Search results for: Deep learning based segmentation
27896 Detecting Hate Speech And Cyberbullying Using Natural Language Processing
Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão
Abstract:
Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning
Procedia PDF Downloads 23227895 Determination of Air Quality Index Using Respirable Dust Sampler
Authors: Sapan Bhatnagar, Danish Akhtar, Salman Ahmed, Asif Ekbal, Gufran Beig
Abstract:
Particulates are the solid and liquid droplets present in the atmosphere, they have serious negative effects on human health and environment. PM10 and PM2.5 are so small that they can penetrate deep into our lungs through the respiratory system. Determination of the amount of particulates present in the atmosphere per cubic meter is necessary to monitor, regulate and model atmospheric particulate levels. Air Quality Index is an index tells us how clean or polluted our air is, and what associated health effects might be a concern for us. The AQI focuses on health affects you may experience within a few hours or days after breathing polluted air. The quality rating for each pollutant was calculated. The geometric mean of these quality ratings gives the Air Quality Index. The existing concentrations of pollutants were compared with ambient air quality standards.Keywords: air quality index, particulate, respirable dust sampler, dust sampler
Procedia PDF Downloads 57727894 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation
Procedia PDF Downloads 13727893 The Importance of Analysis of Internal Quality Management Systems and Self-Examination Processes in Engineering Accreditation Processes
Authors: Wilfred Fritz
Abstract:
The accreditation process of engineering degree programmes is based on various reports evaluated by the relevant governing bodies of the institution of higher education. One of the aforementioned reports for the accreditation process is a self-assessment report which is to be completed by the applying institution. This paper seeks to emphasise the importance of analysis of internal quality management systems and self-examination processes in the engineering accreditation processes. A description of how the programme fulfils the criteria should be given. Relevant stakeholders all need to contribute in the writing and structuring of the self-assessment report. The last step is to gather evidence in the form of supporting documentation. In conclusion, the paper also identifies learning outcomes in a case study in seeking accreditation from an international relevant professional body.Keywords: accreditation, governing bodies, self-assessment report, quality management
Procedia PDF Downloads 12627892 Behavioural Intention to Use Learning Management System (LMS) among Postgraduate Students: An Application of Utaut Model
Authors: Kamaludeen Samaila, Khashyaullah Abdulfattah, Fahimi Ahmad Bin Amir
Abstract:
The study was conducted to examine the relationship between selected factors (performance expectancy, effort expectancy, social influence and facilitating condition) and students’ intention to use the learning management system (LMS), as well as investigating the factors predicting students’ intention to use the LMS. The study was specifically conducted at the Faculty of Educational Study of University Putra Malaysia. Questionnaires were distributed to 277 respondents using a random sampling technique. SPSS Version 22 was employed in analyzing the data; the findings of this study indicated that performance expectancy (r = .69, p < .01), effort expectancy (r=.60, p < .01), social influence (r = .61, p < .01), and facilitating condition (r=.42, p < .01), were significantly related to students’ intention to use the LMS. In addition, the result also revealed that performance expectancy (β = .436, p < .05), social influence (β=.232, p < .05), and effort expectancy (β = .193, p < .05) were strong predictors of students’ intention to use the LMS. The analysis further indicated that (R2) is 0.054 which means that 54% of variation in the dependent variable is explained by the entire predictor variables entered into the regression model. Understanding the factors that affect students’ intention to use the LMS could help the lecturers, LMS managers and university management to develop the policies that may attract students to use the LMS.Keywords: LMS, postgraduate students, PutraBlas, students’ intention, UPM, UTAUT model
Procedia PDF Downloads 51627891 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status
Authors: Rosa Figueroa, Christopher Flores
Abstract:
Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm
Procedia PDF Downloads 30027890 The Relationship between Human Pose and Intention to Fire a Handgun
Authors: Joshua van Staden, Dane Brown, Karen Bradshaw
Abstract:
Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.Keywords: feature engineering, human pose, machine learning, security
Procedia PDF Downloads 9527889 Analysis of Risk-Based Disaster Planning in Local Communities
Authors: R. A. Temah, L. A. Nkengla-Asi
Abstract:
Planning for future disasters sets the stage for a variety of activities that may trigger multiple recurring operations and expose the community to opportunities to minimize risks. Local communities are increasingly embracing the necessity for planning based on local risks, but are also significantly challenged to effectively plan and response to disasters. This research examines basic risk-based disaster planning model and compares it with advanced risk-based planning that introduces the identification and alignment of varieties of local capabilities within and out of the local community that can be pivotal to facilitate the management of local risks and cascading effects prior to a disaster. A critical review shows that the identification and alignment of capabilities can potentially enhance risk-based disaster planning. A tailored holistic approach to risk based disaster planning is pivotal to enhance collective action and a reduction in disaster collective cost.Keywords: capabilities, disaster planning, hazards, local community, risk-based
Procedia PDF Downloads 21127888 Radar Track-based Classification of Birds and UAVs
Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo
Abstract:
In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).Keywords: birds, classification, machine learning, UAVs
Procedia PDF Downloads 22827887 Emotion Oriented Students' Opinioned Topic Detection for Course Reviews in Massive Open Online Course
Authors: Zhi Liu, Xian Peng, Monika Domanska, Lingyun Kang, Sannyuya Liu
Abstract:
Massive Open education has become increasingly popular among worldwide learners. An increasing number of course reviews are being generated in Massive Open Online Course (MOOC) platform, which offers an interactive feedback channel for learners to express opinions and feelings in learning. These reviews typically contain subjective emotion and topic information towards the courses. However, it is time-consuming to artificially detect these opinions. In this paper, we propose an emotion-oriented topic detection model to automatically detect the students’ opinioned aspects in course reviews. The known overall emotion orientation and emotional words in each review are used to guide the joint probabilistic modeling of emotion and aspects in reviews. Through the experiment on real-life review data, it is verified that the distribution of course-emotion-aspect can be calculated to capture the most significant opinioned topics in each course unit. This proposed technique helps in conducting intelligent learning analytics for teachers to improve pedagogies and for developers to promote user experiences.Keywords: Massive Open Online Course (MOOC), course reviews, topic model, emotion recognition, topical aspects
Procedia PDF Downloads 26427886 The Current Use of Cell Phone in Education
Authors: Elham A. Alsadoon, Hamadah B. Alsadoon
Abstract:
Educators try to design learning environments that are preferred by their students. With the wide-spread adoption of cell phones surpassing any other technology, educators should not fail to invest in the power of such technology. This study aimed to explore the current use of cell phones in education among Saudi students in Saudi universities and how students perceive such use. Data was collected from 237 students at King Saud University. Descriptive analysis was used to analyze the data. A T-test for independent groups was used to examine whether there was a significant difference between males and females in their perception of using cell phones in education. Findings suggested that students have a positive attitude toward the use of cell phones in education. The most accepted use was for sending notification to students, which has already been experienced through the Twasel system provided by King Saud University. This electronic system allows instructors to easily send any SMS or email to their students. The use of cell phone applications came in the second rank of using cell phones in education. Students have already experienced the benefits of having these applications handy wherever they go. On the other hand, they did not perceive using cell phones for assessment as practical educational usage. No gender difference was detected in terms of students’ perceptions toward using cell phones in education.Keywords: cell phone, mobile learning, educational sciences, education
Procedia PDF Downloads 41727885 Assessment of the Impact of Teaching Methodology on Skill Acquisition in Music Education among Students in Emmanuel Alayande University of Education, Oyo
Authors: Omotayo Abidemi Funmilayo
Abstract:
Skill acquisition in professional fields has been prioritized and considered important to demonstrate the mastery of subject matter and present oneself as an expert in such profession. The ability to acquire skills in different fields, however calls for different method from the instructor or teacher during training. Music is not an exception of such profession, where there exist different area of skills acquisition require practical performance. This paper, however, focused on the impact and effects of different methods on acquisition of practical knowledge in the handling of some musical instruments among the students of Emmanuel Alayande College of Education, Oyo. In this study, 30 students were selected and divided into two groups based on the selected area of learning, further division were made on each of the two major groups to consist of five students each, to be trained using different methodology for two months and three hours per week. Comparison of skill acquired were made using standard research instrument at reliable level of significance, test were carried out on the thirty students considered for the study based on area of skill acquisition. The students that were trained on the keyboard and saxophone using play way method, followed by the students that were trained using demonstration method while the set of students that received teaching instruction through lecture method performed below average. In conclusion, the study reveals that ability to acquire professional skill on handling musical instruments are better enhanced using play way method.Keywords: music education, skill acquisition, keyboard, saxophone
