Search results for: aggregated energy storage system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24045

Search results for: aggregated energy storage system

18555 Real-Time Aerial Marine Surveillance System for Safe Navigation

Authors: Vinesh Thiruchelvam, Umar Mumtaz Chowdry, Sathish Kumar Selvaperumal

Abstract:

The prime purpose of the project is to provide a sophisticated system for surveillance specialized for the Port Authorities in the Maritime Industry. The current aerial surveillance does not have a wide dimensioning view. The channels of communication is shared and not exclusive allowing for communications errors or disturbance mainly due to traffic. The scope is to analyze the various aspects as real-time aerial and marine surveillance is one of the most important methods which could ensure the domain security of the sailors. The system will improve real time data as obtained for the controller base station. The key implementation will be based on camera speed, angle and adherence to a sustainable power utilization module.

Keywords: SMS, real time, GUI, maritime industry

Procedia PDF Downloads 477
18554 Visualization of the Mobility Patterns of Public Bike Sharing System in Seoul

Authors: Young-Hyun Seo, Hosuk Shin, Eun-Hak Lee, Seung-Young Kho

Abstract:

This study analyzed and visualized the rental and return data of the public bike sharing system in Seoul, Ttareungyi, from September 2015 to October 2017. With the surge of system users, the number of times of collection and distribution in 2017 increased by three times compared to 2016. The city plans to deploy about 20,000 public bicycles by the end of 2017 to expand the system. Based on about 3.3 million historical data, we calculated the average trip time and the number of trips from one station to another station. The mobility patterns between stations are graphically displayed using R and Tableau. Demand for public bike sharing system is heavily influenced by day and weather. As a result of plotting the number of rentals and returns of some stations on weekdays and weekends at intervals of one hour, there was a difference in rental patterns. As a result of analysis of the rental and return patterns by time of day, there were a lot of returns at the morning peak and more rentals at the afternoon peak at the center of the city. It means that stock of bikes varies largely in the time zone and public bikes should be rebalanced timely. The result of this study can be applied as a primary data to construct the demand forecasting function of the station when establishing the rebalancing strategy of the public bicycle.

Keywords: demand forecasting, mobility patterns, public bike sharing system, visualization

Procedia PDF Downloads 177
18553 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 95
18552 Developing Indicators in System Mapping Process Through Science-Based Visual Tools

Authors: Cristian Matti, Valerie Fowles, Eva Enyedi, Piotr Pogorzelski

Abstract:

The system mapping process can be defined as a knowledge service where a team of facilitators, experts and practitioners facilitate a guided conversation, enable the exchange of information and support an iterative curation process. System mapping processes rely on science-based tools to introduce and simplify a variety of components and concepts of socio-technical systems through metaphors while facilitating an interactive dialogue process to enable the design of co-created maps. System maps work then as “artifacts” to provide information and focus the conversation into specific areas around the defined challenge and related decision-making process. Knowledge management facilitates the curation of that data gathered during the system mapping sessions through practices of documentation and subsequent knowledge co-production for which common practices from data science are applied to identify new patterns, hidden insights, recurrent loops and unexpected elements. This study presents empirical evidence on the application of these techniques to explore mechanisms by which visual tools provide guiding principles to portray system components, key variables and types of data through the lens of climate change. In addition, data science facilitates the structuring of elements that allow the analysis of layers of information through affinity and clustering analysis and, therefore, develop simple indicators for supporting the decision-making process. This paper addresses methodological and empirical elements on the horizontal learning process that integrate system mapping through visual tools, interpretation, cognitive transformation and analysis. The process is designed to introduce practitioners to simple iterative and inclusive processes that create actionable knowledge and enable a shared understanding of the system in which they are embedded.

Keywords: indicators, knowledge management, system mapping, visual tools

Procedia PDF Downloads 180
18551 A Hybrid System for Boreholes Soil Sample

Authors: Ali Ulvi Uzer

Abstract:

Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.

