Search results for: floor estimation algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5593

Search results for: floor estimation algorithm

163 Improving the Technology of Assembly by Use of Computer Calculations

Authors: Mariya V. Yanyukina, Michael A. Bolotov

Abstract:

Assembling accuracy is the degree of accordance between the actual values of the parameters obtained during assembly, and the values specified in the assembly drawings and technical specifications. However, the assembling accuracy depends not only on the quality of the production process but also on the correctness of the assembly process. Therefore, preliminary calculations of assembly stages are carried out to verify the correspondence of real geometric parameters to their acceptable values. In the aviation industry, most calculations involve interacting dimensional chains. This greatly complicates the task. Solving such problems requires a special approach. The purpose of this article is to carry out the problem of improving the technology of assembly of aviation units by use of computer calculations. One of the actual examples of the assembly unit, in which there is an interacting dimensional chain, is the turbine wheel of gas turbine engine. Dimensional chain of turbine wheel is formed by geometric parameters of disk and set of blades. The interaction of the dimensional chain consists in the formation of two chains. The first chain is formed by the dimensions that determine the location of the grooves for the installation of the blades, and the dimensions of the blade roots. The second dimensional chain is formed by the dimensions of the airfoil shroud platform. The interaction of the dimensional chain of the turbine wheel is the interdependence of the first and second chains by means of power circuits formed by a plurality of middle parts of the turbine blades. The timeliness of the calculation of the dimensional chain of the turbine wheel is the need to improve the technology of assembly of this unit. The task at hand contains geometric and mathematical components; therefore, its solution can be implemented following the algorithm: 1) research and analysis of production errors by geometric parameters; 2) development of a parametric model in the CAD system; 3) creation of set of CAD-models of details taking into account actual or generalized distributions of errors of geometrical parameters; 4) calculation model in the CAE-system, loading of various combinations of models of parts; 5) the accumulation of statistics and analysis. The main task is to pre-simulate the assembly process by calculating the interacting dimensional chains. The article describes the approach to the solution from the point of view of mathematical statistics, implemented in the software package Matlab. Within the framework of the study, there are data on the measurement of the components of the turbine wheel-blades and disks, as a result of which it is expected that the assembly process of the unit will be optimized by solving dimensional chains.

Keywords: accuracy, assembly, interacting dimension chains, turbine

Procedia PDF Downloads 373
162 Dogs Chest Homogeneous Phantom for Image Optimization

Authors: Maris Eugênia Dela Rosa, Ana Luiza Menegatti Pavan, Marcela De Oliveira, Diana Rodrigues De Pina, Luis Carlos Vulcano

Abstract:

In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures.

Keywords: radiation protection, phantom, veterinary radiology, computed radiography

Procedia PDF Downloads 418
161 Unmanned Aerial System Development for the Remote Reflectance Sensing Using Above-Water Radiometers

Authors: Sunghun Jung, Wonkook Kim

Abstract:

Due to the difficulty of the utilization of satellite and an aircraft, conventional ocean color remote sensing has a disadvantage in that it is difficult to obtain images of desired places at desired times. These disadvantages make it difficult to capture the anomalies such as the occurrence of the red tide which requires immediate observation. It is also difficult to understand the phenomena such as the resuspension-precipitation process of suspended solids and the spread of low-salinity water originating in the coastal areas. For the remote sensing reflectance of seawater, above-water radiometers (AWR) have been used either by carrying portable AWRs on a ship or installing those at fixed observation points on the Ieodo ocean research station, Socheongcho base, and etc. In particular, however, it requires the high cost to measure the remote reflectance in various seawater environments at various times and it is even not possible to measure it at the desired frequency in the desired sea area at the desired time. Also, in case of the stationary observation, it is advantageous that observation data is continuously obtained, but there is the disadvantage that data of various sea areas cannot be obtained. It is possible to instantly capture various marine phenomena occurring on the coast using the unmanned aerial system (UAS) including vertical takeoff and landing (VTOL) type unmanned aerial vehicles (UAV) since it could move and hover at the one location and acquire data of the desired form at a high resolution. To remotely estimate seawater constituents, it is necessary to install an ultra-spectral sensor. Also, to calculate reflected light from the surface of the sea in consideration of the sun’s incident light, a total of three sensors need to be installed on the UAV. The remote sensing reflectance of seawater is the most basic optical property for remotely estimating color components in seawater and we could remotely estimate the chlorophyll concentration, the suspended solids concentration, and the dissolved organic amount. Estimating seawater physics from the remote sensing reflectance requires the algorithm development using the accumulation data of seawater reflectivity under various seawater and atmospheric conditions. The UAS with three AWRs is developed for the remote reflection sensing on the surface of the sea. Throughout the paper, we explain the details of each UAS component, system operation scenarios, and simulation and experiment results. The UAS consists of a UAV, a solar tracker, a transmitter, a ground control station (GCS), three AWRs, and two gimbals.

