Search results for: elliptic curve digital signature algorithm
1889 Bilingual Gaming Kit to Teach English Language through Collaborative Learning
Authors: Sarayu Agarwal
Abstract:
This paper aims to teach English (secondary language) by bridging the understanding between the Regional language (primary language) and the English Language (secondary language). Here primary language is the one a person has learned from birth or within the critical period, while secondary language would be any other language one learns or speaks. The paper also focuses on evolving old teaching methods to a contemporary participatory model of learning and teaching. Pilot studies were conducted to gauge an understanding of student’s knowledge of the English language. Teachers and students were interviewed and their academic curriculum was assessed as a part of the initial study. Extensive literature study and design thinking principles were used to devise a solution to the problem. The objective is met using a holistic learning kit/card game to teach children word recognition, word pronunciation, word spelling and writing words. Implication of the paper is a noticeable improvement in the understanding and grasping of English language. With increasing usage and applicability of English as a second language (ESL) world over, the paper becomes relevant due to its easy replicability to any other primary or secondary language. Future scope of this paper would be transforming the idea of participatory learning into self-regulated learning methods. With the upcoming govt. learning centres in rural areas and provision of smart devices such as tablets, the development of the card games into digital applications seems very feasible.Keywords: English as a second language, vocabulary-building card games, learning through gamification, rural education
Procedia PDF Downloads 2461888 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material
Authors: Sukhbir Singh
Abstract:
This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector
Procedia PDF Downloads 1201887 Consortium Blockchain-based Model for Data Management Applications in the Healthcare Sector
Authors: Teo Hao Jing, Shane Ho Ken Wae, Lee Jin Yu, Burra Venkata Durga Kumar
Abstract:
Current distributed healthcare systems face the challenge of interoperability of health data. Storing electronic health records (EHR) in local databases causes them to be fragmented. This problem is aggravated as patients visit multiple healthcare providers in their lifetime. Existing solutions are unable to solve this issue and have caused burdens to healthcare specialists and patients alike. Blockchain technology was found to be able to increase the interoperability of health data by implementing digital access rules, enabling uniformed patient identity, and providing data aggregation. Consortium blockchain was found to have high read throughputs, is more trustworthy, more secure against external disruptions and accommodates transactions without fees. Therefore, this paper proposes a blockchain-based model for data management applications. In this model, a consortium blockchain is implemented by using a delegated proof of stake (DPoS) as its consensus mechanism. This blockchain allows collaboration between users from different organizations such as hospitals and medical bureaus. Patients serve as the owner of their information, where users from other parties require authorization from the patient to view their information. Hospitals upload the hash value of patients’ generated data to the blockchain, whereas the encrypted information is stored in a distributed cloud storage.Keywords: blockchain technology, data management applications, healthcare, interoperability, delegated proof of stake
Procedia PDF Downloads 1381886 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data
Authors: Chico Horacio Jose Sambo
Abstract:
Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.Keywords: neural network, permeability, multilayer perceptron, well log
Procedia PDF Downloads 4031885 Drivers of Farmers' Contract Compliance Behaviour: Evidence from a Case Study of Dangote Tomato Processing Plant in Northern Nigeria.
