate, in the context of formal learning, the influence of affections, through subjective well-being, as well as the influence of personality, in the metacognition levels. There are few studies that analyze the influence of affection and personality on metacognition. The sample of this study consists of 300 Portuguese adolescents, male and female, aged between 15 and 17 years. The main variables of this study are affections, personality, ascertained through neuroticism and extraversion, and metacognition, namely the knowledge of cognition and the regulation of cognition. Initially, the sociodemographic questionnaire was constructed and administered to characterize the sample in its variables. To evaluate the affective experience in adolescents was administered PANAS-N, that is a measure of self-assessment of positive and negative affectivity in children and adolescents. To evaluate the personality, in its variables extroversion and neuroticism, the NEO-FFI was applied. The Metacognitive Awareness Inventory, MAI, was used to assess knowledge of cognition and regulation of cognition. The data analysis was performed using the statistical software IBM SPSS 22.0. After analyzing and discussing the results, a set of theoretical interdisciplinary reflection, between the sciences of education and psychology, is concretized, contributing to the reflection on psychoeducational intervention, opening the way for future studies.

Keywords: affections, personality, metacognition, psychoeducational intervention

Procedia PDF Downloads 312
1780 Influence of Leadership Tenure and Succession on Institutional Goal Attainment in the University of Ibadan, Nigeria (2006-2015)

Authors: Ismial A. Raji, Blessing Egbezieme Oladejo, Babatunde Kasim Oladele

Abstract:

The study investigated the influence of leadership succession and tenure on goal attainment in the University of Ibadan. Leadership styles, tenure politics, organization succession, leadership succession, goal attainment in terms of research, teaching and public services were considered. The study adopted a descriptive survey design. The population of the study was 250 consisting 90 academic staff, 100 Senior Non-Teaching Staff and 60 Junior Non-Teaching Staff. Questionnaire was the instrument used to collect data. The instrument reliability coefficient was 0.88. Data collected were analysed with descriptive statistics. The result revealed that a significant relationship exist between leadership succession, tenure and goal attainment (r= .648, 0.466 and 0.479p< .0.5) Also, There was no statistical significant interaction between the effects of leadership tenure and leadership succession on goal attainment, F (38, 131) = 1.356, p = .104. The main influence of the independent variables on goal attainment were significant at F (24, 131) = 1.682, p=.034 and F (26, 131) = 2.182, p=.002. The study concluded that leadership succession and tenure are key factors for goal attainment in the University of Ibadan. The study recommended that an effective leadership succession and tenure processes should be maintained and sustained by higher institutions of learning.

Keywords: leadership tenure, style, succession, institutional goal

Procedia PDF Downloads 261
1779 Short Text Classification for Saudi Tweets

Authors: Asma A. Alsufyani, Maram A. Alharthi, Maha J. Althobaiti, Manal S. Alharthi, Huda Rizq

Abstract:

Twitter is one of the most popular microblogging sites that allows users to publish short text messages called 'tweets'. Increasing the number of accounts to follow (followings) increases the number of tweets that will be displayed from different topics in an unclassified manner in the timeline of the user. Therefore, it can be a vital solution for many Twitter users to have their tweets in a timeline classified into general categories to save the user’s time and to provide easy and quick access to tweets based on topics. In this paper, we developed a classifier for timeline tweets trained on a dataset consisting of 3600 tweets in total, which were collected from Saudi Twitter and annotated manually. We experimented with the well-known Bag-of-Words approach to text classification, and we used support vector machines (SVM) in the training process. The trained classifier performed well on a test dataset, with an average F1-measure equal to 92.3%. The classifier has been integrated into an application, which practically proved the classifier’s ability to classify timeline tweets of the user.

Keywords: corpus creation, feature extraction, machine learning, short text classification, social media, support vector machine, Twitter

Procedia PDF Downloads 158
1778 Engagement Analysis Using DAiSEE Dataset

Authors: Naman Solanki, Souraj Mondal

Abstract:

With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.