Keywords: feature selection, sequential forward selection, support vector machines, soil sample

Procedia PDF Downloads 437
18550 Analysis of DC\DC Converter of Photovoltaic System with MPPT Algorithms Comparison

Authors: Badr M. Alshammari, Mohamed A. Khlifi

Abstract:

This paper presents the analysis of DC/DC converter including a comparative study of control methods to extract the maximum power and to track the maximum power point (MPP) from photovoltaic (PV) systems under changeable environmental conditions. This paper proposes two methods of maximum power point tracking algorithm for photovoltaic systems, based on the first hand on P&O control and the other hand on the first order IC. The MPPT system ensures that solar cells can deliver the maximum power possible to the load. Different algorithms are used to design it. Here we compare them and simulate the photovoltaic system with two algorithms. The algorithms are used to control the duty cycle of a DC-DC converter in order to boost the output voltage of the PV generator and guarantee the operation of the solar panels in the Maximum Power Point (MPP). Simulation and experimental results show that the proposed algorithms can effectively improve the efficiency of a photovoltaic array output.

Keywords: solar cell, DC/DC boost converter, MPPT, photovoltaic system

Procedia PDF Downloads 183
18549 Nondecoupling Signatures of Supersymmetry and an Lμ-Lτ Gauge Boson at Belle-II

Authors: Heerak Banerjee, Sourov Roy

Abstract:

Supersymmetry, one of the most celebrated fields of study for explaining experimental observations where the standard model (SM) falls short, is reeling from the lack of experimental vindication. At the same time, the idea of additional gauge symmetry, in particular, the gauged Lμ-Lτ symmetric models have also generated significant interest. They have been extensively proposed in order to explain the tantalizing discrepancy in the predicted and measured value of the muon anomalous magnetic moment alongside several other issues plaguing the SM. While very little parameter space within these models remain unconstrained, this work finds that the γ + Missing Energy (ME) signal at the Belle-II detector will be a smoking gun for supersymmetry (SUSY) in the presence of a gauged U(1)Lμ-Lτ symmetry. A remarkable consequence of breaking the enhanced symmetry appearing in the limit of degenerate (s)leptons is the nondecoupling of the radiative contribution of heavy charged sleptons to the γ-Z΄ kinetic mixing. The signal process, e⁺e⁻ →γZ΄→γ+ME, is an outcome of this ubiquitous feature. Taking the severe constraints on gauged Lμ-Lτ models by several low energy observables into account, it is shown that any significant excess in all but the highest photon energy bin would be an undeniable signature of such heavy scalar fields in SUSY coupling to the additional gauge boson Z΄. The number of signal events depends crucially on the logarithm of the ratio of stau to smuon mass in the presence of SUSY. In addition, the number is also inversely proportional to the e⁺e⁻ collision energy, making a low-energy, high-luminosity collider like Belle-II an ideal testing ground for this channel. This process can probe large swathes of the hitherto free slepton mass ratio vs. additional gauge coupling (gₓ) parameter space. More importantly, it can explore the narrow slice of Z΄ mass (MZ΄) vs. gₓ parameter space still allowed in gauged U(1)Lμ-Lτ models for superheavy sparticles. The spectacular finding that the signal significance is independent of individual slepton masses is an exciting prospect indeed. Further, the prospect that signatures of even superheavy SUSY particles that may have escaped detection at the LHC may show up at the Belle-II detector is an invigorating revelation.

Keywords: additional gauge symmetry, electron-positron collider, kinetic mixing, nondecoupling radiative effect, supersymmetry

Procedia PDF Downloads 115
18548 Influence of Mooring Conditions on Side-By-Side Offloading System Safety Performance

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory, hydrodynamic response analysis is carried on the multi floating bodies system composed of FPSO moored with yoke and shuttle tanker. It considered hydrodynamic interaction between FPSO and shuttle tanker, interaction between the hull and yoke mooring systems, hawsers, fenders, and then focuses on hawsers of the side-by-side offloading system. The influence of hawsers parameters on system safety is studied in respects of hawser stiffness, length and arrangement. Through analysis in different environment conditions and two typical loading conditions, it can be found that a better safety performance can be achieved through these three ways including enlarging the number of hawsers as well as the stiffness of hawsers, changing the length and arrangement of hawsers.