Authors: Umar Shehu Umar
Abstract:
Contract farming is a viable strategy agribusinesses rely on to strengthen vertical coordination. However, low contract compliance remains a significant setback to agribusinesses' contract performance. The present study aims to understand what drives smallholder farmers’ contract compliance behaviour. Qualitative information was collected through Focus Group Discussions to enrich the design of the survey questionnaire administered on a sample of 300 randomly selected farmers contracted by the Dangote Tomato Processing Plant (DTPP) in four regions of northern Nigeria. Novel transaction level data of tomato sales covering one season were collected in addition to socio-economic information of the sampled farmers. Binary logistic model results revealed that open fresh market tomato prices and payment delays negatively affect farmers' compliance behaviour while quantity harvested, education level and input provision correlated positively with compliance. The study suggests that contract compliance will increase if contracting firms devise a reliable and timely payment plan (e.g., digital payment), continue input and service provisions (e.g., improved seeds, extension services) and incentives (e.g., loyalty rewards, bonuses) in the contract.Keywords: contract farming, compliance, farmers and processors., smallholder
Procedia PDF Downloads 561884 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines
Procedia PDF Downloads 2941883 The Aquatic Plants Community in the Owena-Idanre Section of the Owena River of Ondo State
Authors: Rafiu O. Sanni, Abayomi O. Olajuyigbe, Nelson R. Osungbemiro, Rotimi F. Olaniyan
Abstract:
The Owena River lies within the drainage basins of the Oni, Siluko, and Ogbesse rivers. The river’s immediate surroundings are covered by dense forests, interspersed by plantations of cocoa, oil palm, kolanut, bananas, and other crops. The objectives were to identify the aquatic plants community, comprising the algae and aquatic macrophytes, observe their population dynamics in relation to the two seasons and identify their economic importance, especially to the neighbouring community. The study sites were determined using a stratified sampling method. Three strata were marked out for sampling namely strata I (upstream)–5 stations, strata II (reservoir) –2 stations, and strata III (outflow) 2 stations. These nine stations were tagged st1, st2, st3…st9. The aquatic macrophytes were collected using standard methods and identified at the University of Ibadan herbarium while the algal samples were collected using standard methods for microalgae. The periphytonic species were scraped from surfaces of rocks (perilithic), sucked with large syringe from mud (epipellic), scraped from suspended logs, washed from roots of aquatic angiosperms (epiphytic), as well as shaken from other particles such as suspended plant parts. Some were collected physically by scooping floating thallus of non-microscopic multicellular forms. The specimens were taken to the laboratory and observed under a microscope with mounted digital camera for photomicrography. Identification was done using Prescott.Keywords: aquatic plants, aquatic macrophytes, algae, Owena river
Procedia PDF Downloads 5581882 Field Trips inside Digital Game Environments
Authors: Amani Alsaqqaf, Frederick W. B. Li
Abstract:
Field trips are essential methods of learning in different subjects, and in recent times, there has been a reduction in the number of field trips (FTs) across all learning levels around the world. Virtual field trips (VFTs) in game environments provide FT experience based on the experiential learning theory (ELT). A conceptual framework for designing virtual field trip games (VFTGs) is developed with an aim to support game designers and educators to produce an effective FT experience where technology would enhance education. The conceptual framework quantifies ELT as an internal economy to link learning elements to game mechanics such as feedback loops which leads to facilitating VFTGs design and implementation. This study assesses the conceptual framework for designing VFTGs by investigating the possibility of applying immersive VFTGs in a secondary classroom and compare them with traditional learning that uses video clips and PowerPoint slides from the viewpoint of students’ perceived motivation, presence, and learning. The assessment is achieved by evaluating the learning performance and learner experience of a prototype VFT game, Island of Volcanoes. A quasi-experiment was conducted with 60 secondary school students. The findings of this study are that the VFTG enhanced learning performance to a better level than did the traditional way of learning, and in addition, it provided motivation and a general feeling of presence in the VFTG environment.Keywords: conceptual framework, game-based learning, game design, virtual field trip game
Procedia PDF Downloads 2351881 Displacement Fields in Footing-Sand Interactions under Cyclic Loading
Authors: S. Joseph Antony, Z. K. Jahanger
Abstract:
Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.Keywords: cyclic loading, DPIV, settlement, soil-structure interactions, strip footing
Procedia PDF Downloads 1671880 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification
Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang
Abstract:
This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI
Procedia PDF Downloads 1011879 Correlation between Dynamic Knee Valgus with Isometric Hip External Rotators Strength during Single Leg Landing
Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda
Abstract:
The excessive frontal plane motion of the lower extremity during sports activities is thought to be a contributing factor to many traumatic and overuse injuries of the knee joint, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip external rotators isometric strength and the value of frontal plane projection angle (FPPA) during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip external rotators isometric strength were assessed by portable hand held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip external rotators isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip external rotators isometric strength and the value of FPPA during functional activities in normal male subjects.Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries
Procedia PDF Downloads 2251878 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space
Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi
Abstract:
Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability
Procedia PDF Downloads 3211877 Velocity Logs Error Reduction for In-Service Calibration of Vessel Performance Indicators
Authors: Maria Tsompanoglou, Dimitris Armenis
Abstract:
Vessel behavior in different operational and weather conditions constitutes the main area of interest for the ship operator. Ship speed and fuel consumption are the most decisive parameters in this respect, as their correlation provides information about the economic and environmental efficiency of the vessel, becoming the basis of decision making in terms of maintenance and trading. In the analysis of vessel operational profile for the evaluation of fuel consumption and the equivalent CO2 emissions footprint, the indications of Speed Through Water are widely used. The seasonal and regional variations in seawater characteristics, which are available nowadays, can provide the basis for accurate estimation of the errors in Speed Through Water indications at any time. Accuracy in the speed value on a route basis can enable operator identify the ship fuel and propulsion efficiency and proceed with improvements. This paper discusses case studies, where the actual vessel speed was corrected by a post-processing algorithm. The effects of the vessel correction to standard Key Performance Indicators, as well as operational findings not identified earlier, are also discussed.Keywords: data analytics, MATLAB, vessel performance monitoring, speed through water
Procedia PDF Downloads 3001876 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference, supervised learning
Procedia PDF Downloads 671875 Robust Optimisation Model and Simulation-Particle Swarm Optimisation Approach for Vehicle Routing Problem with Stochastic Demands
Authors: Mohanad Al-Behadili, Djamila Ouelhadj
Abstract:
In this paper, a specific type of vehicle routing problem under stochastic demand (SVRP) is considered. This problem is of great importance because it models for many of the real world vehicle routing applications. This paper used a robust optimisation model to solve the problem along with the novel Simulation-Particle Swarm Optimisation (Sim-PSO) approach. The proposed Sim-PSO approach is based on the hybridization of the Monte Carlo simulation technique with the PSO algorithm. A comparative study between the proposed model and the Sim-PSO approach against other solution methods in the literature has been given in this paper. This comparison including the Analysis of Variance (ANOVA) to show the ability of the model and solution method in solving the complicated SVRP. The experimental results show that the proposed model and Sim-PSO approach has a significant impact on the obtained solution by providing better quality solutions comparing with well-known algorithms in the literature.Keywords: stochastic vehicle routing problem, robust optimisation model, Monte Carlo simulation, particle swarm optimisation
Procedia PDF Downloads 2771874 Capacity Building and Motivation as Determinants of Productivity among Library Personnel in Colleges of Education in Southwest, Nigeria
Authors: E. K. Soyele
Abstract:
This study is on capacity building and motivation as determinants of productivity among library personnel in colleges of education in South West, Nigeria. This study made use of a descriptive research design of survey type. A total enumeration sampling technique was used for the selected sample. The research sample consisted of 40 library personnel. The instrument used for the study was a structured questionnaire divided into four parts. Statistics data analysis used were descriptive statistics with frequencies, percentages, and regression statistics analysis. Findings from this study revealed that capacity building and motivation have positive impact on library personnel productivity with their percentages greater than 50% acceptance level. A test of null hypotheses at P < 0.05 significant level was tested to see the significance between capacity building and productivity, which was positive at P < 0.05 significant level. This implies that capacity building and motivation significantly determine productivity among library personnel in selected college libraries in Nigeria. The study concluded that there is need for institutions to equip their library personnel via training programmes, in-service, digital training, ICT training, seminars, and conferences, etc. Incentives should be provided to motivate personnel for high productivity. The study, therefore, recommends that government, institutions and library management should fund college libraries adequately so as to enhance capacity building, staff commitment and training for further educationKeywords: capacity building, library personnel, motivation, productivity
