Search results for: drift flow model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20043

Search results for: drift flow model

14613 Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators

Authors: M. Amo, A. Alvaro, A. Astudillo, R. Mc Culloch, J. C. del Castillo, M. Gómez, J. M. Martín

Abstract:

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability.

Keywords: atmospheric pressure photoionization-mass spectrometry (APPI-MS), dioxin, furan, incinerator

Procedia PDF Downloads 208
14612 Cloud Enterprise Application Provider Selection Model for the Small and Medium Enterprise: A Pilot Study

Authors: Rowland R. Ogunrinde, Yusmadi Y. Jusoh, Noraini Che Pa, Wan Nurhayati W. Rahman, Azizol B. Abdullah

Abstract:

Enterprise Applications (EAs) aid the organizations achieve operational excellence and competitive advantage. Over time, most Small and Medium Enterprises (SMEs), which are known to be the major drivers of most thriving global economies, use the costly on-premise versions of these applications thereby making business difficult to competitively thrive in the same market environment with their large enterprise counterparts. The advent of cloud computing presents the SMEs an affordable offer and great opportunities as such EAs can be cloud-hosted and rented on a pay-per-use basis which does not require huge initial capital. However, as there are numerous Cloud Service Providers (CSPs) offering EAs as Software-as-a-Service (SaaS), there is a challenge of choosing a suitable provider with Quality of Service (QoS) that meet the organizations’ customized requirements. The proposed model takes care of that and goes a step further to select the most affordable among a selected few of the CSPs. In the earlier stage, before developing the instrument and conducting the pilot test, the researchers conducted a structured interview with three experts to validate the proposed model. In conclusion, the validity and reliability of the instrument were tested through experts, typical respondents, and analyzed with SPSS 22. Results confirmed the validity of the proposed model and the validity and reliability of the instrument.

Keywords: cloud service provider, enterprise application, quality of service, selection criteria, small and medium enterprise

Procedia PDF Downloads 179
14611 Citizens’ Readiness to Adopt and Use Electronic Voting System in Ghana

Authors: Isaac Kofi Mensah

Abstract:

The adoption and application of Information and Communication Technologies (ICTs) in government administration through e-government is expected to permeate all sectors of state/ public institutions as well as democratic institutions. One of such public institutions is the Electoral Commission of Ghana mandated by the 1992 Constitution to hold all public elections including presidential and parliamentary elections. As Ghana holds its 7th General Elections since 1992, on 7th November 2016, there are demands from key stakeholders for the Election Management Body, which is the Electoral Commission (EC) of Ghana to adopt and implement an electronic voting system. This case study, therefore, attempts to contribute significantly to the debate by examining influencing factors that would impact on citizen’s readiness to adopt and use an electronic voting system in Ghana. The Technology Acceptance Model (TAM) was used as a theoretical framework for this study, out of which a research model and hypotheses were developed. Importantly, the outcome of this research finding would form a basis for appropriate policy recommendation for consideration of Government and EC of Ghana.

Keywords: citizens readiness, e-government, electronic voting, technology acceptance model (TAM)

Procedia PDF Downloads 265
14610 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 319
14609 A Study on the Influence of Pin-Hole Position Error of Carrier on Mesh Load and Planet Load Sharing of Planetary Gear

Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Gang Shen

Abstract:

For planetary gear system, Planet pin-hole position accuracy is one of most influential factor to efficiency and reliability of planetary gear system. This study considers planet pin-hole position error as a main input error for model and build multi body dynamic simulation model of planetary gear including planet pin-hole position error using MSC. ADAMS. From this model, the mesh load results between meshing gears in each pin-hole position error cases are obtained and based on these results, planet load sharing factor which reflect equilibrium state of mesh load sharing between whole meshing gear pair is calculated. Analysis result indicates that the pin-hole position error of tangential direction cause profound influence to mesh load and load sharing factor between meshing gear pair.

Keywords: planetary gear, load sharing factor, multibody dynamics, pin-hole position error

Procedia PDF Downloads 578
14608 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals

Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi

Abstract:

Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.

Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition

Procedia PDF Downloads 406
14607 Feasibility of Using Bike Lanes in Conjunctions with Sidewalks for Ground Drone Applications in Last Mile Delivery for Dense Urban Areas

Authors: N. Bazyar Shourabi, K. Nyarko, C. Scott, M. Jeihnai

Abstract:

Ground drones have the potential to reduce the cost and time of making last-mile deliveries. They also have the potential to make a huge impact on human life. Despite this potential, little work has gone into developing a suitable feasibility model for ground drone delivery in dense urban areas. Today, most of the experimental ground delivery drones utilize sidewalks only, with just a few of them starting to use bike lanes, which a significant portion of some urban areas have. This study works on the feasibility of using bike lanes in conjunction with sidewalks for ground drone applications in last-mile delivery for dense urban areas. This work begins with surveying bike lanes and sidewalks within the city of Boston using Geographic Information System (GIS) software to determine the percentage of coverage currently available within the city. Then six scenarios are examined. Based on this research, a mathematical model is developed. The daily cost of delivering packages using each scenario is calculated by the mathematical model. Comparing the drone delivery scenarios with the traditional method of package delivery using trucks will provide essential information concerning the feasibility of implementing routing protocols that combine the use of sidewalks and bike lanes. The preliminary results of the model show that ground drones that can travel via sidewalks or bike lanes have the potential to significantly reduce delivery cost.

Keywords: ground drone, intelligent transportation system, last-mile delivery, sidewalk robot

Procedia PDF Downloads 144
14606 Empirical Model for the Estimation of Global Solar Radiation on Horizontal Surface in Algeria

Authors: Malika Fekih, Abdenour Bourabaa, Rafika Hariti, Mohamed Saighi

Abstract:

In Algeria the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Empirical constants for these models have been estimated and the results obtained have been tested statistically. The results show encouraging agreement between estimated and measured values.

Keywords: global solar radiation, empirical model, semi arid areas, climatological parameters

Procedia PDF Downloads 502
14605 Exergy Model for a Solar Water Heater with Flat Plate Collector

Authors: P. Sathyakala, G. Sai Sundara Krishnan

Abstract:

The objective of this paper is to derive an exergy model for a solar water heater with honey comb structure in order to identify the element which has larger irreversibility in the system. This will help us in finding the means to reduce the wasted work potential so that the overall efficiency of the system can be improved by finding the ways to reduce those wastages.

Keywords: exergy, energy balance, entropy balance, work potential, degradation, honey comb, flat plate collector

Procedia PDF Downloads 478
14604 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 209
14603 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 294
14602 Optimisation Model for Maximising Social Sustainability in Construction Scheduling

Authors: Laura Florez

Abstract:

The construction industry is labour intensive, and the behaviour and management of workers have a direct impact on the performance of construction projects. One of the issues it currently faces is how to recruit and maintain its workers. Construction is known as an industry where workers face the problem of short employment durations, frequent layoffs, and periods of unemployment between jobs. These challenges not only creates pressures on the workers but also project managers have to constantly train new workers, face skills shortage, and uncertainty on the quality of the workers it will attract. To consider worker’s needs and project managers expectations, one practice that can be implemented is to schedule construction projects to maintain a stable workforce. This paper proposes a mixed integer programming (MIP) model to schedule projects with the objective of maximising social sustainability of construction projects, that is, maximise labour stability. Aside from the social objective, the model accounts for equipment and financial resources required by the projects during the construction phase. To illustrate how the solution strategy works, a construction programme comprised of ten projects is considered. The projects are scheduled to maximise labour stability while simultaneously minimising time and minimising cost. The tradeoff between the values in terms of time, cost, and labour stability allows project managers to consider their preferences and identify which solution best suits their needs. Additionally, the model determines the optimal starting times for each of the projects, working patterns for the workers, and labour costs. This model shows that construction projects can be scheduled to not only benefit the project manager, but also benefit current workers and help attract new workers to the industry. Due to its practicality, it can be a valuable tool to support decision making and assist construction stakeholders when developing schedules that include social sustainability factors.

Keywords: labour stability, mixed-integer programming (MIP), scheduling, workforce management

Procedia PDF Downloads 253
14601 Cobalt Ions Adsorption by Quartz and Illite and Calcite from Waste Water

Authors: Saad A. Aljlil

Abstract:

Adsorption of cobalt ions on quartz and illite and calcite from waste water was investigated. The effect of pH on the adsorption of cobalt ions was studied. The maximum capacities of cobalt ions of the three adsorbents increase with increasing cobalt solution temperature. The maximum capacities were (4.66) mg/g for quartz, (3.94) mg/g for illite, and (3.44) mg/g for calcite. The enthalpy, Gibbs free energy, and entropy for adsorption of cobalt ions on the three adsorbents were calculated. It was found that the adsorption process of the cobalt ions of the adsorbent was an endothermic process. consequently increasing the temperature causes the increase of the cobalt ions adsorption of the adsorbents. Therefore, the adsorption process is preferred at high temperature levels. The equilibrium adsorption data were correlated using Langmuir model, Freundlich model. The experimental data of cobalt ions of the adsorbents correlated well with Freundlich model.

Keywords: adsorption, Langmuir, Freundlich, quartz, illite, calcite, waste water

Procedia PDF Downloads 372
14600 A Theoretical Model for Pattern Extraction in Large Datasets

Authors: Muhammad Usman

Abstract:

Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.

