Search results for: in situ generation and delivery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5781

Search results for: in situ generation and delivery

321 Evaluating the Teaching and Learning Value of Tablets

Authors: Willem J. A. Louw

Abstract:

The wave of new advanced computing technology that has been developed during the recent past has significantly changed the way we communicate, collaborate and collect information. It has created a new technology environment and paradigm in which our children and students grow-up and this impacts on their learning. Research confirmed that Generation Y students have a preference for learning in the new technology environment. The challenge or question is: How do we adjust our teaching and learning to make the most of these changes. The complexity of effective and efficient teaching and learning must not be underestimated and changes must be preceded by proper objective research to prevent any haphazard developments that could do more harm than benefit. A blended learning approach has been used in the Forestry department for a few numbers of years including the use of electronic-peer assisted learning (e-pal) in a fixed-computer set-up within a learning management system environment. It was decided to extend the investigation and do some exploratory research by using a range of different Tablet devices. For this purpose, learning activities or assignments were designed to cover aspects of communication, collaboration and collection of information. The Moodle learning management system was used to present normal module information, to communicate with students and for feedback and data collection. Student feedback was collected by using an online questionnaire and informal discussions. The research project was implemented in 2013, 2014 and 2015 amongst first and third-year students doing a forestry three-year technical tertiary qualification in commercial plantation management. In general, more than 80% of the students alluded to that the device was very useful in their learning environment while the rest indicated that the devices were not very useful. More than ninety percent of the students acknowledged that they would like to continue using the devices for all of their modules whilst the rest alluded to functioning efficiently without the devices. Results indicated that information collection (access to resources) was rated the highest advantageous factor followed by communication and collaboration. The main general advantages of using Tablets were listed by the students as being mobility (portability), 24/7 access to learning material and information of any kind on a user friendly device in a Wi-Fi environment, fast computing process speeds, saving time, effort and airtime through skyping and e-mail, and use of various applications. Ownership of the device is a critical factor while the risk was identified as a major potential constraint. Significant differences were reported between the different types and quality of Tablets. The preferred types are those with a bigger screen and the ones with overall better functionality and quality features. Tablets significantly increase the collaboration, communication and information collection needs of the students. It does, however, not replace the need of a computer/laptop because of limited storage and computation capacity, small screen size and inefficient typing.

Keywords: tablets, teaching, blended learning, tablet quality

Procedia PDF Downloads 229
320 Bio-Nanotechnology Approach of Nano-Size Iron Particles as Promising Iron Supplements: An Exploratory Study to Combat the Problems of Iron Fortification in Children and Pregnant Women of Rural India

Authors: Roshni Raha, Kavya P., Gayathri M.

Abstract:

India, with a humongous population, remains the world's poorest developing nation in terms of nutritional status, with iron deficiency anaemia (IDA) affecting the population. Despite efforts over the past decades, India's anaemia prevalence has not been reduced. Researchers are interested in developing therapies that will minimize the typical side effects of oral iron and optimize iron salts-based treatment through delivery methods based on the physiology of hepcidin regulation. However, they need to come up with iron therapies that will prevent making the infection worse. This article explores using bio-nanotechnology as the alternative, promising substitution of providing iron supplements for the treatment of diarrhoea and gut inflammation in kids and pregnant women. This article is an exploratory study using a literature survey and secondary research from review papers. In the realm of biotechnology, nanoparticles have become extremely famous due to unexpected variations in surface characteristics caused by particle size. Particle size distribution and shape exhibit unusual, enhanced characteristics when reduced to nanoscale. The article attempts to develop a model for a nanotechnology based solution in iron fortification to combat the problems of diarrhoea and gut inflammation. Certain dimensions that have been considered in the model include the size, shape, source, and biosynthesis of the iron nanoparticles. Another area of investigation addressed in the article is the cost-effective biocompatible production of these iron nanoparticles. Studies have demonstrated that a substantial reduction of metal ions to form nanoparticles from the bulk metal occurs in plants because of the presence of a wide diversity of biomolecules. Using this concept, the paper investigates the effectiveness and impact of how similar sources can be used for the biological synthesis of iron nanoparticles. Results showed that iron particles, when prepared in nano-metre size, offer potential advantages. When the particle size of the iron compound decreases and attains nano configuration, its surface area increases, which further improves its solubility in the gastric acid, leading to higher absorption, higher bioavailability, and producing the least organoleptic changes in food. It has no negative effects and possesses a safe, effective profile to reduce IDA. Considering all the parameters, it has been concluded that iron particles in nano configuration serve as alternative iron supplements for the complete treatment of IDA. Nanoparticles of ferric phosphate, ferric pyrophosphate, and iron oxide are the choices of iron supplements. From a sourcing perspective, the paper concludes green sources are the primary sources for the biological synthesis of iron nanoparticles. It will also be a cost-effective strategy since our goal is to treat the target population in rural India. Bio-nanotechnology serves as an alternative and promising substitution for iron supplements due to its low cost, excellent bioavailability, and strong organoleptic properties. One area of future research can be to explore the type of size and shape of iron nanoparticles that would be suitable for the different age groups of pregnant women and children and whether it would be influenced based on the topography in certain areas.

Keywords: anemia, bio-nanotechnology, iron-fortification, nanoparticle

Procedia PDF Downloads 49
319 Innovation Culture TV “Stars of Science”: 15 Seasons Case Study

Authors: Fouad Mrad, Viviane Zaccour

Abstract:

The accelerated developments in the political, economic, environmental, security, health, and social folders are exhausting planners across the world, especially in Arab countries. The impact of the tension is multifaceted and has resulted in conflicts, wars, migration, and human insecurity. The potential cross-cutting role that science, innovation and technology can play in supporting Arab societies to address these pressing challenges is a serious, unique chance for the people of the region. This opportunity is based on the existing capacity of educated youth and inaccessible talents in the local universities and research centers. It has been accepted that Arab countries have achieved major advancements in the economy, education and social wellbeing since the 70s of the 20th Century. Mainly direct outcome of the oil and other natural resources. The UN Secretary-General, during the Education Summit in Sep 2022, stressed that “Learning continues to underplay skills, including problem-solving, critical thinking and empathy.” Stars of Science by Qatar Foundation was launched in 2009 and has been sustained through 2023. Consistent mission from the start: To mobilize a new generation of Pan-Arab innovators and problem solvers by encouraging youth participation and interest in Science, Technology and Entrepreneurship throughout the Arab world via the program and its social media activities. To make science accessible and attractive to mass audiences by de-mystifying the process of innovation. Harnessing best practices within reality TV to show that science, engineering, and innovation are important in everyday life and can be fun.” Thousands of Participants learned unforgettable lessons; winners changed their lives forever as they learned and earned seed capital; they became drivers of change in their countries and families; millions of viewers were exposed to an innovative experimental process, and culturally, several relevant national institutions adopted the SOS track in their national initiatives. The program exhibited experientially youth self-efficacy as the most distinct core property of human agency, which is an individual's belief in his or her capacity to execute behaviors necessary to produce specific performance attainments. In addition, the program proved that innovations are performed by networks of people with different sets of technological, useful knowledge, skills and competencies introduced by socially shared technological knowledge as a main determinant of economic activities in any economy.