Procedia PDF Downloads 2011873 Theoretical and Experimental Investigations of Binary Systems for Hydrogen Storage
Authors: Gauthier Lefevre, Holger Kohlmann, Sebastien Saitzek, Rachel Desfeux, Adlane Sayede
Abstract:
Hydrogen is a promising energy carrier, compatible with the sustainable energy concept. In this context, solid-state hydrogen-storage is the key challenge in developing hydrogen economy. The capability of absorption of large quantities of hydrogen makes intermetallic systems of particular interest. In this study, efforts have been devoted to the theoretical investigation of binary systems with constraints consideration. On the one hand, besides considering hydrogen-storage, a reinvestigation of crystal structures of the palladium-arsenic system shows, with experimental validations, that binary systems could still currently present new or unknown relevant structures. On the other hand, various binary Mg-based systems were theoretically scrutinized in order to find new interesting alloys for hydrogen storage. Taking the effect of pressure into account reveals a wide range of alternative structures, changing radically the stable compounds of studied binary systems. Similar constraints, induced by Pulsed Laser Deposition, have been applied to binary systems, and results are presented.Keywords: binary systems, evolutionary algorithm, first principles study, pulsed laser deposition
Procedia PDF Downloads 2721872 A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process
Authors: Hong-Ming Chen
Abstract:
This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation.Keywords: optimization, interest rate model, jump process, deterministic
Procedia PDF Downloads 1611871 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances
Authors: P. Mounnarath, U. Schmitz, Ch. Zhang
Abstract:
Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.Keywords: expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis
Procedia PDF Downloads 4351870 Peruvian Diagnostic Reference Levels for Patients Undergoing Different X-Rays Procedures
Authors: Andres Portocarrero Bonifaz, Caterina Sandra Camarena Rodriguez, Ricardo Palma Esparza, Nicolas Antonio Romero Carlos
Abstract:
Reference levels for common X-rays procedures have been set in many protocols. In Peru, during quality control tests, the dose tolerance is set by these international recommendations. Nevertheless, further studies can be made to assess the national reality and relate dose levels with different parameters such as kV, mA/mAs, exposure time, type of processing (digital, digitalized or conventional), etc. In this paper three radiologic procedures were taken into account for study, general X-rays (fixed and mobile), intraoral X-rays (fixed, mobile and portable) and mammography. For this purpose, an Unfors Xi detector was used; the dose was measured at a focus - detector distance which varied depending on the procedure, and was corrected afterward to find the surface entry dose. The data used in this paper was gathered over a period of over 3 years (2015-2018). In addition, each X-ray machine was taken into consideration only once. The results hope to achieve a new standard which reflects the local practice, and address the issues of the ‘Bonn Call for Action’ in Peru. For this purpose, the 75% percentile of the dose of each radiologic procedure was calculated. In future quality control services, those machines with dose values higher than the selected threshold should be informed that they surpass the reference dose levels established in comparison other radiological centers in the country.Keywords: general X-rays, intraoral X-rays, mammography, reference dose levels
Procedia PDF Downloads 1551869 Growth and Anatomical Responses of Lycopersicon esculentum (Tomatoes) under Microgravity and Normal Gravity Conditions
Authors: Gbenga F. Akomolafe, Joseph Omojola, Ezekiel S. Joshua, Seyi C. Adediwura, Elijah T. Adesuji, Michael O. Odey, Oyinade A. Dedeke, Ayo H. Labulo
Abstract:
Microgravity is known to be a major abiotic stress in space which affects plants depending on the duration of exposure. In this work, tomatoes seeds were exposed to long hours of simulated microgravity condition using a one-axis clinostat. The seeds were sown on a 1.5% combination of plant nutrient and agar-agar solidified medium in three Petri dishes. One of the Petri dishes was mounted on the clinostat and allowed to rotate at the speed of 20 rpm for 72 hours, while the others were subjected to the normal gravity vector. The anatomical sections of both clinorotated and normal gravity plants were made after 72 hours and observed using a Phase-contrast digital microscope. The percentage germination, as well as the growth rate of the normal gravity seeds, was higher than the clinorotated ones. The germinated clinorotated roots followed different directions unlike the normal gravity ones which grew towards the direction of gravity vector. The clinostat was able to switch off gravistimulation. Distinct cellular arrangement was observed for tomatoes under normal gravity condition, unlike those of clinorotated ones. The root epidermis and cortex of normal gravity are thicker than the clinorotated ones. This implied that under long-term microgravity influence, plants do alter their anatomical features as a way of adapting to the stress condition.Keywords: anatomy, clinostat, germination, lycopersicon esculentum, microgravity