Keywords: above-water radiometers (AWR), ground control station (GCS), unmanned aerial system (UAS), unmanned aerial vehicle (UAV)

Procedia PDF Downloads 163
160 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence

Authors: Garry Gorman, Nigel McKelvey, James Connolly

Abstract:

This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.

Keywords: computer science education, artificial intelligence, growth mindset, pedagogy

Procedia PDF Downloads 88
159 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques

Authors: Imed Feki, Faouzi Msahli

Abstract:

Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.

Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique

Procedia PDF Downloads 605
158 The Association between C-Reactive Protein and Hypertension with Different US Participants Ethnicity-Findings from National Health and Nutrition Examination Survey 1999-2010

Authors: Ghada Abo-Zaid

Abstract:

The main objective of this study was to examine the association between the elevated level of CRP and incidence of hypertension before and after adjusting by age, BMI, gender, SES, smoking, diabetes, cholesterol LDL and cholesterol HDL and to determine whether the association were differ by race. Method: Cross sectional data for participations from age 17 to age 74 years who included in The National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010 were analysed. CRP level was classified into three categories ( > 3mg/L, between 1mg/LL and 3mg/L, and < 3 mg/L). Blood pressure categorization was done using JNC 7 algorithm Hypertension defined as either systolic blood pressure (SBP) of 140 mmHg or more and disystolic blood pressure (DBP) of 90mmHg or greater, otherwise a self-reported prior diagnosis by a physician. Pre-hypertension was defined as (139 > SBP > 120 or 89 > DPB > 80). Multinominal regression model was undertaken to measure the association between CRP level and hypertension. Results: In univariable models, CRP concentrations > 3 mg/L were associated with a 73% greater risk of incident hypertension compared with CRP concentrations < 1 mg/L (Hypertension: odds ratio [OR] = 1.73; 95% confidence interval [CI], 1.50-1.99). Ethnic comparisons showed that American Mexican had the highest risk of incident hypertension (odds ratio [OR] = 2.39; 95% confidence interval [CI], 2.21-2.58).This risk was statistically insignificant, however, either after controlling by other variables (Hypertension: OR = 0.75; 95% CI, 0.52-1.08,), or categorized by race [American Mexican: odds ratio [OR] = 1.58; 95% confidence interval [CI], 0,58-4.26, Other Hispanic: odds ratio [OR] = 0.87; 95% confidence interval [CI], 0.19-4.42, Non-Hispanic white: odds ratio [OR] = 0.90; 95% confidence interval [CI], 0.50-1.59, Non-Hispanic Black: odds ratio [OR] = 0.44; 95% confidence interval [CI], 0.22-0,87]. The same results were found for pre-hypertension, and the Non-Hispanic black showed the highest significant risk for Pre-Hypertension (odds ratio [OR] = 1.60; 95% confidence interval [CI], 1.26-2.03). When CRP concentrations were between 1.0-3.0 mg/L, in an unadjusted models prehypertension was associated with higher likelihood of elevated CRP (OR = 1.37; 95% CI, 1.15-1.62). The same relationship was maintained in Non-Hispanic white, Non-Hispanic black, and other race (Non-Hispanic white: OR = 1.24; 95% CI, 1.03-1.48, Non-Hispanic black: OR = 1.60; 95% CI, 1.27-2.03, other race: OR = 2.50; 95% CI, 1.32-4.74) while the association was insignificant with American Mexican and other Hispanic. In the adjusted model, the relationship between CRP and prehypertension were no longer available. In contrary, Hypertension was not independently associated with elevated CRP, and the results were the same after grouped by race or adjusted by the confounder variables. The same results were obtained when SBP or DBP were on a continuous measure. Conclusions: This study confirmed the existence of an association between hypertension, prehypertension and elevated level of CRP, however this association was no longer available after adjusting by other variables. Ethic group differences were statistically significant at the univariable models, while it disappeared after controlling by other variables.