Keywords: science, invention, innovation, Qatar foundation, QSTP, prototyping

Procedia PDF Downloads 55
318 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 190
317 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students

Authors: Lily Ranjbar, Haori Yang

Abstract:

Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.

Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education

Procedia PDF Downloads 68
316 Social Value of Travel Time Savings in Sub-Saharan Africa

Authors: Richard Sogah

Abstract:

The significance of transport infrastructure investments for economic growth and development has been central to the World Bank’s strategy for poverty reduction. Among the conventional surface transport infrastructures, road infrastructure is significant in facilitating the movement of human capital goods and services. When transport projects (i.e., roads, super-highways) are implemented, they come along with some negative social values (costs), such as increased noise and air pollution for local residents living near these facilities, displaced individuals, etc. However, these projects also facilitate better utilization of existing capital stock and generate other observable benefits that can be easily quantified. For example, the improvement or construction of roads creates employment, stimulates revenue generation (toll), reduces vehicle operating costs and accidents, increases accessibility, trade expansion, safety improvement, etc. Aside from these benefits, travel time savings (TTSs) which are the major economic benefits of urban and inter-urban transport projects and therefore integral in the economic assessment of transport projects, are often overlooked and omitted when estimating the benefits of transport projects, especially in developing countries. The absence of current and reliable domestic travel data and the inability of replicated models from the developed world to capture the actual value of travel time savings due to the large unemployment, underemployment, and other labor-induced distortions has contributed to the failure to assign value to travel time savings when estimating the benefits of transport schemes in developing countries. This omission of the value of travel time savings from the benefits of transport projects in developing countries poses problems for investors and stakeholders to either accept or dismiss projects based on schemes that favor reduced vehicular operating costs and other parameters rather than those that ease congestion, increase average speed, facilitate walking and handloading, and thus save travel time. Given the complex reality in the estimation of the value of travel time savings and the presence of widespread informal labour activities in Sub-Saharan Africa, we construct a “nationally ranked distribution of time values” and estimate the value of travel time savings based on the area beneath the distribution. Compared with other approaches, our method captures both formal sector workers and individuals/people who work outside the formal sector and hence changes in their time allocation occur in the informal economy and household production activities. The dataset for the estimations is sourced from the World Bank, the International Labour Organization, etc.

Keywords: road infrastructure, transport projects, travel time savings, congestion, Sub-Sahara Africa

Procedia PDF Downloads 80
315 Investigation of the Controversial Immunomodulatory Potential of Trichinella spiralis Excretory-Secretory Products versus Extracellular Vesicles Derived from These Products in vitro

Authors: Natasa Ilic, Alisa Gruden-Movsesijan, Maja Kosanovic, Sofija Glamoclija, Marina Bekic, Ljiljana Sofronic-Milosavljevic, Sergej Tomic

Abstract:

As a very promising candidate for modulation of immune response in the sense of biasing the inflammatory towards an anti-inflammatory type of response, Trichinella spiralis infection was shown to successfully alleviate the severity of experimental autoimmune encephalomyelitis, the animal model of human disease multiple sclerosis. This effect is achieved via its excretory-secretory muscle larvae (ES L1) products which affect the maturation status and function of dendritic cells (DCs) by inducing the tolerogenic status of DCs, which leads to the mitigation of the Th1 type of response and the activation of a regulatory type of immune response both in vitro and in vivo. ES L1 alone or via treated DCs successfully mitigated EAE in the same manner as the infection itself. On the other hand, it has been shown that T. spiralis infection slows down the tumour growth and significantly reduces the tumour size in the model of mouse melanoma, while ES L1 possesses a pro-apoptotic and anti-survival effect on melanoma cells in vitro. Hence, although the mechanisms still need to be revealed, T. spiralis infection and its ES L1 products have a bit of controversial potential to modulate both inflammatory diseases and malignancies. The recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that the induction of complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. This study aimed to explore whether TsEVs bare the similar potential as ES L1 to influence the status of DCs in initiation, progression and regulation of immune response, but also to investigate the effect of both ES L1 and TsEVs on myeloid derived suppressor cells (MDSC) which present the regular tumour tissue environment. TsEVs were enriched from the conditioned medium of T. spiralis muscle larvae by differential centrifugation and used for the treatment of human monocyte-derived DCs and MDSC. On DCs, TsEVs induced low expression of HLA DR and CD40, moderate CD83 and CD86, and increased expression of ILT3 and CCR7 on treated DCs, i.e., they induced tolerogenic DCs. Such DCs possess the capacity to polarize T cell immune response towards regulatory type, with an increased proportion of IL-10 and TGF-β producing cells, similarly to ES L1. These findings indicated that the ability of TsEVs to induce tolerogenic DCs favoring anti-inflammatory responses may be helpful in coping with diseases that involve Th1/Th17-, but also Th2-mediated inflammation. In MDSC in vitro model, although both ES L1 and TsEVs had the same impact on MDSC phenotype i.e., they acted suppressive, ES L1 treated MDSC, unlike TsEVs treated ones, induced T cell response characterized by the increased RoRγT and IFN-γ, while the proportion of regulatory cells was decreased followed by the decrease in IL-10 and TGF-β positive cells proportion within this population. These findings indicate the interesting ability of ES L1 to modulate T cells response via MDSC towards pro-inflamatory type, suggesting that, unlike TsEVs which consistently demonstrate the suppresive effect on inflammatory response, it could be used also for the development of new approaches aimed for the treatment of malignant diseases. Acknowledgment: This work was funded by the Promis project – Nano-MDCS-Thera, Science Fund, Republic of Serbia.