Procedia PDF Downloads 3221868 Towards Efficient Reasoning about Families of Class Diagrams Using Union Models
Authors: Tejush Badal, Sanaa Alwidian
Abstract:
Class diagrams are useful tools within the Unified Modelling Language (UML) to model and visualize the relationships between, and properties of objects within a system. As a system evolves over time and space (e.g., products), a series of models with several commonalities and variabilities create what is known as a model family. In circumstances where there are several versions of a model, examining each model individually, becomes expensive in terms of computation resources. To avoid performing redundant operations, this paper proposes an approach for representing a family of class diagrams into Union Models to represent model families using a single generic model. The paper aims to analyze and reason about a family of class diagrams using union models as opposed to individual analysis of each member model in the family. The union algorithm provides a holistic view of the model family, where the latter cannot be otherwise obtained from an individual analysis approach, this in turn, enhances the analysis performed in terms of speeding up the time needed to analyze a family of models together as opposed to analyzing individual models, one model at a time.Keywords: analysis, class diagram, model family, unified modeling language, union model
Procedia PDF Downloads 741867 Power Quality Improvement Using Interval Type-2 Fuzzy Logic Controller for Five-Level Shunt Active Power Filter
Authors: Yousfi Abdelkader, Chaker Abdelkader, Bot Youcef
Abstract:
This article proposes a five-level shunt active power filter for power quality improvement using a interval type-2 fuzzy logic controller (IT2 FLC). The reference compensating current is extracted using the P-Q theory. The majority of works previously reported are based on two-level inverters with a conventional Proportional integral (PI) controller, which requires rigorous mathematical modeling of the system. In this paper, a IT2 FLC controlled five-level active power filter is proposed to overcome the problem associated with PI controller. The IT2 FLC algorithm is applied for controlling the DC-side capacitor voltage as well as the harmonic currents of the five-level active power filter. The active power filter with a IT2 FLC is simulated in MATLAB Simulink environment. The simulated response shows that the proposed shunt active power filter controller has produced a sinusoidal supply current with low harmonic distortion and in phase with the source voltage.Keywords: power quality, shunt active power filter, interval type-2 fuzzy logic controller (T2FL), multilevel inverter
Procedia PDF Downloads 1781866 Exploring the Association between Personality Traits and Adolescent Wellbeing in Online Education: A Systematic Review
Authors: Rashmi Motwani, Ritu Raj
Abstract:
The emergence of online educational environments has changed the way adolescents learn, which has benefits and drawbacks for their development. This review has as its goal the examination of how personality traits and adolescents’ well-being are associated in the setting of online education. This review analyses the effects of a variety of personality traits on the mental, emotional, and social health of online school-going adolescents by looking at a wide range of previous research. This research explores the mechanisms that mediate or regulate the connection between one's personality traits and well-being in an online educational environment. The elements can be broken down into two categories: technological, like internet availability and digital literacy, and social, including social support, peer interaction, and teacher-student connections. To improve the well-being of adolescents in online learning environments, it is essential to understand factors that moderate the effects of interventions and support systems. This review concludes by emphasising the complex nature of the association between individual differences in personality and the success of online students aged 13 to 18. This review contributes to the development of evidence-based strategies for promoting positive mental health and overall well-being among adolescents engaged in online educational settings by shedding light on the impact of personality traits on various dimensions of well-being and by identifying the mediating or moderating factors. Educators, governments, and parents can use the findings of this review to create an online learning environment that is safe and well-being for adolescents.Keywords: personality traits, adolescent, wellbeing, online education
Procedia PDF Downloads 521865 Vulnerable Paths Assessment for Distributed Denial of Service Attacks in a Cloud Computing Environment
Authors: Manas Tripathi, Arunabha Mukhopadhyay
Abstract:
In Cloud computing environment, cloud servers, sometimes may crash after receiving huge amount of request and cloud services may stop which can create huge loss to users of that cloud services. This situation is called Denial of Service (DoS) attack. In Distributed Denial of Service (DDoS) attack, an attacker targets multiple network paths by compromising various vulnerable systems (zombies) and floods the victim with huge amount of request through these zombies. There are many solutions to mitigate this challenge but most of the methods allows the attack traffic to arrive at Cloud Service Provider (CSP) and then only takes actions against mitigation. Here in this paper we are rather focusing on preventive mechanism to deal with these attacks. We analyze network topology and find most vulnerable paths beforehand without waiting for the traffic to arrive at CSP. We have used Dijkstra's and Yen’s algorithm. Finally, risk assessment of these paths can be done by multiplying the probabilities of attack for these paths with the potential loss.Keywords: cloud computing, DDoS, Dijkstra, Yen’s k-shortest path, network security