Procedia PDF Downloads 7727884 Heterogeneous Artifacts Construction for Software Evolution Control
Authors: Mounir Zekkaoui, Abdelhadi Fennan
Abstract:
The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.Keywords: heterogeneous software artifacts, software evolution control, unified approach, meta model, software architecture
Procedia PDF Downloads 44927883 The Effect of Engineering Construction in Online Consultancy
Authors: Mariam Wagih Nagib Eskandar
Abstract:
The engineering design process is the activities formulation, to help an engineer raising a plan with a specified goal and performance. The engineering design process is a multi-stage course of action including the conceptualization, research, feasibility studies, establishment of design parameters, preliminary and finally the detailed design. It is a progression from the abstract to the concrete; starting with probably abstract ideas about need, and thereafter elaborating detailed specifications of the object that would satisfy the needs, identified. Engineering design issues, problems, and solutions are discussed in this paper using qualitative approach from an information structure perspective. The objective is to identify the problems, to analyze them and propose solutions by integrating; innovation, practical experience, time and resource management, communications skills, isolating the problem in coordination with all stakeholders. Consequently, this would be beneficial for the engineering community to improve the Engineering design practices.Keywords: education, engineering, math, performanceengineering design, architectural engineering, team-based learning, construction safetyrequirement engineering, models, practices, organizations
Procedia PDF Downloads 8727882 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 18227881 Enhancing African Students’ Learning Experience by Creating Multilingual Resources at a South African University of Technology
Authors: Lisa Graham, Kathleen Grant
Abstract:
South Africa is a multicultural country with eleven official languages, yet most of the formal education at institutions of higher education in the country is in English. It is well known that many students, irrespective of their home language, struggle to grasp difficult scientific concepts and the same is true for students enrolled in the Extended Curriculum Programme at the Cape Peninsula University of Technology (CPUT), studying biomedical sciences. Today we are fortunate in that there is a plethora of resources available to students to research and better understand subject matter online. For example, the students often use YouTube videos to supplement the formal education provided in our course. Unfortunately, most of this material is presented in English. The rationale behind this project lies in that it is well documented that students think and grasp concepts easier in their home language and addresses the fact that the lingua franca of instruction in the field of biomedical science is English. A project aimed at addressing the lack of available resources in most of the South African languages is planned, where students studying Bachelor of Health Science in Medical Laboratory Science will collaborate with those studying Film and Video Technology to create educational videos, explaining scientific concepts in their home languages. These videos will then be published on our own YouTube channel, thereby making them accessible to fellow students, future students and anybody with interest in the subject. Research will be conducted to determine the benefit of the project as well as the published videos to the student community. It is suspected that the students engaged in making the videos will benefit in such a way as to gain further understanding of their course content, a broader appreciation of the discipline, an enhanced sense of civic responsibility, as well as greater respect for the different languages and cultures in our classes. Indeed, an increase in student engagement has been shown to play a central role in student success, and it is well noted that deeper learning and more innovative solutions take place in collaborative groups. We aim to make a meaningful contribution towards the production and repository of knowledge in multilingual teaching and learning for the benefit of the diverse student population and staff. This would strengthen language development, multilingualism, and multiculturalism at CPUT and empower and promote African languages as languages of science and education at CPUT, in other institutions of higher learning, and in South Africa as a whole.Keywords: educational videos, multiculturalism, multilingualism, student engagement
Procedia PDF Downloads 15927880 An Investigation into the Views of Gifted Children on the Effects of Computer and Information Technologies on Their Lives and Education
Authors: Ahmet Kurnaz, Eyup Yurt, Ümit Çiftci
Abstract:
In this study, too, an attempt was made to reveal the place and effects of information technologies on the lives and education of gifted children based on the views of gifted. To this end, the effects of information technologies on gifted are general skills, technology use, academic and social skills, and cooperative and personal skills were investigated. These skills were explored depending on whether or not gifted had their own computers, had internet connection at home, or how often they use the internet, average time period they spent at the computer, how often they played computer games and their use of social media. The study was conducted using the screening model with a quantitative approach. The sample of the study consisted of 129 gifted attending 5-12th classes in 12 provinces in different regions of Turkey. 64 of the participants were female while 65 were male. The research data were collected using the using computer of gifted and information technologies (UCIT) questionnaire which was developed by the researchers and given its final form after receiving expert view. As a result of the study, it was found that UCIT use improved foreign language speaking skills of gifted, enabled them to get to know and understand different cultures, and made use of computer and information technologies while they study. At the end of the study these result were obtained: Gifted have positive idea using computer and communication technology. There are differences whether using the internet about the ideas UCIT. But there are not differences whether having computer, inhabited city, grade level, having internet at home, daily and weekly internet usage durations, playing the computer and internet game, having Facebook and Twitter account about the UCIT. UCIT contribute to the development of gifted vocabulary, allows knowing and understand different cultures, developing foreign language speaking skills, gifted do not give up computer when they do their homework, improve their reading, listening, understanding and writing skills in a foreign language. Gifted children want to have transition to the use of tablets in education. They think UCIT facilitates doing their homework, contributes learning more information in a shorter time. They'd like to use computer-assisted instruction programs at courses. They think they will be more successful in the future if their computer skills are good. But gifted students prefer teacher instead of teaching with computers and they said that learning can be run from home without going to school.Keywords: gifted, using computer, communication technology, information technologies
Procedia PDF Downloads 39327879 Building Brand Equity in a Stigmatised Market: A Cannabis Industry Case Study
Authors: Sibongile Masemola
Abstract:
In 2018, South Africa decriminalised recreational cannabis use and private cultivation, since then, cannabis businesses have been established to meet the demand. However, marketing activities remain limited in this industry, and businesses are unable to disseminate promotional messages, however, as a solution, firms can promote their brands and positioning instead of the actual product (Bick, 2015). Branding is essential to create differences among cannabis firms and to attract and keep customers (Abrahamsson, 2014). Building cannabis firms into brands can better position them in the mind of the consumer so that they become and remain competitive. The aim of this study was to explore how South African cannabis retailers can build brand equity in a stigmatised market, despite significant restrictions on marketing efforts. Keller’s (2001) customer-based brand equity (CBBE) model was used as the as the theoretical framework and explored how cannabis firms build their businesses into brands through developing their brand identity, meaning, performance, and relationships, and ultimately creating brand equity. The study employed a qualitative research method, using semi-structured in-depth interviews among 17 participants to gain insights from cannabis owners and marketers in the recreational cannabis environment. Most findings were presented according to the blocks of CBBE model. Furthermore, a conceptual framework named the stigma-based brand equity (SBBE) model was adapted from Keller’s CBBE model to include an additional building block that accounts for industry-specific characteristics unique to stigmatised markets. Findings revealed the pervasiveness of education and its significance to brand building in a stigmatised industry. Results also demonstrated the overall effect stigma has on businesses and their consumers due to the longstanding negative evaluations of cannabis. Hence, through stigma-bonding, brands can develop deep identity-related psychological bonds with their consumers that will potentially lead to strong brand resonance. This study aims to contribute business-relevant knowledge for firms operating in core-stigmatised markets under controlled marketing regulations by exploring how cannabis firms can build brand equity. Practically, this study presents recommendations for retailers in stigmatised markets on how to destigmatise, build brand identity, create brand meaning, elicit desired brand responses, and develop brand relationships – ultimately building brand equity.Keywords: branding, brand equity, cannabis, organisational stigma
Procedia PDF Downloads 10627878 Comparative Analysis of Change in Vegetation in Four Districts of Punjab through Satellite Imagery, Land Use Statistics and Machine Learning
Authors: Mirza Waseem Abbas, Syed Danish Raza
Abstract:
For many countries agriculture is still the major force driving the economy and a critically important socioeconomic sector, despite exceptional industrial development across the globe. In countries like Pakistan, this sector is considered the backbone of the economy, and most of the economic decision making revolves around agricultural outputs and data. Timely and accurate facts and figures about this vital sector hold immense significance and have serious implications for the long-term development of the economy. Therefore, any significant improvements in the statistics and other forms of data regarding agriculture sector are considered important by all policymakers. This is especially true for decision making for the betterment of crops and the agriculture sector in general. Provincial and federal agricultural departments collect data for all cash and non-cash crops and the sector, in general, every year. Traditional data collection for such a large sector i.e. agriculture, being time-consuming, prone to human error and labor-intensive, is slowly but gradually being replaced by remote sensing techniques. For this study, remotely sensed data were used for change detection (machine learning, supervised & unsupervised classification) to assess the increase or decrease in area under agriculture over the last fifteen years due to urbanization. Detailed Landsat Images for the selected agricultural districts were acquired for the year 2000 and compared to images of the same area acquired for the year 2016. Observed differences validated through detailed analysis of the areas show that there was a considerable decrease in vegetation during the last fifteen years in four major agricultural districts of the Punjab province due to urbanization (housing societies).Keywords: change detection, area estimation, machine learning, urbanization, remote sensing
Procedia PDF Downloads 25527877 Prospective Analytical Cohort Study to Investigate a Physically Active Classroom-Based Wellness Programme to Propose a Mechanism to Meet Societal Need for Increased Physical Activity Participation and Positive Subjective Well-Being amongst Adolescent
Authors: Aileen O'loughlin
Abstract:
‘Is Everybody Going WeLL?’ (IEGW?) is a 33-hour classroom-based initiative created to a) explore values and how they impact on well-being, b) encourage adolescents to connect with their community, and c) provide them with the education to encourage and maintain a lifetime love of physical activity (PA) to ensure beneficial effects on their personal well-being. This initiative is also aimed at achieving sustainable education and aligning with the United Nation’s Sustainable Development Goals numbers 3 and 4. The classroom is a unique setting in which adolescents’ PA participation can be positively influenced through fun PA policies and initiatives. The primary purpose of this research is to evaluate a range of psychosocial and PA outcomes following the 33-hour education programme. This research examined the impact of a PA and well-being programme consisting of either a 60minute or 80minute class, depending on the timetable structure of the school, delivered once a week. Participant outcomes were measured using validated questionnaires regarding Self-esteem, Mental Health Literacy (MHL) and Daily Physical Activity Participation. These questionnaires were administered at three separate time points; baseline, mid-intervention, and post intervention. Semi-structured interviews with participating teachers regarding adherence and participants’ attitudes were completed post-intervention. These teachers were randomly selected for interview. This perspective analytical cohort study included 235 post-primary school students between 11-13 years of age (100 boys and 135 girls) from five public Irish post-primary schools. Three schools received the intervention only; a 33hour interactive well-being learning unit, one school formed a control group and one school had participants in both the intervention and control group. Participating schools were a convenience sample. Data presented outlines baseline data collected pre-participation (0 hours completed). N = 18 junior certificate students returned all three questionnaires fully completed for a 56.3% return rate from 1 school, Intervention School #3. 94.4% (n = 17) of participants enjoy taking part in some form of PA, however only 5.5% (n = 1) of the participants took part in PA every day of the previous 7 days and only 5.5% (n = 1) of those surveyed participated in PA every day during a normal week. 55% (n = 11) had a low level of self-esteem, 50% (n = 9) fall within the normal range of self-esteem, and n = 0 surveyed demonstrated a high level of self-esteem. Female participants’ Mean score was higher than their male counterparts when MHL was compared. Correlation analyses revealed a small association between Self-esteem and Happiness (r = 0.549). Positive correlations were also revealed between MHL and Happiness, MHL and Self-esteem and Self-esteem and 60+ minutes of PA completed daily. IEGW? is a classroom-based with simple methods easy to implement, replicate and financially viable to both public and private schools. It’s unique dataset will allow for the evaluation of a societal approach to the psycho-social well-being and PA participation levels of adolescents. This research is a work in progress and future work is required to learn how to best support the implementation of ‘Is Everybody Going WeLL?’ as part of the school curriculum.Keywords: education, life-long learning, physical activity, psychosocial well-being
Procedia PDF Downloads 12027876 The Controversy of the English Sentence and Its Teaching Implication