Keywords: dendritic cells, myeloid derived suppressor cells, immunomodulation, Trichinella spiralis

Procedia PDF Downloads 181
314 Phase Synchronization of Skin Blood Flow Oscillations under Deep Controlled Breathing in Human

Authors: Arina V. Tankanag, Gennady V. Krasnikov, Nikolai K. Chemeris

Abstract:

The development of respiration-dependent oscillations in the peripheral blood flow may occur by at least two mechanisms. The first mechanism is related to the change of venous pressure due to mechanical activity of lungs. This phenomenon is known as ‘respiratory pump’ and is one of the mechanisms of venous return of blood from the peripheral vessels to the heart. The second mechanism is related to the vasomotor reflexes controlled by the respiratory modulation of the activity of centers of the vegetative nervous system. Early high phase synchronization of respiration-dependent blood flow oscillations of left and right forearm skin in healthy volunteers at rest was shown. The aim of the work was to study the effect of deep controlled breathing on the phase synchronization of skin blood flow oscillations. 29 normotensive non-smoking young women (18-25 years old) of the normal constitution without diagnosed pathologies of skin, cardiovascular and respiratory systems participated in the study. For each of the participants six recording sessions were carried out: first, at the spontaneous breathing rate; and the next five, in the regimes of controlled breathing with fixed breathing depth and different rates of enforced breathing regime. The following rates of controlled breathing regime were used: 0.25, 0.16, 0.10, 0.07 and 0.05 Hz. The breathing depth amounted to 40% of the maximal chest excursion. Blood perfusion was registered by laser flowmeter LAKK-02 (LAZMA, Russia) with two identical channels (wavelength 0.63 µm; emission power, 0.5 mW). The first probe was fastened to the palmar surface of the distal phalanx of left forefinger; the second probe was attached to the external surface of the left forearm near the wrist joint. These skin zones were chosen as zones with different dominant mechanisms of vascular tonus regulation. The degree of phase synchronization of the registered signals was estimated from the value of the wavelet phase coherence. The duration of all recording was 5 min. The sampling frequency of the signals was 16 Hz. The increasing of synchronization of the respiratory-dependent skin blood flow oscillations for all controlled breathing regimes was obtained. Since the formation of respiration-dependent oscillations in the peripheral blood flow is mainly caused by the respiratory modulation of system blood pressure, the observed effects are most likely dependent on the breathing depth. It should be noted that with spontaneous breathing depth does not exceed 15% of the maximal chest excursion, while in the present study the breathing depth was 40%. Therefore it has been suggested that the observed significant increase of the phase synchronization of blood flow oscillations in our conditions is primarily due to an increase of breathing depth. This is due to the enhancement of both potential mechanisms of respiratory oscillation generation: venous pressure and sympathetic modulation of vascular tone.

Keywords: deep controlled breathing, peripheral blood flow oscillations, phase synchronization, wavelet phase coherence

Procedia PDF Downloads 184
313 The Impact of Corporate Social Responsibility Perception on Organizational Commitment: The Case of Cabin Crew in a Civil Aviation Company

Authors: Şeyda Kaya

Abstract:

The aim of this study is to examine the relationship between corporate social responsibility perception and organizational commitment among Turkish cabin crew. At the same time, the social responsibility perception and organizational commitment scores of the participants were compared according to their gender, age, education level, title, and work experience. In the globalizing world, businesses have developed some innovative marketing methods in order to survive and strengthen their place in the market. Nowadays, consumers who are connected to the brand with an emotional bond rather than being just consumers. Corporate Social Responsibility Projects, on the one hand, provide social benefit, on the other hand, increase the brand awareness of businesses by providing credibility in the eyes of consumers. The rapid increase of competition, requires businesses to use their human resources, which is the most important resource to sustain their existence, in the most effective and efficient way. For this reason, the concept of ‘Organizational Commitment’ has become an important research topic for business and academics. Although there are studies in the literature to determine the effect of the perception of corporate social Responsibility on Organizational Commitment in Banking and Finance and Tourism sectors, there are no studies conducted specifically for the Turkish aviation sector to our best knowledge. Personal information form, CSR scale, Importance of CSR scale, Organizational commitment scale were used as data collection tools in the research. CSR Scale created by Türker (2006). was used to find out how employees felt about CSR. Importance of CSR Scale through a subscale of the Perceived Role of Ethics and Social Responsibility (PRESOR) that Etheredge (1999) converted into a two-factor framework, the significance of social responsibility for employees was assessed. Organizational Commitment Scale, Mowday, Steers, and Porter (1979) created the OCQ, which uses 15 measures to evaluate global commitment to the organization. As a result of the study, there is a significant positive relationship between the participants' CSR scale sub-dimensions, CSR to Employees, CSR to Customers, CSR to Society, CSR to Government, CSR to Natural Environment, CSR to Next Generation, CSR to Governmental Organizations, Importance of CSR, and Organizational Commitment scores. As a result; as the participants' Corporate Social Responsibility scores increase, their organizational commitment increases. To summarize the findings of our study, the scores obtained from the CSR scale and the scores obtained from the Organizational Commitment scale were found to have a positive and significant relationship. In other words, if the participants value the corporate social responsibility projects of the institution they work for and think that they spare time and effort, the importance they attach to the corporate social responsibility projects and their organizational commitment to the institution they work for, increase. Similarly, the scores obtained from the Importance of CSR and the scores obtained from the Organizational Commitment scale also have a positive and significant relationship. As the importance given to corporate social responsibility projects by the participants increases, their organizational commitment to the institution they work for also increases.

Keywords: corporate social responsibility, organizational commitment, Turkish cabin crew, aviation

Procedia PDF Downloads 79
312 Development of Intellectual Property Information Services in Zimbabwe’s University Libraries: Assessing the Current Status and Mapping the Future Direction

Authors: Jonathan Munyoro, Takawira Machimbidza, Stephen Mutula

Abstract:

The study investigates the current status of Intellectual Property (IP) information services in Zimbabwe's university libraries. Specifically, the study assesses the current IP information services offered in Zimbabwe’s university libraries, identifies challenges to the development of comprehensive IP information services in Zimbabwe’s university libraries, and suggests solutions for the development of IP information services in Zimbabwe’s university libraries. The study is born out of a realisation that research on IP information services in university libraries has received little attention, especially in developing country contexts, despite the fact that there are calls for heightened participation of university libraries in IP information services. In Zimbabwe, the launch of the National Intellectual Property Policy and Implementation Strategy 2018-2022 and the introduction of the Education 5.0 concept are set to significantly change the IP landscape in the country. Education 5.0 places more emphasis on innovation and industrialisation (in addition to teaching, community service, and research), and has the potential to shift the focus and level of IP output produced in higher and tertiary education institutions beyond copyrights and more towards commercially exploited patents, utility models, and industrial designs. The growing importance of IP commercialisation in universities creates a need for appropriate IP information services to assist students, academics, researchers, administrators, start-ups, entrepreneurs, and inventors. The critical challenge for university libraries is to reposition themselves and remain relevant in the new trajectory. Designing specialised information services to support increased IP generation and commercialisation appears to be an opportunity for university libraries to stay relevant in the knowledge economy. However, IP information services in Zimbabwe’s universities appear to be incomplete and focused mostly on assisting with research publications and copyright-related activities. Research on the existing status of IP services in university libraries in Zimbabwe is therefore necessary to help identify gaps and provide solutions in order to stimulate the growth of new forms of such services. The study employed a quantitative approach. An online questionnaire was administered to 57 academic librarians from 15 university libraries. Findings show that the current focus of the surveyed institutions is on providing scientific research support services (15); disseminating/sharing university research output (14); and copyright activities (12). More specialised IP information services such as IP education and training, patent information services, IP consulting services, IP online service platforms, and web-based IP information services are largely unavailable in Zimbabwean university libraries. Results reveal that the underlying challenge in the development of IP information services in Zimbabwe's university libraries is insufficient IP knowledge among academic librarians, which is exacerbated by inadequate IP management frameworks in university institutions. The study proposes a framework for the entrenchment of IP information services in Zimbabwe's university libraries.