Keywords: yoke mooring, side-by-side offloading, multi floating body, hawser, safety

Procedia PDF Downloads 411
18547 Industrial and Environmental Safety in the Integrated Security Policy of the Industry: A Corporation and an Enterprise

Authors: Vladimir A. Grachev

Abstract:

Today, in the context of rapidly developing technosphere and hourly emerging new technologies, the industrial and environmental safety issue is ever more pressing. The article is devoted to the relationship of social, environmental, and industrial policies with industrial safety, occupational health and safety, environmental safety, and environmental protection. The author assesses the up-to-day situation through system analysis and on the basis of the existing practices. A complex system of the policies implementation without "gaps" and missing links ensures preservation of human lives, health and a favorable living environment. The author demonstrates that absence of an "environmental safety" high-priority link can lead to a significant loss of human lives and health and the global changes in the environment. The role of implementing the environmental policy of enterprises and organizations, and of economic sectors in the implementation of national environmental policy is shown. It was established that the system for implementing environmental policy should be based on a system analysis.

Keywords: environmental protection, environmental safety, industrial safety, occupational health and safety

Procedia PDF Downloads 195
18546 Handling Complexity of a Complex System Design: Paradigm, Formalism and Transformations

Authors: Hycham Aboutaleb, Bruno Monsuez

Abstract:

Current systems' complexity has reached a degree that requires addressing conception and design issues while taking into account environmental, operational, social, legal, and financial aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponentially growing effort, cost, and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework, and an environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and suggests a graph-based formalism for modeling complex systems. Finally, a set of transformations are defined to handle the model complexity.

Keywords: higraph-based, formalism, system engineering paradigm, modeling requirements, graph-based transformations

Procedia PDF Downloads 388
18545 Integration of PV Systems in Residential Buildings: A Solution for Supporting Electrical Grid in Kuwait

Authors: Nabil A. Ahmed, Nasser A. N. Mhaisen

Abstract:

The paper presents a solution to enhance the power quality and to reduce the peak load demand in Kuwait electric grid as a solution to the shortage of electricity production. Technical, environmental and economic feasibility study of utilizing integrated grid-connected photovoltaic (PV) system in residential buildings for supplying 7.1% of electrical power consumption in Kuwait is carried out using RETScreen software. A 10 KWp on-grid PV power generation system spread on the rooftop of the residential buildings is adopted and investigated and the complete system performance is simulated using PSIM software. Taking into account the international prices of electricity and natural gas, the proposed solution is investigated and tested for four different types of installation systems in terms of power generation and costs which includes horizontal installation, 25º tilted angle, single axis tracking and dual axis tracking. Results shows that the 25º tilted angle fixed mounted system is the most efficient type. The payback period as a tool of benefit analysis of the proposed system is calculated and it found to be 2.55 years.

Keywords: photovoltaics, residential buildings, electrical grid, production capacity, on-grid, power generation

Procedia PDF Downloads 481
18544 Evaluation of Surface Roughness Condition Using App Roadroid

Authors: Diego de Almeida Pereira

Abstract:

The roughness index of a road is considered the most important parameter about the quality of the pavement, as it has a close relation with the comfort and safety of the road users. Such condition can be established by means of functional evaluation of pavement surface deviations, measured by the International Roughness Index (IRI), an index that came out of the international evaluation of pavements, coordinated by the World Bank, and currently owns, as an index of limit measure, for purposes of receiving roads in Brazil, the value of 2.7 m/km. This work make use of the e.IRI parameter, obtained by the Roadroid app. for smartphones which use Android operating system. The choice of such application is due to the practicality for the user interaction, as it possesses a data storage on a cloud of its own, and the support given to universities all around the world. Data has been collected for six months, once in each month. The studies begun in March 2018, season of precipitations that worsen the conditions of the roads, besides the opportunity to accompany the damage and the quality of the interventions performed. About 350 kilometers of sections of four federal highways were analyzed, BR-020, BR-040, BR-060 and BR-070 that connect the Federal District (area where Brasilia is located) and surroundings, chosen for their economic and tourist importance, been two of them of federal and two others of private exploitation. As well as much of the road network, the analyzed stretches are coated of Hot Mix Asphalt (HMA). Thus, this present research performs a contrastive discussion between comfort conditions and safety of the roads under private exploitation in which users pay a fee to the concessionaires so they could travel on a road that meet the minimum requirements for usage, and regarding the quality of offered service on the roads under Federal Government jurisdiction. And finally, the contrast of data collected by National Department of Transport Infrastructure – DNIT, by means of a laser perfilometer, with data achieved by Roadroid, checking the applicability, the practicality and cost-effective, considering the app limitations.