Procedia PDF Downloads 2781864 The Analysis of Loss-of-Excitation Algorithm for Synchronous Generators
Authors: Pavle Dakić, Dimitrije Kotur, Zoran Stojanović
Abstract:
This paper presents the results of the study in which the excitation system fault of synchronous generator is simulated. In a case of excitation system fault (loss of field), distance relay is used to prevent further damage. Loss-of-field relay calculates complex impedance using measured voltage and current at the generator terminals. In order to obtain phasors from sampled measured values, discrete Fourier transform is used. All simulations are conducted using Matlab and Simulink software package. The analysis is conducted on the two machine system which supplies equivalent load. While simulating loss of excitation on one generator in different conditions (at idle operation, weakly loaded, and fully loaded), diagrams of active power, reactive power, and measured impedance are analyzed and monitored. Moreover, in the simulations, the effect of generator load on relay tripping time is investigated. In conclusion, the performed tests confirm that the fault in the excitation system can be detected by measuring the impedance.Keywords: loss-of-excitation, synchronous generator, distance protection, Fourier transformation
Procedia PDF Downloads 3311863 A Study on Inverse Determination of Impact Force on a Honeycomb Composite Panel
Authors: Hamed Kalhori, Lin Ye
Abstract:
In this study, an inverse method was developed to reconstruct the magnitude and duration of impact forces exerted to a rectangular carbon fibre-epoxy composite honeycomb sandwich panel. The dynamic signals captured by Piezoelectric (PZT) sensors installed on the panel remotely from the impact locations were utilized to reconstruct the impact force generated by an instrumented hammer through an extended deconvolution approach. Two discretized forms of convolution integral are considered; the traditional one with an explicit transfer function and the modified one without an explicit transfer function. Deconvolution, usually applied to reconstruct the time history (e.g. magnitude) of a stochastic force at a defined location, is extended to identify both the location and magnitude of the impact force among a number of potential impact locations. It is assumed that a number of impact forces are simultaneously exerted to all potential locations, but the magnitude of all forces except one is zero, implicating that the impact occurs only at one location. The extended deconvolution is then applied to determine the magnitude as well as location (among the potential ones), incorporating the linear superposition of responses resulted from impact at each potential location. The problem can be categorized into under-determined (the number of sensors is less than that of impact locations), even-determined (the number of sensors equals that of impact locations), or over-determined (the number of sensors is greater than that of impact locations) cases. For an under-determined case, it comprises three potential impact locations and one PZT sensor for the rectangular carbon fibre-epoxy composite honeycomb sandwich panel. Assessments are conducted to evaluate the factors affecting the precision of the reconstructed force. Truncated Singular Value Decomposition (TSVD) and the Tikhonov regularization are independently chosen to regularize the problem to find the most suitable method for this system. The selection of optimal value of the regularization parameter is investigated through L-curve and Generalized Cross Validation (GCV) methods. In addition, the effect of different width of signal windows on the reconstructed force is examined. It is observed that the impact force generated by the instrumented impact hammer is sensitive to the impact locations of the structure, having a shape from a simple half-sine to a complicated one. The accuracy of the reconstructed impact force is evaluated using the correlation co-efficient between the reconstructed force and the actual one. Based on this criterion, it is concluded that the forces reconstructed by using the extended deconvolution without an explicit transfer function together with Tikhonov regularization match well with the actual forces in terms of magnitude and duration.Keywords: honeycomb composite panel, deconvolution, impact localization, force reconstruction
Procedia PDF Downloads 5351862 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks
Authors: Apidet Booranawong, Wiklom Teerapabkajorndet
Abstract:
An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio
Procedia PDF Downloads 3391861 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
Authors: Ying Su, Morgan C. Wang
Abstract:
Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis
Procedia PDF Downloads 1051860 Simulation of Internal Flow Field of Pitot-Tube Jet Pump
Authors: Iqra Noor, Ihtzaz Qamar
Abstract:
Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence
Procedia PDF Downloads 160