Keywords: association rule mining, data mining, data warehouses, visualization of association rules

Procedia PDF Downloads 223
14599 Runoff Estimation in the Khiyav River Basin by Using the SCS_ CN Model

Authors: F. Esfandyari Darabad, Z. Samadi

Abstract:

The volume of runoff caused by rainfall in the river basin has enticed the researchers in the fields of the water management resources. In this study, first of the hydrological data such as the rainfall and discharge of the Khiyav river basin of Meshkin city in the northwest of Iran collected and then the process of analyzing and reconstructing has been completed. The soil conservation service (scs) has developed a method for calculating the runoff, in which is based on the curve number specification (CN). This research implemented the following model in the Khiyav river basin of Meshkin city by the GIS techniques and concluded the following fact in which represents the usage of weight model in calculating the curve numbers that provides the possibility for the all efficient factors which is contributing to the runoff creation such as; the geometric characteristics of the basin, the basin soil characteristics, vegetation, geology, climate and human factors to be considered, so an accurate estimation of runoff from precipitation to be achieved as the result. The findings also exposed the accident-prone areas in the output of the Khiyav river basin so it was revealed that the Khiyav river basin embodies a high potential for the flood creation.

Keywords: curve number, khiyav river basin, runoff estimation, SCS

Procedia PDF Downloads 622
14598 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve

Authors: Y.J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 474
14597 A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens

Authors: Hau-Wei Lee, Yu-Chi Liu, Chien-Hung Liu

Abstract:

A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate.

Keywords: ball lens, quadrant detector, axial error, radial error

Procedia PDF Downloads 473
14596 Energy Conservation and H-Theorem for the Enskog-Vlasov Equation

Authors: Eugene Benilov, Mikhail Benilov

Abstract:

The Enskog-Vlasov (EV) equation is a widely used semi-phenomenological model of gas/liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H-theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.

Keywords: Enskog collision integral, hard spheres, kinetic equation, phase transition

Procedia PDF Downloads 153
14595 Interaction Tasks of CUE Model in Virtual Language Learning in Travel English for Taiwanese College EFL Learners

Authors: Kuei-Hao Li, Eden Huang

Abstract:

Motivation suggests the willingness one person has towards taking action. Learners’ motivation has frequently been regarded as the most crucial factor in successful language acquisition. Without sufficient motivation, learners cannot achieve long-term learning goals despite remarkable abilities. Therefore, the study aims to investigate motivation of interaction tasks designed by the researchers for college EFL learners in Travel English class in virtual reality environment, integrating CUE model, Cognition, Usage and Expansion in the course. Thirty college learners were asked to join the virtual language learning website designed by the researchers. Data was collected via feedback questionnaire, interview, and learner interactions. The findings indicated that the course in the CUE model in language learning website of virtual reality environment was effective at motivating EFL learners and improving their oral communication and social interactions in the learning process. Some pedagogical implications are also provided in helping both language instructors and EFL learners in virtual reality environment.

Keywords: motivation, virtual reality, virtual language learning, second language acquisition

Procedia PDF Downloads 391
14594 New Approach in Sports Management of Great Sports Events

Authors: Taieb Kherafa Noureddine

Abstract:

The paper presents a new approach regarding the management in sports that is based on the principles of reengineering. Applying that modern and pure management system, called reengineering, in sports activity, we hope to get better and better results, in order to increase both the health state and the performances of trained athletes. The paper also presents the similarities between BPR (Business Process Reengineering) and sports managements, as well as the proposed solution for a proper implementation of such model of management. The five components of the basic BPR model are presented, together with their features for sports management.

Keywords: business process reengineering, great sports events, sports management, training activities

Procedia PDF Downloads 492
14593 Designing Effective Serious Games for Learning and Conceptualization Their Structure

Authors: Zahara Abdulhussan Al-Awadai

Abstract:

Currently, serious games play a significant role in education, sparking an increasing interest in using games for purposes beyond mere entertainment. In this research, we investigate the main requirements and aspects of designing and developing effective serious games for learning and developing a conceptual model to describe the structure of serious games with a focus on both aspects of serious games. The main contributions of this approach are to facilitate the design and development of serious games in a flexible and easy-to-use way and also to support the cooperative work between the multidisciplinary developer team.

Keywords: game development, game design, requirements, serious games, serious game model.