Keywords: roadroid, international roughness index, Brazilian roads, pavement

Procedia PDF Downloads 73
18543 ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine

Authors: Joseph Soliman, Youssef Attia, Khairy Megalla

Abstract:

The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum.

Keywords: stirling engine, solar energy, new energy, dynamic motion

Procedia PDF Downloads 402
18542 Analysis of Electromechanical Torsional Vibration in Large-Power AC Drive System Based on Virtual Inertia Control

Authors: Jin Wang, Chunyi Zhu, Chongjian Li, Dapeng Zheng

Abstract:

A method based on virtual inertia for suppressing electromechanical torsional vibration of a large-power AC drive system is presented in this paper. The main drive system of the rolling mill is the research object, and a two-inertia elastic model is established to study the mechanism of electromechanical torsional vibration. The improvement is made based on the control of the load observer. The virtual inertia control ratio K is added to the speed forward channel, and the feedback loop adds 1-K to design virtual inertia control. The control method combines the advantages of the positive and negative feedback control of the load observer, can achieve the purpose of controlling the moment of inertia of the motor from the perspective of electrical control, and effectively suppress oscillation.

Keywords: electromechanical torsional vibration, large-power AC drive system, load observer, simulation design

Procedia PDF Downloads 108
18541 Active Deformable Micro-Cutters with Nano-Abrasives

Authors: M. Pappa, C. Efstathiou, G. Livanos, P. Xidas, D. Vakondios, E. Maravelakis, M. Zervakis, A. Antoniadis

Abstract:

The choice of cutting tools in manufacturing processes is an essential parameter on which the required manufacturing time, the consumed energy and the cost effort all depend. If the number of tool changing times could be minimized or even eliminated by using a single convex tool providing multiple profiles, then a significant benefit of time and energy saving, as well as tool cost, would be achieved. A typical machine contains a variety of tools in order to deal with different curvatures and material removal rates. In order to minimize the required cutting tool changes, Actively Deformable micro-Cutters (ADmC) will be developed. The design of the Actively Deformable micro-Cutters will be based on the same cutting technique and mounting method as that in typical cutters.

Keywords: deformable cutters, cutting tool, milling, turning, manufacturing

Procedia PDF Downloads 442
18540 Towards Incorporating Context Awareness into Business Process Management

Authors: Xiaohui Zhao, Shahan Mafuz

Abstract:

Context-aware technologies provide system applications with the awareness of environmental conditions, customer behaviour, object movements, etc. Further, with such capability system applications can be smart to adapt intelligently their responses to the changing conditions. Concerning business operations, this promises businesses that their business processes can run more intelligently, adaptively and flexibly, and thereby either improve customer experience, enhance reliability of service delivery, or lower operational cost, to make the business more competitive and sustainable. Aiming at realizing such context-aware business process management, this paper firstly explores its potential benefit and then identifies some gaps between the current business process management support and the expected. In addition, some preliminary solutions are also discussed with context definition, rule-based process execution, run-time process evolution, etc. A framework is also presented to give a conceptual architecture of context-aware business process management system to guide system implementation.

Keywords: business process adaptation, business process evolution, business process modelling, and context awareness

Procedia PDF Downloads 399
18539 Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Dynamic Membrane Electroporation

Authors: Jiahui Song

Abstract:

The application of an electric field can cause poration at cell membranes. This includes the outer plasma membrane, as well as the membranes of intracellular organelles. In order to analyze and predict such electroporation effects, it becomes necessary to first evaluate the electric fields and the transmembrane voltages. This information can then be used to assess changes in the pore formation energy that finally yields the pore distributions and their radii based on the Smolchowski equation. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into the pore formation energy equation. These changes make the pore formation energy E(r) self-adjusting in response to pore formation without causing uncontrolled growth and expansion. By using dynamic membrane tension, membrane electroporation in response to a 180kV/cm trapezoidal pulse with a 10 ns on time and 1.5 ns rise- and fall-times is discussed. Poration is predicted to occur at times beyond the peak at around 9.2 ns. Modeling also yields time-dependent distributions of the membrane pore population after multiple pulses. It shows that the pore distribution shifts to larger values of the radius with multiple pulsing. Molecular dynamics (MD) simulations are also carried out for a fixed field of 0.5 V/nm to demonstrate nanopore formation from a microscopic point of view. The result shows that the pore is predicted to be about 0.9 nm in diameter and somewhat narrower at the central point.