Keywords: CRP, hypertension, ethnicity, NHANES, blood pressure

Procedia PDF Downloads 414
157 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 125
156 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration

Authors: Damtew Samson Zerihun

Abstract:

This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.

Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller

Procedia PDF Downloads 369
155 Kinematic Modelling and Task-Based Synthesis of a Passive Architecture for an Upper Limb Rehabilitation Exoskeleton

Authors: Sakshi Gupta, Anupam Agrawal, Ekta Singla

Abstract:

An exoskeleton design for rehabilitation purpose encounters many challenges, including ergonomically acceptable wearing technology, architectural design human-motion compatibility, actuation type, human-robot interaction, etc. In this paper, a passive architecture for upper limb exoskeleton is proposed for assisting in rehabilitation tasks. Kinematic modelling is detailed for task-based kinematic synthesis of the wearable exoskeleton for self-feeding tasks. The exoskeleton architecture possesses expansion and torsional springs which are able to store and redistribute energy over the human arm joints. The elastic characteristics of the springs have been optimized to minimize the mechanical work of the human arm joints. The concept of hybrid combination of a 4-bar parallelogram linkage and a serial linkage were chosen, where the 4-bar parallelogram linkage with expansion spring acts as a rigid structure which is used to provide the rotational degree-of-freedom (DOF) required for lowering and raising of the arm. The single linkage with torsional spring allows for the rotational DOF required for elbow movement. The focus of the paper is kinematic modelling, analysis and task-based synthesis framework for the proposed architecture, keeping in considerations the essential tasks of self-feeding and self-exercising during rehabilitation of partially healthy person. Rehabilitation of primary functional movements (activities of daily life, i.e., ADL) is routine activities that people tend to every day such as cleaning, dressing, feeding. We are focusing on the feeding process to make people independent in respect of the feeding tasks. The tasks are focused to post-surgery patients under rehabilitation with less than 40% weakness. The challenges addressed in work are ensuring to emulate the natural movement of the human arm. Human motion data is extracted through motion-sensors for targeted tasks of feeding and specific exercises. Task-based synthesis procedure framework will be discussed for the proposed architecture. The results include the simulation of the architectural concept for tracking the human-arm movements while displaying the kinematic and static study parameters for standard human weight. D-H parameters are used for kinematic modelling of the hybrid-mechanism, and the model is used while performing task-based optimal synthesis utilizing evolutionary algorithm.

Keywords: passive mechanism, task-based synthesis, emulating human-motion, exoskeleton

Procedia PDF Downloads 137
154 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces

Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani

Abstract:

A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.

Keywords: readiness, maturity, system, integration

Procedia PDF Downloads 93
153 The Evolution of Moral Politics: Analysis on Moral Foundations of Korean Parties

Authors: Changdong Oh

Abstract:

With the arrival of post-industrial society, social scientists have been giving attention to issues of which factors shape cleavage of political parties. Especially, there is a heated controversy over whether and how social and cultural values influence the identities of parties and voting behavior. Drawing from Moral Foundations Theory (MFT), which approached similar issues by considering the effect of five moral foundations on political decision-making of people, this study investigates the role of moral rhetoric in the evolution of Korean political parties. Researcher collected official announcements released by the major two parties (Democratic Party of Korea, Saenuri Party) from 2007 to 2016, and analyzed the data by using Word2Vec algorithm and Moral Foundations Dictionary. Five moral decision modules of MFT, composed of care, fairness (individualistic morality), loyalty, authority and sanctity (group-based, Durkheimian morality), can be represented in vector spaces consisted of party announcements data. By comparing the party vector and the five morality vectors, researcher can see how the political parties have actively used each of the five moral foundations to express themselves and the opposition. Results report that the conservative party tends to actively draw on collective morality such as loyalty, authority, purity to differentiate itself. Notably, such moral differentiation strategy is prevalent when they criticize an opposition party. In contrast, the liberal party tends to concern with individualistic morality such as fairness. This result indicates that moral cleavage does exist between parties in South Korea. Furthermore, individualistic moral gaps of the two political parties are eased over time, which seems to be due to the discussion of economic democratization of conservative party that emerged after 2012, but the community-related moral gaps widened. These results imply that past political cleavages related to economic interests are diminishing and replaced by cultural and social values associated with communitarian morality. However, since the conservative party’s differentiation strategy is largely related to negative campaigns, it is doubtful whether such moral differentiation among political parties can contribute to the long-term party identification of the voters, thus further research is needed to determine it is sustainable. Despite the limitations, this study makes it possible to track and identify the moral changes of party system through automated text analysis. More generally, this study could contribute to the analysis of various texts associated with the moral foundation and finding a distributed representation of moral, ethical values.