Authors: Franklin Uakhemen Ajogbor
Abstract:
The issue of the English sentence has remained controversial from Traditional Grammar to modern linguistics. The English sentence occupies the highest rank in the hierarchy of grammatical units. Its consideration is therefore very necessary in learning English as a second language. Unfortunately, divergent views by grammarians on the concept of the English sentence have generated much controversy. There seems not to be a unanimous agreement on what actually constitute a sentence. Some schools of thought believe that a sentence must have a subject and a predicate while some believe that it should not. The types of sentence according to structure are also not devoid of controversy as the views of several linguists have not been properly harmonized. Findings have shown that serious effort and attention have not been paid by previous linguists to clear these ambiguities as it has a negative implication in the learning and teaching of English language. The variations on the concept of the English sentence have become particularly worrisome as a result of the widening patronage of English as a global language. The paper is therefore interested in the investigation of this controversy and suggesting a solution to the problem. In doing this, data was collected from students and scholars that show lack of uniformity in what a sentence is. Using the Systemic Functional Model as theoretical framework, the paper launches into the views held by these various schools of thought with the aim of reconciling these divergent views and also an attempt to open up further research on what actually constitute a sentence.Keywords: traditional grammar, linguistics, controversy, sentence, grammatical units
Procedia PDF Downloads 29927875 A Recent Investigation into College Freshmen's Foreign Language Classroom Anxiety in the Context of AI
Authors: Xiao Yu Yang
Abstract:
In the current era of AI and the Internet, students' access to AI has increased significantly, and it is no longer surprising that young generations can effectively utilize resources to learn foreign languages. This study aims to investigate the foreign language classroom anxiety of college students who just entered university in 2024 and understand the current anxiety levels of students. Meanwhile, this study conducts the investigation by using a scale tool based on the FLCAS (Foreign Language Classroom Anxiety Scale), which consists of 21 items that were adjusted and re-tested for validity in 2019. A total of three classes taught by the researcher participated in this study. Further interview comparisons are conducted, particularly with students from rural areas and urban cities. Considering the prevalence of AI in modern education, the relationship between the investigated foreign language classroom anxiety and the adopted AI-assisted teaching and learning will be further explored to discuss potential implications.Keywords: FLCAS in China, freshman, AI, English teaching
Procedia PDF Downloads 1527874 A Mixed Methods Study to Examine Teachers’ Views towards Using Interactive White Boards (IWBs) in Tatweer Primary Schools in Saudi Arabia
Authors: Azzah Alghamdi
Abstract:
The Interactive White Boards (IWBs) as one of the innovative educational technologies have been extensively investigated in advanced countries such as the UK, US, and Australia. However, there is a significant lack of research studies, which mainly examine the use of IWBs in Saudi Arabia. Therefore, this study aims to investigate the attitudes of primary teachers towards using IWBs in both the teaching and learning processes. Moreover, it aims to investigate if there is any significant difference between male teachers and females regarding their attitudes towards using this technology. This study concentrated on teachers in primary schools, which participated in Tatweer project in the city of Jeddah, in Saudi Arabia. Mixed methods approach was employed in this study using a designed questionnaire, classroom observations, and a semi-structured interview. 587 teachers (286 men and 301 women) from Tatweer primary schools were completed the questionnaire as well as twenty teachers were interviewed including seven female teachers were observed in their classrooms. The findings of this study indicated that approximately 11% of the teachers within the sample (n=587) had negative attitudes towards the use of IWBs in the teaching and learning processes. However, the majority of them nearly 89% agreed about the benefits of using IWBs in their classrooms. Additionally, all the twenty teachers who were interviewed (including the seven observed female teachers) had positive attitudes towards the use of these technologies. Moreover, 87% of male teachers and 91% of female teachers who completed the questionnaire accepted the usefulness of using IWBs in improving their teaching and students' learning. Thus, this indicates that there was no significant difference between male and female teachers in Tatweer primary schools in terms of their views about using these innovative technologies in their lessons. The findings of the current study will help the Ministry of Education to improve the policies of using IWBs in Saudi Arabia. Indeed, examining teachers’ attitudes towards IWBs is a very important issue because they are the main users in classrooms. Hence, their views should be considered to addressing the powers and boundaries of using IWBs. Moreover, students will feel comfortable to use IWBs if their teachers accept and use them well.Keywords: IWBs, Saudi teachers’ views, Tatweer schools, teachers' gender