Keywords: high-intensity, nanosecond, dynamics, electroporation

Procedia PDF Downloads 142
18538 Pineapple Waste Valorization through Biogas Production: Effect of Substrate Concentration and Microwave Pretreatment

Authors: Khamdan Cahyari, Pratikno Hidayat

Abstract:

Indonesia has produced more than 1.8 million ton pineapple fruit in 2013 of which turned into waste due to industrial processing, deterioration and low qualities. It was estimated that this waste accounted for more than 40 percent of harvested fruits. In addition, pineapple leaves were one of biomass waste from pineapple farming land, which contributed even higher percentages. Most of the waste was only dumped into landfill area without proper pretreatment causing severe environmental problem. This research was meant to valorize the pineapple waste for producing renewable energy source of biogas through mesophilic (30℃) anaerobic digestion process. Especially, it was aimed to investigate effect of substrate concentration of pineapple fruit waste i.e. peel, core as well as effect of microwave pretreatment of pineapple leaves waste. The concentration of substrate was set at value 12, 24 and 36 g VS/liter culture whereas 800-Watt microwave pretreatment conducted at 2 and 5 minutes. It was noticed that optimum biogas production obtained at concentration 24 g VS/l with biogas yield 0.649 liter/g VS (45%v CH4) whereas microwave pretreatment at 2 minutes duration performed better compare to 5 minutes due to shorter exposure of microwave heat. This results suggested that valorization of pineapple waste could be carried out through biogas production at the aforementioned process condition. Application of this method is able to both reduce the environmental problem of the waste and produce renewable energy source of biogas to fulfill local energy demand of pineapple farming areas.

Keywords: pineapple waste, substrate concentration, microwave pretreatment, biogas, anaerobic digestion

Procedia PDF Downloads 561
18537 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System

Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi

Abstract:

In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.

Keywords: adaptive control, pendulum dynamical system, nonlinear control, adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control

Procedia PDF Downloads 654
18536 Comparison of Dose Rate and Energy Dependence of Soft Tissue Equivalence Dosimeter with Electron and Photon Beams Using Magnetic Resonance Imaging

Authors: Bakhtiar Azadbakht, Karim Adinehvand, Amin Sahebnasagh

Abstract:

The purpose of this study was to evaluate dependence of PAGAT polymer gel dosimeter 1/T2 on different electron and photon energies as well as on different mean dose rates for a standard clinically used Co-60 therapy unit and an ELECTA linear accelerator. A multi echo sequence with 32 equidistant echoes was used for the evaluation of irradiated polymer gel dosimeters. The optimal post-manufacture irradiation and post imaging times were both determined to be one day. The sensitivity of PAGAT polymer gel dosimeter with irradiation of photon and electron beams was represented by the slope of calibration curve in the linear region measured for each modality. The response of PAGAT gel with photon and electron beams is very similar in the lower dose region. The R2-dose response was linear up to 30Gy. In electron beams the R2-dose response for doses less than 3Gy is not exact, but in photon beams the R2-dose response for doses less than 2Gy is not exact. Dosimeter energy dependence was studied for electron energies of 4, 12 and 18MeV and photon energies of 1.25, 4, 6 and 18MV. Dose rate dependence was studied in 6MeV electron beam and 6MV photon beam with the use of dose rates 80, 160, 240, 320, 400, and 480cGy/min. Evaluation of dosimeters were performed on Siemens Symphony, Germany 1.5T Scanner in the head coil. In this study no trend in polymer-gel dosimeter 1/T2 dependence was found on mean dose rate and energy for electron and photon beams.

Keywords: polymer gels, PAGAT gel, electron and photon beams, MRI

Procedia PDF Downloads 462
18535 On Four Models of a Three Server Queue with Optional Server Vacations

Authors: Kailash C. Madan

Abstract:

We study four models of a three server queueing system with Bernoulli schedule optional server vacations. Customers arriving at the system one by one in a Poisson process are provided identical exponential service by three parallel servers according to a first-come, first served queue discipline. In model A, all three servers may be allowed a vacation at one time, in Model B at the most two of the three servers may be allowed a vacation at one time, in model C at the most one server is allowed a vacation, and in model D no server is allowed a vacation. We study steady the state behavior of the four models and obtain steady state probability generating functions for the queue size at a random point of time for all states of the system. In model D, a known result for a three server queueing system without server vacations is derived.