Keywords: computer vision, engagement prediction, deep learning, multi-level classification

Procedia PDF Downloads 117
1777 Students’ Satisfaction towards Science Project Subjects Based on Education Quality Assurance

Authors: Satien Janpla, Radasa Pojard

Abstract:

The objective of this study is to study bachelor's degree students’ satisfaction towards the course of Science Project based on education quality assurance. It is a case study of the Faculty of Science and Technology, Suan Sunandha Rajabhat University. The findings can be used as a guideline for analysis and revision of the content and the teaching/learning process of the subject. Moreover, other interesting factors such as teaching method can be developed based on education quality assurance. Population in this study included 267 students in year 3 and year 4 of the Faculty of Science and Technology, Suan Sunandha Rajabhat University who registered in the subject of Science Project in semester 1/2556. The research tool was a questionnaire and the research statistics included arithmetic mean and SD. The results showed that the study of bachelor degree students’ satisfaction towards the subject of Science Project based on education quality assurance reported high satisfaction with the average of 3.51. Students from different departments showed no difference in their satisfaction.

Keywords: satisfaction, science project subject, education quality assurance, students

Procedia PDF Downloads 354
1776 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.

Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC

Procedia PDF Downloads 408
1775 Effects of Bilingual Education in the Teaching and Learning Practices in the Continuous Improvement and Development of k12 Program

Authors: Miriam Sebastian

Abstract:

This research focused on the effects of bilingual education as medium of instruction to the academic performance of selected intermediate students of Miriam’s Academy of Valenzuela Inc. . An experimental design was used, with language of instruction as the independent variable and the different literacy skills as dependent variables. The sample consisted of experimental students comprises of 30 students were exposed to bilingual education (Filipino and English) . They were given pretests and were divided into three groups: Monolingual Filipino, Monolingual English, and Bilingual. They were taught different literacy skills for eight weeks and were then administered the posttests. Data was analyzed and evaluated in the light of the central processing and script-dependent hypotheses. Based on the data, it can be inferred that monolingual instruction in either Filipino or English had a stronger effect on the students’ literacy skills compared to bilingual instruction. Moreover, mother tongue-based instruction, as compared to second-language instruction, had stronger effect on the preschoolers’ literacy skills. Such results have implications not only for mother tongue-based (MTB) but also for English as a second language (ESL) instruction in the country

Keywords: bilingualism, effects, monolingual, function, multilingual, mother tongue

Procedia PDF Downloads 133
1774 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 87
1773 Challenges to Developing a Trans-European Programme for Health Professionals to Recognize and Respond to Survivors of Domestic Violence and Abuse

Authors: June Keeling, Christina Athanasiades, Vaiva Hendrixson, Delyth Wyndham

Abstract:

Recognition and education in violence, abuse, and neglect for medical and healthcare practitioners (REVAMP) is a trans-European project aiming to introduce a training programme that has been specifically developed by partners across seven European countries to meet the needs of medical and healthcare practitioners. Amalgamating the knowledge and experience of clinicians, researchers, and educators from interdisciplinary and multi-professional backgrounds, REVAMP has tackled the under-resourced and underdeveloped area of domestic violence and abuse. The team designed an online training programme to support medical and healthcare practitioners to recognise and respond appropriately to survivors of domestic violence and abuse at their point of contact with a health provider. The REVAMP partner countries include Europe: France, Lithuania, Germany, Greece, Iceland, Norway, and the UK. The training is delivered through a series of interactive online modules, adapting evidence-based pedagogical approaches to learning. Capturing and addressing the complexities of the project impacted the methodological decisions and approaches to evaluation. The challenge was to find an evaluation methodology that captured valid data across all partner languages to demonstrate the extent of the change in knowledge and understanding. Co-development by all team members was a lengthy iterative process, challenged by a lack of consistency in terminology. A mixed methods approach enabled both qualitative and quantitative data to be collected, at the start, during, and at the conclusion of the training for the purposes of evaluation. The module content and evaluation instrument were accessible in each partner country's language. Collecting both types of data provided a high-level snapshot of attainment via the quantitative dataset and an in-depth understanding of the impact of the training from the qualitative dataset. The analysis was mixed methods, with integration at multiple interfaces. The primary focus of the analysis was to support the overall project evaluation for the funding agency. A key project outcome was identifying that the trans-European approach posed several challenges. Firstly, the project partners did not share a first language or a legal or professional approach to domestic abuse and neglect. This was negotiated through complex, systematic, and iterative interaction between team members so that consensus could be achieved. Secondly, the context of the data collection in several different cultural, educational, and healthcare systems across Europe challenged the development of a robust evaluation. The participants in the pilot evaluation shared that the training was contemporary, well-designed, and of great relevance to inform practice. Initial results from the evaluation indicated that the participants were drawn from more than eight partner countries due to the online nature of the training. The primary results indicated a high level of engagement with the content and achievement through the online assessment. The main finding was that the participants perceived the impact of domestic abuse and neglect in very different ways in their individual professional contexts. Most significantly, the participants recognised the need for the training and the gap that existed previously. It is notable that a mixed-methods evaluation of a trans-European project is unusual at this scale.