Keywords: moral foundations theory, moral politics, party system, Word2Vec

Procedia PDF Downloads 362
152 Affects Associations Analysis in Emergency Situations

Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko

Abstract:

Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.

Keywords: data mining, emergency phone calls, emotional profiles, rules

Procedia PDF Downloads 408
151 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 178
150 Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System

Authors: Rajan Goyal, S. Lamba, S. Annapoorni

Abstract:

The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system.

Keywords: indirect exchange coupling, MH loop, Monte Carlo simulation, recoil curve

Procedia PDF Downloads 190
149 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 134
148 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 267
147 A Grid Synchronization Method Based On Adaptive Notch Filter for SPV System with Modified MPPT

Authors: Priyanka Chaudhary, M. Rizwan

Abstract:

This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.

Keywords: solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique

Procedia PDF Downloads 594
146 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 389
145 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method

Authors: Berker Bayazit, Gulgun Kayakutlu

Abstract:

The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.

Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy

Procedia PDF Downloads 244
144 Governance in the Age of Artificial intelligence and E- Government

Authors: Mernoosh Abouzari, Shahrokh Sahraei

Abstract:

Electronic government is a way for governments to use new technology that provides people with the necessary facilities for proper access to government information and services, improving the quality of services and providing broad opportunities to participate in democratic processes and institutions. That leads to providing the possibility of easy use of information technology in order to distribute government services to the customer without holidays, which increases people's satisfaction and participation in political and economic activities. The expansion of e-government services and its movement towards intelligentization has the ability to re-establish the relationship between the government and citizens and the elements and components of the government. Electronic government is the result of the use of information and communication technology (ICT), which by implementing it at the government level, in terms of the efficiency and effectiveness of government systems and the way of providing services, tremendous commercial changes are created, which brings people's satisfaction at the wide level will follow. The main level of electronic government services has become objectified today with the presence of artificial intelligence systems, which recent advances in artificial intelligence represent a revolution in the use of machines to support predictive decision-making and Classification of data. With the use of deep learning tools, artificial intelligence can mean a significant improvement in the delivery of services to citizens and uplift the work of public service professionals while also inspiring a new generation of technocrats to enter government. This smart revolution may put aside some functions of the government, change its components, and concepts such as governance, policymaking or democracy will change in front of artificial intelligence technology, and the top-down position in governance may face serious changes, and If governments delay in using artificial intelligence, the balance of power will change and private companies will monopolize everything with their pioneering in this field, and the world order will also depend on rich multinational companies and in fact, Algorithmic systems will become the ruling systems of the world. It can be said that currently, the revolution in information technology and biotechnology has been started by engineers, large economic companies, and scientists who are rarely aware of the political complexities of their decisions and certainly do not represent anyone. Therefore, it seems that if liberalism, nationalism, or any other religion wants to organize the world of 2050, it should not only rationalize the concept of artificial intelligence and complex data algorithm but also mix them in a new and meaningful narrative. Therefore, the changes caused by artificial intelligence in the political and economic order will lead to a major change in the way all countries deal with the phenomenon of digital globalization. In this paper, while debating the role and performance of e-government, we will discuss the efficiency and application of artificial intelligence in e-government, and we will consider the developments resulting from it in the new world and the concepts of governance.

Keywords: electronic government, artificial intelligence, information and communication technology., system

Procedia PDF Downloads 94
143 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects

Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang

Abstract:

As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.