Procedia PDF Downloads 62
14592 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
14591 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression

Procedia PDF Downloads 422
14590 Determination of Safe Ore Extraction Methodology beneath Permanent Extraction in a Lead Zinc Mine with the Help of FLAC3D Numerical Model

Authors: Ayan Giri, Lukaranjan Phukan, Shantanu Karmakar

Abstract:

Structure and tectonics play a vital role in ore genesis and deposition. The existence of a swelling structure below the current level of a mine leads to the discovery of ores below some permeant developments of the mine. The discovery and the extraction of the ore body are very critical to sustain the business requirement of the mine. The challenge was to extract the ore without hampering the global stability of the mine. In order to do so, different mining options were considered and analysed by numerical modelling in FLAC3d software. The constitutive model prepared for this simulation is the improved unified constitutive model, which can better and more accurately predict the stress-strain relationships in a continuum model. The IUCM employs the Hoek-Brown criterion to determine the instantaneous Mohr-Coulomb parameters cohesion (c) and friction (ɸ) at each level of confining stress. The extra swelled part can be dimensioned as north-south strike width 50m, east-west strike width 50m. On the north side, already a stope (P1) is excavated of the dimension of 25m NS width. The different options considered were (a) Open stoping of extraction of southern part (P0) of 50m to the full extent, (b) Extraction of the southern part of 25m, then filling of both the primaries and extraction of secondary (S0) 25m in between. (c) Extraction of the southern part (P0) completely, preceded by backfill and modify the design of the secondary (S0) for the overall stability of the permanent excavation above the stoping.

Keywords: extraction, IUCM, FLAC 3D, stoping, tectonics

Procedia PDF Downloads 212
14589 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 313
14588 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis

Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga

Abstract:

Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.

Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree

Procedia PDF Downloads 255
14587 Bestination: A Sustainable Approach to Conflict Management for Buddhist Entrepreneurs

Authors: Navarat Sachayansrisakul, Nattawat Ponnara

Abstract:

Human beings are driving forces for any unit of societies, whether it would be in a family, communities, industries or even organizations. However, as our humanity progresses, the reliance has shifted from human to machineries and technologies. One main challenge when dealing with more than one person is conflict often resulted. If the conflict is properly managed, then economic development also follows. In order to achieve positive outcome of conflict, it is believed that the management comes from within individual entrepreneurs. As such, this is a unique study as it looks into the spiritual side of humans as business people and applies to the business environment with the focus on moral and ethical framework in order for sustainable development. This study aims to provide a model of how to positively manage conflict without compromising the ethical and moral standards of the businesses. Sustainability in this study is achieved through the Buddhists’ aim for liberation in which it works on the balanced approach to solving conflict. Buddhists’ livelihood is established on simplicity and non-violence while contributing not to only one’s self but those around them such as the stake holders of the businesses and the communities. According to Buddhist principles and some findings, a model called ‘The Bestination Conflict Management’ was developed. Bestination model offers an alternative approach for entrepreneurs to achieve sustainability along with intrinsic and extrinsic rewards that benefit the well-beings of the owners, the stakeholders and the communities involved. This research study identifies ‘Conflict Management’ model as having goodwill and wisdom as a base, then moral motivation as the next level up to have a disciplines in order to keep a unit well cooperated.

Keywords: sustainable, entrepreneurs, Buddhist, moral, ethics, conflict

Procedia PDF Downloads 169
14586 Enhancement of Visual Comfort Using Parametric Double Skin Façade

Authors: Ahmed A. Khamis, Sherif A. Ibrahim, Mahmoud El Khatieb, Mohamed A. Barakat

Abstract:

Parametric design is an icon of the modern architectural that facilitate taking complex design decisions counting on altering various design parameters. Double skin facades are one of the parametric applications for using parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using parametric double skin facade. First, the design and optimization process executed utilizing Grasshopper parametric design software which is a plugin in rhino. The daylighting performance of the base case building model was compared with the one used the double façade showing an enhancement in daylighting performance indicators like glare and task illuminance in the modified model, execution drawings are made for the optimized design to be executed through Revit, followed by computerized digital fabrication stages of the designed model with various scales to reach the final design decisions using Simplify 3D for mock-up digital fabrication

Keywords: parametric design, double skin facades, digital fabrication, grasshopper, simplify 3D

Procedia PDF Downloads 118
14585 Software Architectural Design Ontology

Authors: Muhammad Irfan Marwat, Sadaqat Jan, Syed Zafar Ali Shah

Abstract:

Software architecture plays a key role in software development but absence of formal description of software architecture causes different impede in software development. To cope with these difficulties, ontology has been used as artifact. This paper proposes ontology for software architectural design based on IEEE model for architecture description and Kruchten 4+1 model for viewpoints classification. For categorization of style and views, ISO/IEC 42010 has been used. Corpus method has been used to evaluate ontology. The main aim of the proposed ontology is to classify and locate software architectural design information.

Keywords: semantic-based software architecture, software architecture, ontology, software engineering

Procedia PDF Downloads 548
14584 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid

Procedia PDF Downloads 309