Keywords: academic libraries, information services, intellectual property, IP knowledge, university libraries, Zimbabwe

Procedia PDF Downloads 123
311 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve

Procedia PDF Downloads 535
310 Modeling Geogenic Groundwater Contamination Risk with the Groundwater Assessment Platform (GAP)

Authors: Joel Podgorski, Manouchehr Amini, Annette Johnson, Michael Berg

Abstract:

One-third of the world’s population relies on groundwater for its drinking water. Natural geogenic arsenic and fluoride contaminate ~10% of wells. Prolonged exposure to high levels of arsenic can result in various internal cancers, while high levels of fluoride are responsible for the development of dental and crippling skeletal fluorosis. In poor urban and rural settings, the provision of drinking water free of geogenic contamination can be a major challenge. In order to efficiently apply limited resources in the testing of wells, water resource managers need to know where geogenically contaminated groundwater is likely to occur. The Groundwater Assessment Platform (GAP) fulfills this need by providing state-of-the-art global arsenic and fluoride contamination hazard maps as well as enabling users to create their own groundwater quality models. The global risk models were produced by logistic regression of arsenic and fluoride measurements using predictor variables of various soil, geological and climate parameters. The maps display the probability of encountering concentrations of arsenic or fluoride exceeding the World Health Organization’s (WHO) stipulated concentration limits of 10 µg/L or 1.5 mg/L, respectively. In addition to a reconsideration of the relevant geochemical settings, these second-generation maps represent a great improvement over the previous risk maps due to a significant increase in data quantity and resolution. For example, there is a 10-fold increase in the number of measured data points, and the resolution of predictor variables is generally 60 times greater. These same predictor variable datasets are available on the GAP platform for visualization as well as for use with a modeling tool. The latter requires that users upload their own concentration measurements and select the predictor variables that they wish to incorporate in their models. In addition, users can upload additional predictor variable datasets either as features or coverages. Such models can represent an improvement over the global models already supplied, since (a) users may be able to use their own, more detailed datasets of measured concentrations and (b) the various processes leading to arsenic and fluoride groundwater contamination can be isolated more effectively on a smaller scale, thereby resulting in a more accurate model. All maps, including user-created risk models, can be downloaded as PDFs. There is also the option to share data in a secure environment as well as the possibility to collaborate in a secure environment through the creation of communities. In summary, GAP provides users with the means to reliably and efficiently produce models specific to their region of interest by making available the latest datasets of predictor variables along with the necessary modeling infrastructure.

Keywords: arsenic, fluoride, groundwater contamination, logistic regression

Procedia PDF Downloads 317
309 Benchmarking of Petroleum Tanker Discharge Operations at a Nigerian Coastal Terminal and Jetty Facilitates Optimization of the Ship–Shore Interface

Authors: Bassey O. Bassey

Abstract:

Benchmarking has progressively become entrenched as a requisite activity for process improvement and enhancing service delivery at petroleum jetties and terminals, most especially during tanker discharge operations at the ship – shore interface, as avoidable delays result in extra operating costs, non-productive time, high demurrage payments and ultimate product scarcity. The jetty and terminal in focus had been operational for 3 and 8 years respectively, with proper operational and logistic records maintained to evaluate their progress over time in order to plan and implement modifications and review of procedures for greater technical and economic efficiency. Regular and emergency staff meetings were held on a team, departmental and company-wide basis to progressively address major challenges that were encountered during each operation. The process and outcome of the resultant collectively planned changes carried out within the past two years forms the basis of this paper, which mirrors the initiatives effected to enhance operational and maintenance excellence at the affected facilities. Operational modifications included a second cargo receipt line designated for gasoline, product loss control at jetty and shore ends, enhanced product recovery and quality control, and revival of terminal–jetty backloading operations. Logistic improvements were the incorporation of an internal logistics firm and shipping agency, fast tracking of discharge procedures for tankers, optimization of tank vessel selection process, and third party product receipt and throughput. Maintenance excellence was achieved through construction of two new lay barges and refurbishment of the existing one; revamping of existing booster pump and purchasing of a modern one as reserve capacity; extension of Phase 1 of the jetty to accommodate two vessels and construction of Phase 2 for two more vessels; regular inspection, draining, drying and replacement of cargo hoses; corrosion management program for all process facilities; and an improved, properly planned and documented maintenance culture. Safety, environmental and security compliance were enhanced by installing state-of-the-art fire fighting facilities and equipment, seawater intake line construction as backup for borehole at the terminal, remediation of the shoreline and marine structures, modern spill containment equipment, improved housekeeping and accident prevention practices, and installation of hi-technology security enhancements, among others. The end result has been observed over the past two years to include improved tanker turnaround time, higher turnover on product sales, consistent product availability, greater indigenous human capacity utilisation by way of direct hires and contracts, as well as customer loyalty. The lessons learnt from this exercise would, therefore, serve as a model to be adapted by other operators of similar facilities, contractors, academics and consultants in a bid to deliver greater sustainability and profitability of operations at the ship – shore interface to this strategic industry.