Keywords: a three server queue, Bernoulli schedule server vacations, queue size distribution at a random epoch, steady state

Procedia PDF Downloads 287
18534 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools

Authors: M. Radunovic

Abstract:

Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.

Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management

Procedia PDF Downloads 100
18533 Expert Based System Design for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

Recently, an increasing number of researchers have been focusing on working out realistic solutions to sustainability problems. As sustainability issues gain higher importance for organisations, the management of such decisions becomes critical. Knowledge representation is a fundamental issue of complex knowledge based systems. Many types of sustainability problems would benefit from models based on experts’ knowledge. Cognitive maps have been used for analyzing and aiding decision making. A cognitive map can be made of almost any system or problem. A fuzzy cognitive map (FCM) can successfully represent knowledge and human experience, introducing concepts to represent the essential elements and the cause and effect relationships among the concepts to model the behavior of any system. Integrated waste management systems (IWMS) are complex systems that can be decomposed to non-related and related subsystems and elements, where many factors have to be taken into consideration that may be complementary, contradictory, and competitive; these factors influence each other and determine the overall decision process of the system. The goal of the present paper is to construct an efficient IWMS which considers various factors. The authors’ intention is to propose an expert based system design approach for implementing expert decision support in the area of IWMSs and introduces an appropriate methodology for the development and analysis of group FCM. A framework for such a methodology consisting of the development and application phases is presented.

Keywords: factors, fuzzy cognitive map, group decision, integrated waste management system

Procedia PDF Downloads 265
18532 In vitro Effects of Salvia officinalis on Bovine Spermatozoa

Authors: Eva Tvrdá, Boris Botman, Marek Halenár, Tomáš Slanina, Norbert Lukáč

Abstract:

In vitro storage and processing of animal semen represents a risk factor to spermatozoa vitality, potentially leading to reduced fertility. A variety of substances isolated from natural sources may exhibit protective or antioxidant properties on the spermatozoon, thus extending the lifespan of stored ejaculates. This study compared the ability of different concentrations of the Salvia officinalis extract on the motility, mitochondrial activity, viability and reactive oxygen species (ROS) production by bovine spermatozoa during different time periods (0, 2, 6 and 24 h) of in vitro culture. Spermatozoa motility was assessed using the Computer-assisted sperm analysis (CASA) system. Cell viability was examined using the metabolic activity MTT assay, the eosin-nigrosin staining technique was used to evaluate the sperm viability and ROS generation was quantified using luminometry. The CASA analysis revealed that the motility in the experimental groups supplemented with 0.5-2 µg/mL Salvia extract was significantly lower in comparison with the control (P<0.05; Time 24 h). At the same time, a long-term exposure of spermatozoa to concentrations ranging between 0.05 µg/mL and 2 µg/mL had a negative impact on the mitochondrial metabolism (P<0.05; Time 24 h). The viability staining revealed that 0.001-1 µg/mL Salvia extract had no effects on bovine male gametes, however 2 µg/mL Salvia had a persisting negative effect on spermatozoa (P<0.05). Furthermore 0.05-2 µg/mL Salvia exhibited an immediate ROS-promoting effect on the sperm culture (P>0.05; Time 0 h and 2 h), which remained significant throughout the entire in vitro culture (P<0.05; Time 24 h). Our results point out to the necessity to examine specific effects the biomolecules present in Salvia officinalis may have individually or collectively on the in vitro sperm vitality and oxidative profile.

Keywords: bulls, CASA, MTT test, reactive oxygen species, sage, Salvia officinalis, spermatozoa

Procedia PDF Downloads 322
18531 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 232
18530 Advancements in Truss Design for High-Performance Facades and Roof System: A Structural Analysis

Authors: Milind Anurag

Abstract:

This study investigates cutting-edge truss design improvements, which are specifically adapted to satisfy the structural demands and difficulties associated with high-performance facades and roofs in modern architectural environments. With a growing emphasis on sustainability, energy efficiency, and eye-catching architectural aesthetics, the structural components that support these characteristics play an important part in attaining the right balance of form and function. The paper seeks to contribute to the evolution of truss design methods by combining data from these investigations, giving significant insights for architects, engineers, and researchers interested in the creation of high-performance building envelopes. The findings of this study are meant to inform future design standards and practices, promoting the development of structures that seamlessly integrate architectural innovation with structural robustness and environmental responsibility.