Procedia PDF Downloads 23127873 Neuropsychological Aspects in Adolescents Victims of Sexual Violence with Post-Traumatic Stress Disorder
Authors: Fernanda Mary R. G. Da Silva, Adriana C. F. Mozzambani, Marcelo F. Mello
Abstract:
Introduction: Sexual assault against children and adolescents is a public health problem with serious consequences on their quality of life, especially for those who develop post-traumatic stress disorder (PTSD). The broad literature in this research area points to greater losses in verbal learning, explicit memory, speed of information processing, attention and executive functioning in PTSD. Objective: To compare the neuropsychological functions of adolescents from 14 to 17 years of age, victims of sexual violence with PTSD with those of healthy controls. Methodology: Application of a neuropsychological battery composed of the following subtests: WASI vocabulary and matrix reasoning; Digit subtests (WISC-IV); verbal auditory learning test RAVLT; Spatial Span subtest of the WMS - III scale; abbreviated version of the Wisconsin test; concentrated attention test - D2; prospective memory subtest of the NEUPSILIN scale; five-digit test - FDT and the Stroop test (Trenerry version) in adolescents with a history of sexual violence in the previous six months, referred to the Prove (Violence Care and Research Program of the Federal University of São Paulo), for further treatment. Results: The results showed a deficit in the word coding process in the RAVLT test, with impairment in A3 (p = 0.004) and A4 (p = 0.016) measures, which compromises the verbal learning process (p = 0.010) and the verbal recognition memory (p = 0.012), seeming to present a worse performance in the acquisition of verbal information that depends on the support of the attentional system. A worse performance was found in list B (p = 0.047), a lower priming effect p = 0.026, that is, lower evocation index of the initial words presented and less perseveration (p = 0.002), repeated words. Therefore, there seems to be a failure in the creation of strategies that help the mnemonic process of retention of the verbal information necessary for learning. Sustained attention was found to be impaired, with greater loss of setting in the Wisconsin test (p = 0.023), a lower rate of correct responses in stage C of the Stroop test (p = 0.023) and, consequently, a higher index of erroneous responses in C of the Stroop test (p = 0.023), besides more type II errors in the D2 test (p = 0.008). A higher incidence of total errors was observed in the reading stage of the FDT test p = 0.002, which suggests fatigue in the execution of the task. Performance is compromised in executive functions in the cognitive flexibility ability, suggesting a higher index of total errors in the alternating step of the FDT test (p = 0.009), as well as a greater number of persevering errors in the Wisconsin test (p = 0.004). Conclusion: The data from this study suggest that sexual violence and PTSD cause significant impairment in the neuropsychological functions of adolescents, evidencing risk to quality of life in stages that are fundamental for the development of learning and cognition.Keywords: adolescents, neuropsychological functions, PTSD, sexual violence
Procedia PDF Downloads 14027872 Improving Machine Learning Translation of Hausa Using Named Entity Recognition
Authors: Aishatu Ibrahim Birma, Aminu Tukur, Abdulkarim Abbass Gora
Abstract:
Machine translation plays a vital role in the Field of Natural Language Processing (NLP), breaking down language barriers and enabling communication across diverse communities. In the context of Hausa, a widely spoken language in West Africa, mainly in Nigeria, effective translation systems are essential for enabling seamless communication and promoting cultural exchange. However, due to the unique linguistic characteristics of Hausa, accurate translation remains a challenging task. The research proposes an approach to improving the machine learning translation of Hausa by integrating Named Entity Recognition (NER) techniques. Named entities, such as person names, locations, organizations, and dates, are critical components of a language's structure and meaning. Incorporating NER into the translation process can enhance the quality and accuracy of translations by preserving the integrity of named entities and also maintaining consistency in translating entities (e.g., proper names), and addressing the cultural references specific to Hausa. The NER will be incorporated into Neural Machine Translation (NMT) for the Hausa to English Translation.Keywords: machine translation, natural language processing (NLP), named entity recognition (NER), neural machine translation (NMT)
Procedia PDF Downloads 5127871 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 14927870 Reimagining the Learning Management System as a “Third” Space
Authors: Christina Van Wingerden
Abstract:
This paper focuses on a sense of belonging, isolation, and the use of a learning management system as a “third space” for connection and community. Given student use of learning management systems (LMS) for courses on campuses, moderate to high use of social media and hand-held devices, the author explores the possibilities of LMS as a third space. The COVID-19 pandemic has exacerbated student experiences of isolation, and research indicates that students who experience a sense of belonging have a greater likelihood for academic retention and success. The impacts on students of an LMS designed for student employee orientation and training were examined through a mixed methods approach, including a survey, individual interviews, and focus groups. The sample involved 250-450 undergraduate student employees at a US northwestern university. The goal of the study was to find out the efficiency and effectiveness of the orientation information for a wide range of student employees from multiple student affairs departments. And unexpected finding emerged within the study in 2015 and was noted again as a finding in the 2017 study. Students reported feeling like they individually connected to the department, and further to the university because of the LMS orientation. They stated they could see themselves as part of the university community and like they belonged. The orientation, through the LMS, was designed for and occurred online (asynchronous), prior to students traveling and beginning university life for the academic year. The students indicated connection and belonging resulting from some of the design features. With the onset of COVID-19 and prolonged sheltering in place in North America, as well as other parts of the world, students have been precluded from physically gathering to educate and learn. COVID-19 essentially paused face-to-face education in 2020. Media, governments, and higher education outlets have been reporting on widespread college student stress, isolation, loneliness, and sadness. In this context, the author conducted a current mixed methods study (online survey, online interviews) of students in advanced degree programs, like Ph.D. and Ed.D. specifically investigating isolation and sense of belonging. As a part of the study a prototype of a Canvas site was experienced by student interviewees for their reaction of this Canvas site prototype as a “third” space. Some preliminary findings of this study are presented. Doctoral students in the study affirmed the potential of LMS as a third space for community and social academic connection.Keywords: COVID-19, isolation, learning management system, sense of belonging
Procedia PDF Downloads 11427869 Decoding the Structure of Multi-Agent System Communication: A Comparative Analysis of Protocols and Paradigms
Authors: Gulshad Azatova, Aleksandr Kapitonov, Natig Aminov
Abstract:
Multiagent systems have gained significant attention in various fields, such as robotics, autonomous vehicles, and distributed computing, where multiple agents cooperate and communicate to achieve complex tasks. Efficient communication among agents is a crucial aspect of these systems, as it directly impacts their overall performance and scalability. This scholarly work provides an exploration of essential communication elements and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of these protocols across various scenarios. The research also sheds light on emerging trends within communication protocols for multiagent systems, including the incorporation of machine learning methods and the adoption of blockchain-based solutions to ensure secure communication. These trends provide valuable insights into the evolving landscape of multiagent systems and their communication protocols.Keywords: communication, multi-agent systems, protocols, consensus
Procedia PDF Downloads 8027868 Global Low Carbon Transitions in the Power Sector: A Machine Learning Archetypical Clustering Approach
Authors: Abdullah Alotaiq, David Wallom, Malcolm McCulloch
Abstract:
This study presents an archetype-based approach to designing effective strategies for low-carbon transitions in the power sector. To achieve global energy transition goals, a renewable energy transition is critical, and understanding diverse energy landscapes across different countries is essential to design effective renewable energy policies and strategies. Using a clustering approach, this study identifies 12 energy archetypes based on the electricity mix, socio-economic indicators, and renewable energy contribution potential of 187 UN countries. Each archetype is characterized by distinct challenges and opportunities, ranging from high dependence on fossil fuels to low electricity access, low economic growth, and insufficient contribution potential of renewables. Archetype A, for instance, consists of countries with low electricity access, high poverty rates, and limited power infrastructure, while Archetype J comprises developed countries with high electricity demand and installed renewables. The study findings have significant implications for renewable energy policymaking and investment decisions, with policymakers and investors able to use the archetype approach to identify suitable renewable energy policies and measures and assess renewable energy potential and risks. Overall, the archetype approach provides a comprehensive framework for understanding diverse energy landscapes and accelerating decarbonisation of the power sector.Keywords: fossil fuels, power plants, energy transition, renewable energy, archetypes
Procedia PDF Downloads 5827867 Temporal Case-Based Reasoning System for Automatic Parking Complex
Authors: Alexander P. Eremeev, Ivan E. Kurilenko, Pavel R. Varshavskiy
Abstract:
In this paper, the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR.Keywords: analogous reasoning, case-based reasoning, intelligent decision support systems, temporal reasoning
Procedia PDF Downloads 534