Keywords: benchmarking, optimisation, petroleum jetty, petroleum terminal

Procedia PDF Downloads 337
308 Carbon Nanofibers as the Favorite Conducting Additive for Mn₃O₄ Catalysts for Oxygen Reactions in Rechargeable Zinc-Air Battery

Authors: Augustus K. Lebechi, Kenneth I. Ozoemena

Abstract:

Rechargeable zinc-air batteries (RZABs) have been described as one of the most viable next-generation ‘beyond-the-lithium-ion’ battery technologies with great potential for renewable energy storage. It is safe, with a high specific energy density (1086 Wh/kg), environmentally benign, and low-cost, especially in resource-limited African countries. For widespread commercialization, the sluggish oxygen reaction kinetics pose a major challenge that impedes the reversibility of the system. Hence, there is a need for low-cost and highly active bifunctional electrocatalysts. Manganese oxide catalysts on carbon conducting additives remain the best couple for the realization of such low-cost RZABs. In this work, hausmannite Mn₃O₄ nanoparticles were synthesized through the annealing method from commercial electrolytic manganese dioxide (EMD), multi-walled carbon nanotubes (MWCNTs) were synthesized via the chemical vapor deposition (CVD) method and carbon nanofibers (CNFs) were synthesized via the electrospinning process with subsequent carbonization. Both Mn₃O₄ catalysts and the carbon conducting additives (MWCNT and CNF) were thoroughly characterized using X-ray powder diffraction spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Composite electrocatalysts (Mn₃O₄/CNT and Mn₃O₄/CNF) were investigated for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an alkaline medium. Using the established electrocatalytic modalities for evaluating the electrocatalytic performance of materials (including double layer, electrochemical active surface area, roughness factor, specific current density, and catalytic stability), CNFs proved to be the most efficient conducting additive material for the Mn₃O₄ catalyst. From the DFT calculations, the higher performance of the CNFs over the MWCNTs is related to the ability of the CNFs to allow for a more favorable distribution of the d-electrons of the manganese (Mn) and enhanced synergistic effect with Mn₃O₄ for weaker adsorption energies of the oxygen intermediates (O*, OH* and OOH*). In a proof-of-concept, Mn₃O₄/CNF was investigated as the air cathode for rechargeable zinc-air battery (RZAB) in a micro-3D-printed cell configuration. The RZAB showed good performance in terms of open circuit voltage (1.77 V), maximum power density (177.5 mW cm-2), areal-discharge energy and cycling stability comparable to Pt/C (20 wt%) + IrO2. The findings here provide fresh physicochemical perspectives on the future design and utility of CNFs for developing manganese-based RZABs.

Keywords: bifunctional electrocatalyst, oxygen evolution reaction, oxygen reduction reactions, rechargeable zinc-air batteries.

Procedia PDF Downloads 38
307 Energy Harvesting and Storage System for Marine Applications

Authors: Sayem Zafar, Mahmood Rahi

Abstract:

Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.

Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine

Procedia PDF Downloads 110
306 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems

Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana

Abstract:

Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.

Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP

Procedia PDF Downloads 162
305 Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser

Authors: Junze Li, M. Li

Abstract:

Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well.

Keywords: DFB laser, MOCVD, nanoepitaxy, III-niitride

Procedia PDF Downloads 157
304 Agricultural Education and Research in India: Challenges and Way Forward

Authors: Kiran Kumar Gellaboina, Padmaja Kaja

Abstract:

Agricultural Education and Research in India needs a transformation to serve the needs of the farmers and that of the nation. The fact that Agriculture and allied activities act as main source of livelihood for more than 70% population of rural India reinforces its importance in administrative and policy arena. As per Census 2011 of India it provides employment to approximately 56.6 % of labour. India has achieved significant growth in agriculture, milk, fish, oilseeds and fruits and vegetables owing to green, white, blue and yellow revolutions which have brought prosperity to farmers. Many factors are responsible for these achievement viz conducive government policies, receptivity of the farmers and also establishment of higher agricultural education institutions. The new breed of skilled human resources were instrumental in generating new technologies, and in its assessment, refinement and finally its dissemination to the farming community through extension methods. In order to sustain, diversify and realize the potential of agriculture sectors, it is necessary to develop skilled human resources. Agricultural human resource development is a continuous process undertaken by agricultural universities. The Department of Agricultural Research and Education (DARE) coordinates and promotes agricultural research & education in India. In India, agricultural universities were established on ‘land grant’ pattern of USA which helped incorporation of a number of diverse subjects in the courses as also provision of hands-on practical exposure to the student. The State Agricultural Universities (SAUs) established through the legislative acts of the respective states and with major financial support from them leading to administrative and policy controls. It has been observed that pace and quality of technology generation and human resource development in many of the SAUs has gone down. The reason for this slackening are inadequate state funding, reduced faculty strength, inadequate faculty development programmes, lack of modern infrastructure for education and research etc. Establishment of new state agricultural universities and new faculties/colleges without providing necessary financial and faculty support has aggrieved the problem. The present work highlights some of the key issues affecting agricultural education and research in India and the impact it would have on farm productivity and sustainability. Secondary data pertaining to budgetary spend on agricultural education and research will be analyzed. This paper will study the trends in public spending on agricultural education and research and the per capita income of farmers in India. This paper tries to suggest that agricultural education and research has a key role in equipping the human resources for enhanced agricultural productivity and sustainable use of natural resources. Further, a total re-orientation of agricultural education with emphasis on other agricultural related social sciences is needed for effective agricultural policy research.

Keywords: agriculture, challenges, education, research

Procedia PDF Downloads 204
303 An Action Toolkit for Health Care Services Driving Disability Inclusion in Universal Health Coverage

Authors: Jill Hanass-Hancock, Bradley Carpenter, Samantha Willan, Kristin Dunkle

Abstract:

Access to quality health care for persons with disabilities is the litmus test in our strive toward universal health coverage. Persons with disabilities experience a variety of health disparities related to increased health risks, greater socioeconomic challenges, and persistent ableism in the provision of health care. In low- and middle-income countries, the support needed to address the diverse needs of persons with disabilities and close the gaps in inclusive and accessible health care can appear overwhelming to staff with little knowledge and tools available. An action-orientated disability inclusion toolkit for health facilities was developed through consensus-building consultations and field testing in South Africa. The co-creation of the toolkit followed a bottom-up approach with healthcare staff and persons with disabilities in two developmental cycles. In cycle one, a disability facility assessment tool was developed to increase awareness of disability accessibility and service delivery gaps in primary healthcare services in a simple and action-orientated way. In cycle two, an intervention menu was created, enabling staff to respond to identified gaps and improve accessibility and inclusion. Each cycle followed five distinct steps of development: a review of needs and existing tools, design of the draft tool, consensus discussion to adapt the tool, pilot-testing and adaptation of the tool, and identification of the next steps. The continued consultations, adaptations, and field-testing allowed the team to discuss and test several adaptations while co-creating a meaningful and feasible toolkit with healthcare staff and persons with disabilities. This approach led to a simplified tool design with ‘key elements’ needed to achieve universal health coverage: universal design of health facilities, reasonable accommodation, health care worker training, and care pathway linkages. The toolkit was adapted for paper or digital data entry, produces automated, instant facility reports, and has easy-to-use training guides and online modules. The cyclic approach enabled the team to respond to emerging needs. The pilot testing of the facility assessment tool revealed that healthcare workers took significant actions to change their facilities after an assessment. However, staff needed information on how to improve disability accessibility and inclusion, where to acquire accredited training, and how to improve disability data collection, referrals, and follow-up. Hence, intervention options were needed for each ‘key element’. In consultation with representatives from the health and disability sectors, tangible and feasible solutions/interventions were identified. This process included the development of immediate/low-cost and long-term solutions. The approach gained buy-in from both sectors, who called for including the toolkit in the standard quality assessments for South Africa’s health care services. Furthermore, the process identified tangible solutions for each ‘key element’ and highlighted where research and development are urgently needed. The cyclic and consultative approach enabled the development of a feasible facility assessment tool and a complementary intervention menu, moving facilities toward universal health coverage for and persons with disabilities in low- or better-resourced contexts while identifying gaps in the availability of interventions.