Keywords: domestic violence, e-learning, health professionals, trans-European

Procedia PDF Downloads 87
1772 Design of a Multidisciplinary Project-Oriented Capstone Course for Mechanical Engineering Education

Authors: Chi-Cheng Cheng, Che-Hsin Lin, Yu-Jen Wang, Chua-Chin Wang

Abstract:

The project-oriented capstone course has become a required element for most engineering educational units. It is not only because the capstone course is an important criterion for international accreditation of engineering degree programs under Washington Accord, but also the capstone course provides an opportunity for students to apply what they have learned in their school years to actual engineering problems. Nevertheless, most project-oriented capstone courses are conducted with one single project for all students or teams. In other words, students work to reach the same or similar goals by coming up with different layouts and approaches. It appears not suitable for a multidisciplinary engineering department. Therefore, a one-year multidisciplinary project-oriented capstone course was designed for the junior year of the undergraduate program. About one-half of faculty members in the department needs to be involved in generating as many projects as possible to meet different students' interests and specialties. Project achievement has to be displayed and demonstrated in the annual exposition and competition at the end of this course. Significant success in attracting attention and hardworking of students on projects was witnessed for the past two pilot years. Analysis of course evaluation demonstrates positive impact on all perspectives despite of slightly negative influence due to poor communication and collaboration between students and their project supervisors.

Keywords: Capstone course, CDIO, engineering education, project-oriented learning

Procedia PDF Downloads 456
1771 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems

Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash

Abstract:

The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.

Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture

Procedia PDF Downloads 118
1770 Emotion Recognition Using Artificial Intelligence

Authors: Rahul Mohite, Lahcen Ouarbya

Abstract:

This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.

Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type

Procedia PDF Downloads 126
1769 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis

Procedia PDF Downloads 383
1768 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System

Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav

Abstract:

The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.

Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization

Procedia PDF Downloads 416
1767 Reproductive Health Education (RHE) Toolkit for Science Teachers

Authors: Ivy Jeralyn T. Andres, Eva B. Macugay

Abstract:

Using a descriptive research design utilizing the Research and Development (R&D) methodology, this study focused on the development of Reproductive Health Education (RHE) Toolkit for Science Teachers that provides a guide in teaching reproductive health. Based on the findings, the teacher-respondents identified nine topics that can be included in the development of the RHE toolkit. The topics included are The Male Reproductive System, The Female Reproductive System, The Roles of Hormones in Male and Female Reproductive System, Menstrual Cycle, Fertilization, Pregnancy and Childbirth, Breastfeeding, Human Reproductive and Developmental Concerns and Reproductive Health Management and Diseases. The developed RHE Toolkit is remarked as very highly valid and very highly acceptable learning material. The validators and evaluators acknowledged the developed RHE toolkit as clear, creative, and academically useful supplemental material for educating reproductive health. Moreover, it follows the principles of SMART objectives, factual, timely, and relevant content for both learners and the community as a whole. Science teachers should employ the RHE Toolkit in teaching reproductive health education into their respective classes. It is also suggested that the developed RHE toolkit can be implemented to elementary pupils and the community, particularly in rural areas.

Keywords: reproductive health education, toolkit, science teachers, supplemental material

Procedia PDF Downloads 93
1766 Comparison of Student Grades in Dual-Enrollment Courses Taken Inside and Outside of Texas High Schools

Authors: Cynthia A. Gallardo, Kelly S. Hall, Kristopher Garza, Linda Challoo, Mais Nijim

Abstract:

Dual-enrollment programs have become more prevalent in college and high school settings. Also known as early college programs, dual-enrollment programs help students acquire a head start in earning college credit for post-secondary studies. The number and percentage of high school students who take college courses while in high school is growing. However, little is known about how dual-enrolled students fare. The classroom environment is important to learning. This study compares dually enrolled high school students who take courses that yield college credit either within their high school or at some other location. Mann-Whitney U was the statistical test used. Mean proportions were compared for each of the five standard letter grades earned across the state of Texas. Results indicated that students earn similar passing A, B, and C grades when they take dual-enrollment courses at their high school location but are more likely to fail if they take dual-enrollment courses at non-high school locations. Implications of results are that student success rate of dual-enrollment college courses may have a significant difference between the locations and student performance.