Keywords: truss design, high-performance, facades, finite element analysis, structural efficiency

Procedia PDF Downloads 27
18529 Ultrastructural Characterization of Lipid Droplets of Rat Hepatocytes after Whole Body 60-Cobalt Gamma Radiation

Authors: Ivna Mororó, Lise P. Labéjof, Stephanie Ribeiro, Kely Almeida

Abstract:

Lipid droplets (LDs) are normally presented in greater or lesser number in the cytoplasm of almost all eukaryotic and some prokaryotic cells. They are independent organelles composed of a lipid ester core and a surface phospholipid monolayer. As a lipid storage form, they provide an available source of energy for the cell. Recently it was demonstrated that they play an important role in other many cellular processes. Among the many unresolved questions about them, it is not even known how LDs is formed, how lipids are recruited to LDs and how they interact with the other organelles. Excess fat in the organism is pathological and often associated with the development of some genetic, hormonal or behavioral diseases. The formation and accumulation of lipid droplets in the cytoplasm can be increased by exogenous physical or chemical agents. It is well known that ionizing radiation affects lipid metabolism resulting in increased lipogenesis in cells, but the details of this process are unknown. To better understand the mode of formation of LDs in liver cells, we investigate their ultrastructural morphology after irradiation. For that, Wistar rats were exposed to whole body gamma radiation from 60-cobalt at various single doses. Samples of the livers were processed for analysis under a conventional transmission electron microscope. We found that when compared to controls, morphological changes in liver cells were evident at the higher doses of radiation used. It was detected a great number of lipid droplets of different sizes and homogeneous content and some of them merged each other. In some cells, it was observed diffused LDs, not limited by a monolayer of phospholipids. This finding suggests that the phospholipid monolayer of the LDs was disrupted by ionizing radiation exposure that promotes lipid peroxydation of endo membranes. Thus the absence of the phospholipid monolayer may prevent the realization of some cellular activities as follow: - lipid exocytosis which requires the merging of LDs membrane with the plasma membrane; - the interaction of LDs with other membrane-bound organelles such as the endoplasmic reticulum (ER), the golgi and mitochondria and; - lipolysis of lipid esters contained in the LDs which requires the presence of enzymes located in membrane-bound organelles as ER. All these impediments can contribute to lipid accumulation in the cytoplasm and the development of diseases such as liver steatosis, cirrhosis and cancer.

Keywords: radiobiology, hepatocytes, lipid metabolism, transmission electron microscopy

Procedia PDF Downloads 300
18528 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: design studies, computational model(s), case study/studies, modelling, coupling beam

Procedia PDF Downloads 459
18527 An Agile, Intelligent and Scalable Framework for Global Software Development

Authors: Raja Asad Zaheer, Aisha Tanveer, Hafza Mehreen Fatima

Abstract:

Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.

Keywords: agile project management, agile tools/techniques, distributed teams, global software development

Procedia PDF Downloads 286
18526 Production of Biodiesel Using Brine Waste as a Heterogeneous Catalyst

Authors: Hilary Rutto, Linda Sibali

Abstract:

In these modern times, we constantly search for new and innovative technologies to lift the burden of our extreme energy demand. The overall purpose of biofuel production research is to source an alternative energy source to replace the normal use of fossil fuel as liquid petroleum products. This experiment looks at the basis of biodiesel production with regards to alternative catalysts that can be used to produce biodiesel. The key factors that will be addressed during the experiments will focus on temperature variation, catalyst additions to the overall reaction, methanol to oil ratio, and the impact of agitation on the reaction. Brine samples sources from nearby plants will be evaluated and tested thoroughly and the key characteristics of these brine samples analysed for the verification of its use as a possible catalyst in biodiesel production. The one factor at a time experimental approach was used in this experiment, and the recycle and reuse characteristics of the heterogeneous catalyst was evaluated.

Keywords: brine sludge, heterogenous catalyst, biodiesel, one factor

Procedia PDF Downloads 152