Keywords: 4D, 5D, 6D, active BIM

Procedia PDF Downloads 276
142 Informed Urban Design: Minimizing Urban Heat Island Intensity via Stochastic Optimization

Authors: Luis Guilherme Resende Santos, Ido Nevat, Leslie Norford

Abstract:

The Urban Heat Island (UHI) is characterized by increased air temperatures in urban areas compared to undeveloped rural surrounding environments. With urbanization and densification, the intensity of UHI increases, bringing negative impacts on livability, health and economy. In order to reduce those effects, it is required to take into consideration design factors when planning future developments. Given design constraints such as population size and availability of area for development, non-trivial decisions regarding the buildings’ dimensions and their spatial distribution are required. We develop a framework for optimization of urban design in order to jointly minimize UHI intensity and buildings’ energy consumption. First, the design constraints are defined according to spatial and population limits in order to establish realistic boundaries that would be applicable in real life decisions. Second, the tools Urban Weather Generator (UWG) and EnergyPlus are used to generate outputs of UHI intensity and total buildings’ energy consumption, respectively. Those outputs are changed based on a set of variable inputs related to urban morphology aspects, such as building height, urban canyon width and population density. Lastly, an optimization problem is cast where the utility function quantifies the performance of each design candidate (e.g. minimizing a linear combination of UHI and energy consumption), and a set of constraints to be met is set. Solving this optimization problem is difficult, since there is no simple analytic form which represents the UWG and EnergyPlus models. We therefore cannot use any direct optimization techniques, but instead, develop an indirect “black box” optimization algorithm. To this end we develop a solution that is based on stochastic optimization method, known as the Cross Entropy method (CEM). The CEM translates the deterministic optimization problem into an associated stochastic optimization problem which is simple to solve analytically. We illustrate our model on a typical residential area in Singapore. Due to fast growth in population and built area and land availability generated by land reclamation, urban planning decisions are of the most importance for the country. Furthermore, the hot and humid climate in the country raises the concern for the impact of UHI. The problem presented is highly relevant to early urban design stages and the objective of such framework is to guide decision makers and assist them to include and evaluate urban microclimate and energy aspects in the process of urban planning.

Keywords: building energy consumption, stochastic optimization, urban design, urban heat island, urban weather generator

Procedia PDF Downloads 131
141 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair

Authors: Anamika Paul, Sudipto Sarkar

Abstract:

The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.

Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic

Procedia PDF Downloads 112
140 Improved Traveling Wave Method Based Fault Location Algorithm for Multi-Terminal Transmission System of Wind Farm with Grounding Transformer

Authors: Ke Zhang, Yongli Zhu

Abstract:

Due to rapid load growths in today’s highly electrified societies and the requirement for green energy sources, large-scale wind farm power transmission system is constantly developing. This system is a typical multi-terminal power supply system, whose structure of the network topology of transmission lines is complex. What’s more, it locates in the complex terrain of mountains and grasslands, thus increasing the possibility of transmission line faults and finding the fault location with difficulty after the faults and resulting in an extremely serious phenomenon of abandoning the wind. In order to solve these problems, a fault location method for multi-terminal transmission line based on wind farm characteristics and improved single-ended traveling wave positioning method is proposed. Through studying the zero sequence current characteristics by using the characteristics of the grounding transformer(GT) in the existing large-scale wind farms, it is obtained that the criterion for judging the fault interval of the multi-terminal transmission line. When a ground short-circuit fault occurs, there is only zero sequence current on the path between GT and the fault point. Therefore, the interval where the fault point exists is obtained by determining the path of the zero sequence current. After determining the fault interval, The location of the short-circuit fault point is calculated by the traveling wave method. However, this article uses an improved traveling wave method. It makes the positioning accuracy more accurate by combining the single-ended traveling wave method with double-ended electrical data. What’s more, a method of calculating the traveling wave velocity is deduced according to the above improvements (it is the actual wave velocity in theory). The improvement of the traveling wave velocity calculation method further improves the positioning accuracy. Compared with the traditional positioning method, the average positioning error of this method is reduced by 30%.This method overcomes the shortcomings of the traditional method in poor fault location of wind farm transmission lines. In addition, it is more accurate than the traditional fixed wave velocity method in the calculation of the traveling wave velocity. It can calculate the wave velocity in real time according to the scene and solve the traveling wave velocity can’t be updated with the environment and real-time update. The method is verified in PSCAD/EMTDC.