Keywords: educational leadership, dual-enrollment, student performance, college

Procedia PDF Downloads 101
1765 Protection System Mis-operations: Fundamental Concepts and Learning from Indian Power Sector

Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh

Abstract:

Protection system is an essential feature of the electrical system which helps in detection and removal of faults. Protection system consists of many subsystems like relays, circuit breakers, instrument transformers, auxiliary DC system, auxiliary relays etc. Although the fundamental protective and relay operating concepts are similar throughout the world, there are very significant differences in their implementation. These differences arise through different traditions, operating philosophies, experiences and national standards. Protection system mis-operation due to problem in one or more of its subsystem or inadequate knowledge of numerical relay settings and configuration are very common throughout the world. Protection system mis-operation leads to unstable and unreliable grid operation. In this paper we will discuss about the fundamental concepts of protective relaying and the reasons for protection system mis-operation due to one or more of its subsystems. Many real-world case studies of protection system mis-operation from Indian power sector are discussed in detail in this paper.

Keywords: auxiliary trip relays, bus zone, check zone, CT saturation, dead zone protection, DC ground faults, DMT, DR, end fault protection, instrument transformer, SOTF, STUB

Procedia PDF Downloads 78
1764 Smart Card Technology Adaption in a Hospital Setting

Authors: H. K. V. Narayan

Abstract:

This study was conducted at Tata Memorial Hospital (TMH), Mumbai, India. The study was to evaluate the impact of adapting Smart Card (SC) for clinical and business transactions in order to reduce Lead times and to enforce business rules of the hospital. The objective for implementing the Smart Card was to improve the patient perception of quality in terms of structures process and outcomes and also to improve the productivity of the Institution. The Smart Card was implemented in phases from 2011 and integrated with the Hospital Information System (HIS/EMR). The implementation was a learning curve for all the stake holders as software obviated the need to use hardcopies of transactions. The acceptability to the stake holders was challenge in change management. The study assessed the impact 3 years into the implementation and the observed trends have suggested that it has decreased the lead times for services and increased the no of transactions and thereby the productivity. Patients who used to complain of multiple queues and cumbersome transactions now compliment the administration for effective use of Information and Communication Technology.

Keywords: smart card, high availability of health care information, reduction in potential medical errors due to elimination of transcription errors, reduction in no of queues, increased transactions, augmentation of revenue

Procedia PDF Downloads 286
1763 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.

Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding

Procedia PDF Downloads 134
1762 Relationship between Deliberate Practice of Dribbling and Self-Regulatory Behavior of Male Basketball Players

Authors: Daud Abdia, Aqsa Shamim, Farhan Tabassum

Abstract:

In order to achieve specific goals, basketball players have to use different skills to enhance their motivation, one such skill is deliberate practice. The aim of this study was to explore the relationship between deliberate practice of dribbling and self-regulatory behavior of male basketball players. For this purpose, a sample of 108 basketball players using stratified sampling was taken from public and private sector universities. Sample was divided into two groups that are experimental (n=54) and control group (n=54) using comparative experimental design. Experimental group was involved in the training of deliberate practice of dribbling for 5 weeks. Amounts of weekly practice activity and Self-Regulation of Learning Self-Report Scale (SRL-SRS) were used for self-regulatory behavior to collect data after the deliberate practice. The reliability of amounts of weekly practice activity was found to be 0.852, whereas SRL-SRS was found to be 0.890. The results of the study indicated a strong positive correlation between deliberate practice of dribbling and self-regulatory behavior (r=0.755, n=54, p=.000). Whereas, paired sample t-test; t(53)=1.37, p < 0.005 shows statistically significant improvement in the self-regulatory behavior after the training program of deliberate practice from 3.02 ± 0.64m to 3.21 ± 0.75m (p < 0.005). It was concluded that in order to enhance the self-regulatory behavior of basketball players we should work on the deliberate practice of the players.

Keywords: self-regulatory behavior, deliberate practice, dribbling, basketball

Procedia PDF Downloads 175