Keywords: public health, disability, accessibility, inclusive health care, universal health coverage

Procedia PDF Downloads 48
302 Optimizing Productivity and Quality through the Establishment of a Learning Management System for an Agency-Based Graduate School

Authors: Maria Corazon Tapang-Lopez, Alyn Joy Dela Cruz Baltazar, Bobby Jones Villanueva Domdom

Abstract:

The requisite for an organization implementing quality management system to sustain its compliance to the requirements and commitment for continuous improvement is even higher. It is expected that the offices and units has high and consistent compliance to the established processes and procedures. The Development Academy of the Philippines has been operating under project management to which is has a quality management certification. To further realize its mandate as a think-tank and capacity builder of the government, DAP expanded its operation and started to grant graduate degree through its Graduate School of Public and Development Management (GSPDM). As the academic arm of the Academy, GSPDM offers graduate degree programs on public management and productivity & quality aligned to the institutional trusts. For a time, the documented procedures and processes of a project management seem to fit the Graduate School. However, there has been a significant growth in the operations of the GSPDM in terms of the graduate programs offered that directly increase the number of students. There is an apparent necessity to align the project management system into a more educational system otherwise it will no longer be responsive to the development that are taking place. The strongly advocate and encourage its students to pursue internal and external improvement to cope up with the challenges of providing quality service to their own clients and to our country. If innovation will not take roots in the grounds of GSPDM, then how will it serve the purpose of “walking the talk”? This research was conducted to assess the diverse flow of the existing internal operations and processes of the DAP’s project management and GSPDM’s school management that will serve as basis to develop a system that will harmonize into one, the Learning Management System. The study documented the existing process of GSPDM following the project management phases of conceptualization & development, negotiation & contracting, mobilization, implementation, and closure into different flow charts of the key activities. The primary source of information as respondents were the different groups involved into the delivery of graduate programs - the executive, learning management team and administrative support offices. The Learning Management System (LMS) shall capture the unique and critical processes of the GSPDM as a degree-granting unit of the Academy. The LMS is the harmonized project management and school management system that shall serve as the standard system and procedure for all the programs within the GSPDM. The unique processes cover the three important areas of school management – student, curriculum, and faculty. The required processes of these main areas such as enrolment, course syllabus development, and faculty evaluation were appropriately placed within the phases of the project management system. Further, the research shall identify critical reports and generate manageable documents and records to ensure accuracy, consistency and reliable information. The researchers had an in-depth review of the DAP-GSDPM’s mandate, analyze the various documents, and conducted series of focused group discussions. A comprehensive review on flow chart system prior and various models of school management systems were made. Subsequently, the final output of the research is a work instructions manual that will be presented to the Academy’s Quality Management Council and eventually an additional scope for ISO certification. The manual shall include documented forms, iterative flow charts and program Gantt chart that will have a parallel development of automated systems.

Keywords: productivity, quality, learning management system, agency-based graduate school

Procedia PDF Downloads 296
301 The Impact of Speech Style on the Production of Spanish Vowels by Spanish-English Bilinguals and Spanish Monolinguals

Authors: Vivian Franco

Abstract:

There has been a great deal of research about vowel production of second language learners of Spanish, vowel variation across Spanish dialects, and more recently, research related to Spanish heritage speakers’ vowel production based on speech style. However, there is little investigation reported on Spanish heritage speakers’ vowel production in regard to task modality by incorporating own comparison groups of monolinguals and late bilinguals. Thus, the present study investigates the influence of speech style on Spanish heritage speakers’ vowel production by comparing Spanish-English early and late bilinguals and Spanish monolinguals. The study was guided by the following research question: How do early bilinguals (heritage speakers) differ/relate to advanced L2 speakers of Spanish (late bilinguals) and Spanish monolinguals in their vowel quality (acoustic distribution) and quantity (duration) based on speech style? The participants were a total of 11 speakers of Spanish: 7 early Spanish-English bilinguals with a similar linguistic background (simultaneous bilinguals of the second generation); 2 advanced L2 speakers of Spanish; and 2 Spanish monolinguals from Mexico. The study consisted of two tasks. The first one adopted a semi-spontaneous style by a solicited narration of life experiences and a description of a favorite movie with the purpose to collect spontaneous speech. The second task was a reading activity in which the participants read two paragraphs of a Mexican literary essay 'La nuez.' This task aimed to obtain a more controlled speech style. From this study, it can be concluded that early bilinguals and monolinguals show a smaller formant vowel space overall compared to the late bilinguals in both speech styles. In terms of formant values by stress, the early bilinguals and the late bilinguals resembled in the semi-spontaneous speech style as their unstressed vowel space overlapped with that of the unstressed vowels different from the monolinguals who displayed a slightly reduced unstressed vowel space. For the controlled data, the early bilinguals were similar to the monolinguals as their stressed and unstressed vowel spaces overlapped in comparison to the late bilinguals who showed a more clear reduction of unstressed vowel space. In regard to stress, the monolinguals revealed longer vowel duration overall. However, findings of duration by stress showed that the early bilinguals and the monolinguals remained stable with shorter values of unstressed vowels in the semi-spontaneous data and longer duration in the controlled data when compared to the late bilinguals who displayed opposite results. These findings suggest an implication for Spanish heritage speakers and L2 Spanish vowels research as it has been frequently argued that Spanish bilinguals differ from the Spanish monolinguals by their vowel reduction and centralized vowel space influenced by English. However, some Spanish varieties are characterized by vowel reduction especially in certain phonetic contexts so that some vowels present more weakening than others. Consequently, it would not be conclusive to affirm an English influence on the Spanish of these bilinguals.

Keywords: Spanish-English bilinguals, Spanish monolinguals, spontaneous and controlled speech, vowel production.