Keywords: grounding transformer, multi-terminal transmission line, short circuit fault location, traveling wave velocity, wind farm

Procedia PDF Downloads 263
139 A Multi-Scale Approach to Space Use: Habitat Disturbance Alters Behavior, Movement and Energy Budgets in Sloths (Bradypus variegatus)

Authors: Heather E. Ewart, Keith Jensen, Rebecca N. Cliffe

Abstract:

Fragmentation and changes in the structural composition of tropical forests – as a result of intensifying anthropogenic disturbance – are increasing pressures on local biodiversity. Species with low dispersal abilities have some of the highest extinction risks in response to environmental change, as even small-scale environmental variation can substantially impact their space use and energetic balance. Understanding the implications of forest disturbance is therefore essential, ultimately allowing for more effective and targeted conservation initiatives. Here, the impact of different levels of forest disturbance on the space use, energetics, movement and behavior of 18 brown-throated sloths (Bradypus variegatus) were assessed in the South Caribbean of Costa Rica. A multi-scale framework was used to measure forest disturbance, including large-scale (landscape-level classifications) and fine-scale (within and surrounding individual home ranges) forest composition. Three landscape-level classifications were identified: primary forests (undisturbed), secondary forests (some disturbance, regenerating) and urban forests (high levels of disturbance and fragmentation). Finer-scale forest composition was determined using measurements of habitat structure and quality within and surrounding individual home ranges for each sloth (home range estimates were calculated using autocorrelated kernel density estimation [AKDE]). Measurements of forest quality included tree connectivity, density, diameter and height, species richness, and percentage of canopy cover. To determine space use, energetics, movement and behavior, six sloths in urban forests, seven sloths in secondary forests and five sloths in primary forests were tracked using a combination of Very High Frequency (VHF) radio transmitters and Global Positioning System (GPS) technology over an average period of 120 days. All sloths were also fitted with micro data-loggers (containing tri-axial accelerometers and pressure loggers) for an average of 30 days to allow for behavior-specific movement analyses (data analysis ongoing for data-loggers and primary forest sloths). Data-loggers included determination of activity budgets, circadian rhythms of activity and energy expenditure (using the vector of the dynamic body acceleration [VeDBA] as a proxy). Analyses to date indicate that home range size significantly increased with the level of forest disturbance. Female sloths inhabiting secondary forests averaged 0.67-hectare home ranges, while female sloths inhabiting urban forests averaged 1.93-hectare home ranges (estimates are represented by median values to account for the individual variation in home range size in sloths). Likewise, home range estimates for male sloths were 2.35 hectares in secondary forests and 4.83 in urban forests. Sloths in urban forests also used nearly double (median = 22.5) the number of trees as sloths in the secondary forest (median = 12). These preliminary data indicate that forest disturbance likely heightens the energetic requirements of sloths, a species already critically limited by low dispersal ability and rates of energy acquisition. Energetic and behavioral analyses from the data-loggers will be considered in the context of fine-scale forest composition measurements (i.e., habitat quality and structure) and are expected to reflect the observed home range and movement constraints. The implications of these results are far-reaching, presenting an opportunity to define a critical index of habitat connectivity for low dispersal species such as sloths.

Keywords: biodiversity conservation, forest disturbance, movement ecology, sloths

Procedia PDF Downloads 114
138 Numerical Simulation of Seismic Process Accompanying the Formation of Shear-Type Fault Zone in Chuya-Kuray Depressions

Authors: Mikhail O. Eremin

Abstract:

Seismic activity around the world is clearly a threat to people's lives, as well as infrastructure and capital construction. It is the instability of the latter to powerful earthquakes that most often causes human casualties. Therefore, during construction it is necessary to take into account the risks of large-scale natural disasters. The task of assessing the risks of natural disasters is one of the most urgent at the present time. The final goal of any study of earthquakes is forecasting. This is especially important for seismically active regions of the planet where earthquakes occur frequently. Gorni Altai is one of such regions. In work, we developed the physical-mathematical model of stress-strain state evolution of loaded geomedium with the purpose of numerical simulation of seismic process accompanying the formation of Chuya-Kuray fault zone Gorni Altay, Russia. We build a structural model on the base of seismotectonic and paleoseismogeological investigations, as well as SRTM-data. Base of mathematical model is the system of equations of solid mechanics which includes the fundamental conservation laws and constitutive equations for elastic (Hooke's law) and inelastic deformation (modified model of Drucker-Prager-Nikolaevskii). An initial stress state of the model correspond to gravitational. Then we simulate an activation of a buried dextral strike-slip paleo-fault located in the basement of the model. We obtain the stages of formation and the structure of Chuya-Kuray fault zone. It is shown that results of numerical simulation are in good agreement with field observations in statistical sense. Simulated seismic process is strongly bound to the faults - lineaments with high degree of inelastic strain localization. Fault zone represents en-echelon system of dextral strike-slips according to the Riedel model. The system of surface lineaments is represented with R-, R'-shear bands, X- and Y-shears, T-fractures. Simulated seismic process obeys the laws of Gutenberg-Richter and Omori. Thus, the model describes a self-similar character of deformation and fracture of rocks and geomedia. We also modified the algorithm of determination of separate slip events in the model due to the features of strain rates dependence vs time.

Keywords: Drucker-Prager model, fault zone, numerical simulation, Riedel bands, seismic process, strike-slip fault

Procedia PDF Downloads 141
137 A Perspective of Digital Formation in the Solar Community as a Prototype for Finding Sustainable Algorithmic Conditions on Earth

Authors: Kunihisa Kakumoto

Abstract:

“Purpose”: Global environmental issues are now being raised in a global dimension. By predicting sprawl phenomena beyond the limits of nature with algorithms, we can expect to protect our social life within the limits of nature. It turns out that the sustainable state of the planet now consists in maintaining a balance between the capabilities of nature and the possibilities of our social life. The amount of water on earth is finite. Sustainability is therefore highly dependent on water capacity. A certain amount of water is stored in the forest by planting and green space, and the amount of water can be considered in relation to the green space. CO2 is also absorbed by green plants. "Possible measurements and methods": The concept of the solar community has been introduced in technical papers on the occasion of many international conferences. The solar community concept is based on data collected from one solar model house. This algorithmic study simulates the amount of water stored by lush green vegetation. In addition, we calculated and compared the amount of CO2 emissions from the Taiyo Community and the amount of CO2 reduction from greening. Based on the trial calculation results of these solar communities, we are simulating the sustainable state of the earth as an algorithm trial calculation result. We believe that we should also consider the composition of this solar community group using digital technology as control technology. "Conclusion": We consider the solar community as a prototype for finding sustainable conditions for the planet. The role of water is very important as the supply capacity of water is limited. However, the circulation of social life is not constructed according to the mechanism of nature. This simulation trial calculation is explained using the total water supply volume as an example. According to this process, algorithmic calculations consider the total capacity of the water supply and the population and habitable numbers of the area. Green vegetated land is very important to keep enough water. Green vegetation is also very important to maintain CO2 balance. A simulation trial calculation is possible from the relationship between the CO2 emissions of the solar community and the amount of CO2 reduction due to greening. In order to find this total balance and sustainable conditions, the algorithmic simulation calculation takes into account lush vegetation and total water supply. Research to find sustainable conditions is done by simulating an algorithmic model of the solar community as a prototype. In this one prototype example, it's balanced. The activities of our social life must take place within the permissive limits of natural mechanisms. Of course, we aim for a more ideal balance by utilizing auxiliary digital control technology such as AI.

Keywords: solar community, sustainability, prototype, algorithmic simulation

Procedia PDF Downloads 61
136 Numerical Simulation of Waves Interaction with a Free Floating Body by MPS Method

Authors: Guoyu Wang, Meilian Zhang, Chunhui LI, Bing Ren

Abstract:

In recent decades, a variety of floating structures have played a crucial role in ocean and marine engineering, such as ships, offshore platforms, floating breakwaters, fish farms, floating airports, etc. It is common for floating structures to suffer from loadings under waves, and the responses of the structures mounted in marine environments have a significant relation to the wave impacts. The interaction between surface waves and floating structures is one of the important issues in ship or marine structure design to increase performance and efficiency. With the progress of computational fluid dynamics, a number of numerical models based on the NS equations in the time domain have been developed to explore the above problem, such as the finite difference method or the finite volume method. Those traditional numerical simulation techniques for moving bodies are grid-based, which may encounter some difficulties when treating a large free surface deformation and a moving boundary. In these models, the moving structures in a Lagrangian formulation need to be appropriately described in grids, and the special treatment of the moving boundary is inevitable. Nevertheless, in the mesh-based models, the movement of the grid near the structure or the communication between the moving Lagrangian structure and Eulerian meshes will increase the algorithm complexity. Fortunately, these challenges can be avoided by the meshless particle methods. In the present study, a moving particle semi-implicit model is explored for the numerical simulation of fluid–structure interaction with surface flows, especially for coupling of fluid and moving rigid body. The equivalent momentum transfer method is proposed and derived for the coupling of fluid and rigid moving body. The structure is discretized into a group of solid particles, which are assumed as fluid particles involved in solving the NS equation altogether with the surrounding fluid particles. The momentum conservation is ensured by the transfer from those fluid particles to the corresponding solid particles. Then, the position of the solid particles is updated to keep the initial shape of the structure. Using the proposed method, the motions of a free-floating body in regular waves are numerically studied. The wave surface evaluation and the dynamic response of the floating body are presented. There is good agreement when the numerical results, such as the sway, heave, and roll of the floating body, are compared with the experimental and other numerical data. It is demonstrated that the presented MPS model is effective for the numerical simulation of fluid-structure interaction.

Keywords: floating body, fluid structure interaction, MPS, particle method, waves

Procedia PDF Downloads 76
135 A Digital Health Approach: Using Electronic Health Records to Evaluate the Cost Benefit of Early Diagnosis of Alpha-1 Antitrypsin Deficiency in the UK

Authors: Sneha Shankar, Orlando Buendia, Will Evans

Abstract:

Alpha-1 antitrypsin deficiency (AATD) is a rare, genetic, and multisystemic condition. Underdiagnosis is common, leading to chronic pulmonary and hepatic complications, increased resource utilization, and additional costs to the healthcare system. Currently, there is limited evidence of the direct medical costs of AATD diagnosis in the UK. This study explores the economic impact of AATD patients during the 3 years before diagnosis and to identify the major cost drivers using primary and secondary care electronic health record (EHR) data. The 3 years before diagnosis time period was chosen based on the ability of our tool to identify patients earlier. The AATD algorithm was created using published disease criteria and applied to 148 known AATD patients’ EHR found in a primary care database of 936,148 patients (413,674 Biobank and 501,188 in a single primary care locality). Among 148 patients, 9 patients were flagged earlier by the tool and, on average, could save 3 (1-6) years per patient. We analysed 101 of the 148 AATD patients’ primary care journey and 20 patients’ Hospital Episode Statistics (HES) data, all of whom had at least 3 years of clinical history in their records before diagnosis. The codes related to laboratory tests, clinical visits, referrals, hospitalization days, day case, and inpatient admissions attributable to AATD were examined in this 3-year period before diagnosis. The average cost per patient was calculated, and the direct medical costs were modelled based on the mean prevalence of 100 AATD patients in a 500,000 population. A deterministic sensitivity analysis (DSA) of 20% was performed to determine the major cost drivers. Cost data was obtained from the NHS National tariff 2020/21, National Schedule of NHS Costs 2018/19, PSSRU 2018/19, and private care tariff. The total direct medical cost of one hundred AATD patients three years before diagnosis in primary and secondary care in the UK was £3,556,489, with an average direct cost per patient of £35,565. A vast majority of this total direct cost (95%) was associated with inpatient admissions (£3,378,229). The DSA determined that the costs associated with tier-2 laboratory tests and inpatient admissions were the greatest contributors to direct costs in primary and secondary care, respectively. This retrospective study shows the role of EHRs in calculating direct medical costs and the potential benefit of new technologies for the early identification of patients with AATD to reduce the economic burden in primary and secondary care in the UK.

Keywords: alpha-1 antitrypsin deficiency, costs, digital health, early diagnosis

Procedia PDF Downloads 167
134 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System

Authors: Nareshkumar Harale, B. B. Meshram

Abstract:

The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.

Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design

Procedia PDF Downloads 227