Procedia PDF Downloads 108
300 The Role of Social Media in the Rise of Islamic State in India: An Analytical Overview

Authors: Yasmeen Cheema, Parvinder Singh

Abstract:

The evolution of Islamic State (acronym IS) has an ultimate goal of restoring the caliphate. IS threat to the global security is main concern of international community but has also raised a factual concern for India about the regular radicalization of IS ideology among Indian youth. The incident of joining Arif Ejaz Majeed, an Indian as ‘jihadist’ in IS has set strident alarm in law & enforcement agencies. On 07.03.2017, many people were injured in an Improvised Explosive Device (IED) blast on-board of Bhopal Ujjain Express. One perpetrator of this incident was killed in encounter with police. But, the biggest shock is that the conspiracy was pre-planned and the assailants who carried out the blast were influenced by the ideology perpetrated by the Islamic State. This is the first time name of IS has cropped up in a terror attack in India. It is a red indicator of violent presence of IS in India, which is spreading through social media. The IS have the capacity to influence the younger Muslim generation in India through its brutal and aggressive propaganda videos, social media apps and hatred speeches. It is a well known fact that India is on the radar of IS, as well on its ‘Caliphate Map’. IS uses Twitter, Facebook and other social media platforms constantly. Islamic State has used enticing videos, graphics, and articles on social media and try to influence persons from India & globally that their jihad is worthy. According to arrested perpetrator of IS in different cases in India, the most of Indian youths are victims to the daydreams which are fondly shown by IS. The dreams that the Muslim empire as it was before 1920 can come back with all its power and also that the Caliph and its caliphate can be re-established are shown by the IS. Indian Muslim Youth gets attracted towards these euphemistic ideologies. Islamic State has used social media for disseminating its poisonous ideology, recruitment, operational activities and for future direction of attacks. IS through social media inspired its recruits & lone wolfs to continue to rely on local networks to identify targets and access weaponry and explosives. Recently, a pro-IS media group on its Telegram platform shows Taj Mahal as the target and suggested mode of attack as a Vehicle Born Improvised Explosive Attack (VBIED). Islamic State definitely has the potential to destroy the Indian national security & peace, if timely steps are not taken. No doubt, IS has used social media as a critical mechanism for recruitment, planning and executing of terror attacks. This paper will therefore examine the specific characteristics of social media that have made it such a successful weapon for Islamic State. The rise of IS in India should be viewed as a national crisis and handled at the central level with efficient use of modern technology.

Keywords: ideology, India, Islamic State, national security, recruitment, social media, terror attack

Procedia PDF Downloads 204
299 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 256
298 The Influence of Newest Generation Butyrate Combined with Acids, Medium Chain Fatty Acids and Plant Extract on the Performance and Physiological State of Laying Hens

Authors: Vilma Sasyte, Vilma Viliene, Asta Raceviciute-Stupeliene, Agila Dauksiene, Romas Gruzauskas, Virginijus Slausgalvis, Jamal Al-Saifi

Abstract:

The aim of the present study was to investigate the effect of butyrate, acids, medium-chain fatty acids and plant extract mixture on performance, blood and gastrointestinal tract characteristics of laying hens’. For the period of 8 weeks, 24 Hisex Brown laying hens were randomly assigned to 2 dietary treatments: 1) control wheat-corn-soybean meal based diet (Control group), 2) control diet supplemented with the mixture of butyrate, acids, medium chain fatty acids and plant extract (Lumance®) at the level of 1.5 g/kg of feed (Experimental group). Hens were fed with a crumbled diet at 125 g per day. Housing and feeding conditions were the same for all groups and met the requirements of growth for laying hens of Hisex Brown strain. In the blood serum total protein, bilirubin, cholesterol, DTL- and MTL- cholesterol, triglycerides, glucose, GGT, GOT, GPT, alkaline phosphatase, alpha amylase, contents of c-reactive protein, uric acid, and lipase were analyzed. Development of intestines and internal organs (intestinal length, intestinal weight, the weight of glandular and muscular stomach, pancreas, heart, and liver) were determined. The concentration of short chain fatty acids in caecal content was measured using the method of HPLC. The results of the present study showed that 1.5 g/kg supplementation of feed additive affected egg production and feed conversion ratio for the production of 1 kg of egg mass. Dietary supplementation of analyzed additive in the diets increased the concentration of triglycerides, GOT, alkaline phosphatase and decreased uric acid content compared with the control group (P<0.05). No significant difference for others blood indices in comparison to the control was observed. The addition of feed additives in laying hens’ diets increased intestinal weight by 11% and liver weight by 14% compared with the control group (P<0.05). The short chain fatty acids (propionic, acetic and butyric acids) in the caecum of laying hens in experimental groups decreased compared with the control group. The supplementation of the mixture of butyrate, acids, medium-chain fatty acids and plant extract at the level of 1.5 g/kg in the laying hens’ diets had the effect on the performance, some gastrointestinal tract function and blood parameters of laying hens.

Keywords: acids, butyrate, laying hens, MCFA, performance, plant extract, psysiological state

Procedia PDF Downloads 279
297 Remote BioMonitoring of Mothers and Newborns for Temperature Surveillance Using a Smart Wearable Sensor: Techno-Feasibility Study and Clinical Trial in Southern India

Authors: Prem K. Mony, Bharadwaj Amrutur, Prashanth Thankachan, Swarnarekha Bhat, Suman Rao, Maryann Washington, Annamma Thomas, N. Sheela, Hiteshwar Rao, Sumi Antony

Abstract:

The disease burden among mothers and newborns is caused mostly by a handful of avoidable conditions occurring around the time of childbirth and within the first month following delivery. Real-time monitoring of vital parameters of mothers and neonates offers a potential opportunity to impact access as well as the quality of care in vulnerable populations. We describe the design, development and testing of an innovative wearable device for remote biomonitoring (RBM) of body temperatures in mothers and neonates in a hospital in southern India. The architecture consists of: [1] a low-cost, wearable sensor tag; [2] a gateway device for ‘real-time’ communication link; [3] piggy-backing on a commercial GSM communication network; and [4] an algorithm-based data analytics system. Requirements for the device were: long battery-life upto 28 days (with sampling frequency 5/hr); robustness; IP 68 hermetic sealing; and human-centric design. We undertook pre-clinical laboratory testing followed by clinical trial phases I & IIa for evaluation of safety and efficacy in the following sequence: seven healthy adult volunteers; 18 healthy mothers; and three sets of babies – 3 healthy babies; 10 stable babies in the Neonatal Intensive Care Unit (NICU) and 1 baby with hypoxic ischaemic encephalopathy (HIE). The 3-coin thickness, pebble-design sensor weighing about 8 gms was secured onto the abdomen for the baby and over the upper arm for adults. In the laboratory setting, the response-time of the sensor device to attain thermal equilibrium with the surroundings was 4 minutes vis-a-vis 3 minutes observed with a precision-grade digital thermometer used as a reference standard. The accuracy was ±0.1°C of the reference standard within the temperature range of 25-40°C. The adult volunteers, aged 20 to 45 years, contributed a total of 345 hours of readings over a 7-day period and the postnatal mothers provided a total of 403 paired readings. The mean skin temperatures measured in the adults by the sensor were about 2°C lower than the axillary temperature readings (sensor =34.1 vs digital = 36.1); this difference was statistically significant (t-test=13.8; p<0.001). The healthy neonates provided a total of 39 paired readings; the mean difference in temperature was 0.13°C (sensor =36.9 vs digital = 36.7; p=0.2). The neonates in the NICU provided a total of 130 paired readings. Their mean skin temperature measured by the sensor was 0.6°C lower than that measured by the radiant warmer probe (sensor =35.9 vs warmer probe = 36.5; p < 0.001). The neonate with HIE provided a total of 25 paired readings with the mean sensor reading being not different from the radian warmer probe reading (sensor =33.5 vs warmer probe = 33.5; p=0.8). No major adverse events were noted in both the adults and neonates; four adult volunteers reported mild sweating under the device/arm band and one volunteer developed mild skin allergy. This proof-of-concept study shows that real-time monitoring of temperatures is technically feasible and that this innovation appears to be promising in terms of both safety and accuracy (with appropriate calibration) for improved maternal and neonatal health.

Keywords: public health, remote biomonitoring, temperature surveillance, wearable sensors, mothers and newborns

Procedia PDF Downloads 181
296 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 61
295 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization

Authors: Sheng-Po Tseng, Che-Hua Yang

Abstract:

Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.

Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing

Procedia PDF Downloads 178
294 Viability Analysis of a Centralized Hydrogen Generation Plant for Use in Oil Refining Industry

Authors: C. Fúnez Guerra, B. Nieto Calderón, M. Jaén Caparrós, L. Reyes-Bozo, A. Godoy-Faúndez, E. Vyhmeister

Abstract:

The global energy system is experiencing a change of scenery. Unstable energy markets, an increasing focus on climate change and its sustainable development is forcing businesses to pursue new solutions in order to ensure future economic growth. This has led to the interest in using hydrogen as an energy carrier in transportation and industrial applications. As an energy carrier, hydrogen is accessible and holds a high gravimetric energy density. Abundant in hydrocarbons, hydrogen can play an important role in the shift towards low-emission fossil value chains. By combining hydrogen production by natural gas reforming with carbon capture and storage, the overall CO2 emissions are significantly reduced. In addition, the flexibility of hydrogen as an energy storage makes it applicable as a stabilizer in the renewable energy mix. The recent development in hydrogen fuel cells is also raising the expectations for a hydrogen powered transportation sector. Hydrogen value chains exist to a large extent in the industry today. The global hydrogen consumption was approximately 50 million tonnes (7.2 EJ) in 2013, where refineries, ammonia, methanol production and metal processing were main consumers. Natural gas reforming produced 48% of this hydrogen, but without carbon capture and storage (CCS). The total emissions from the production reached 500 million tonnes of CO2, hence alternative production methods with lower emissions will be necessary in future value chains. Hydrogen from electrolysis is used for a wide range of industrial chemical reactions for many years. Possibly, the earliest use was for the production of ammonia-based fertilisers by Norsk Hydro, with a test reactor set up in Notodden, Norway, in 1927. This application also claims one of the world’s largest electrolyser installations, at Sable Chemicals in Zimbabwe. Its array of 28 electrolysers consumes 80 MW per hour, producing around 21,000 Nm3/h of hydrogen. These electrolysers can compete if cheap sources of electricity are available and natural gas for steam reforming is relatively expensive. Because electrolysis of water produces oxygen as a by-product, a system of Autothermal Reforming (ATR) utilizing this oxygen has been analyzed. Replacing the air separation unit with electrolysers produces the required amount of oxygen to the ATR as well as additional hydrogen. The aim of this paper is to evaluate the technical and economic potential of large-scale production of hydrogen for oil refining industry. Sensitivity analysis of parameters such as investment costs, plant operating hours, electricity price and sale price of hydrogen and oxygen are performed.

Keywords: autothermal reforming, electrolyser, hydrogen, natural gas, steam methane reforming

Procedia PDF Downloads 185
293 Boussinesq Model for Dam-Break Flow Analysis

Authors: Najibullah M, Soumendra Nath Kuiry

Abstract:

Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.

Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model

Procedia PDF Downloads 216
292 Roadmap to a Bottom-Up Approach Creating Meaningful Contributions to Surgery in Low-Income Settings

Authors: Eva Degraeuwe, Margo Vandenheede, Nicholas Rennie, Jolien Braem, Miryam Serry, Frederik Berrevoet, Piet Pattyn, Wouter Willaert, InciSioN Belgium Consortium

Abstract:

Background: Worldwide, five billion people lack access to safe and affordable surgical care. An added 1.27 million surgeons, anesthesiologists, and obstetricians (SAO) are needed by 2030 to meet the target of 20 per 100,000 population and to reach the goal of the Lancet Commission on Global Surgery. A well-informed future generation exposed early on to the current challenges in global surgery (GS) is necessary to ensure a sustainable future. Methods: InciSioN, the International Student Surgical Network, is a non-profit organization by and for students, residents, and fellows in over 80 countries. InciSioN Belgium, one of the prominent national working groups, has made a vast progression and collaborated with other networks to fill the educational gap, stimulate advocacy efforts and increase interactions with the international network. This report describes a roadmap to achieve sustainable development and education within GS, with the example of InciSioN Belgium. Results: Since the establishment of the organization’s branch in 2019, it has hosted an educational workshop for first-year residents in surgery, engaging over 2500 participants, and established a recurring directing board of 15 members. In the year 2020-2021, InciSioN Ghent has organized three workshops combining educational and interactive sessions for future prime advocates and surgical candidates. InciSioN Belgium has set up a strong formal coalition with the Belgian Medical Students’ Association (BeMSA), with its own standing committee, reaching over 3000+ medical students annually. In 2021-2022, InciSioN Belgium broadened to a multidisciplinary approach, including dentistry and nursing students and graduates within workshops and research projects, leading to a member and exposure increase of 450%. This roadmap sets strategic goals and mechanisms for the GS community to achieve nationwide sustained improvements in the research and education of GS focused on future SAOs, in order to achieve the GS sustainable development goals. In the coming year, expansion is directed to a formal integration of GS into the medical curriculum and increased international advocacy whilst inspiring SAOs to integrate into GS in Belgium. Conclusion: The development and implementation of durable change for GS are necessary. The student organization InciSioN Belgium is growing and hopes to close the colossal gap in GS and inspire the growth of other branches while sharing the know-how of a student organization.

Keywords: advocacy, education, global surgery, InciSioN, student network

Procedia PDF Downloads 147