Search results for: robust lightweight design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13922

Search results for: robust lightweight design

8522 Impact Analysis of Quality Control Practices in Veterinary Diagnostic Labs in Lahore, Pakistan

Authors: Faiza Marrium, Masood Rabbani, Ali Ahmad Sheikh, Muhammad Yasin Tipu Javed Muhammad, Sohail Raza

Abstract:

More than 75% diseases spreading in the past 10 years in human population globally are linked to veterinary sector. Veterinary diagnostic labs are the powerful ally for diagnosis, prevention and monitoring of animal diseases in any country. In order to avoid detrimental effects of errors in disease diagnostic and biorisk management, there is a dire need to establish quality control system. In current study, 3 private and 6 public sectors veterinary diagnostic labs were selected for survey. A questionnaire survey in biorisk management guidelines of CWA 15793 was designed to find quality control breaches in lab design, personal, equipment and consumable, quality control measures adopted in lab, waste management, environmental monitoring and customer care. The data was analyzed through frequency distribution statistically by using (SPSS) version 18.0. A non-significant difference was found in all parameters of lab design, personal, equipment and consumable, quality control measures adopted in lab, waste management, environmental monitoring and customer care with an average percentage of 46.6, 57.77, 52.7, 55.5, 54.44, 48.88 and 60, respectively. A non-significant difference among all nine labs were found, with highest average compliance percentage of all parameters are lab 2 (78.13), Lab 3 (70.56), Lab 5 (57.51), Lab 6 (56.37), Lab 4 (55.02), Lab 9 (49.58), Lab 7 (47.76), Lab 1 (41.01) and Lab 8 (36.09). This study shows that in Lahore district veterinary diagnostic labs are not giving proper attention to quality of their system and there is no significant difference between setups of private and public sector laboratories. These results show that most of parameters are between 50 and 80 percent, which needs some work and improvement as per WHO criteria.

Keywords: veterinary lab, quality management system, accreditation, regulatory body, disease identification

Procedia PDF Downloads 146
8521 IOT Based Automated Production and Control System for Clean Water Filtration Through Solar Energy Operated by Submersible Water Pump

Authors: Musse Mohamud Ahmed, Tina Linda Achilles, Mohammad Kamrul Hasan

Abstract:

Deterioration of the mother nature is evident these day with clear danger of human catastrophe emanating from greenhouses (GHG) with increasing CO2 emissions to the environment. PV technology can help to reduce the dependency on fossil fuel, decreasing air pollution and slowing down the rate of global warming. The objective of this paper is to propose, develop and design the production of clean water supply to rural communities using an appropriate technology such as Internet of Things (IOT) that does not create any CO2 emissions. Additionally, maximization of solar energy power output and reciprocally minimizing the natural characteristics of solar sources intermittences during less presence of the sun itself is another goal to achieve in this work. The paper presents the development of critical automated control system for solar energy power output optimization using several new techniques. water pumping system is developed to supply clean water with the application of IOT-renewable energy. This system is effective to provide clean water supply to remote and off-grid areas using Photovoltaics (PV) technology that collects energy generated from the sunlight. The focus of this work is to design and develop a submersible solar water pumping system that applies an IOT implementation. Thus, this system has been executed and programmed using Arduino Software (IDE), proteus, Maltab and C++ programming language. The mechanism of this system is that it pumps water from water reservoir that is powered up by solar energy and clean water production was also incorporated using filtration system through the submersible solar water pumping system. The filtering system is an additional application platform which is intended to provide a clean water supply to any households in Sarawak State, Malaysia.

Keywords: IOT, automated production and control system, water filtration, automated submersible water pump, solar energy

Procedia PDF Downloads 90
8520 An Examination of Earnings Management by Publicly Listed Targets Ahead of Mergers and Acquisitions

Authors: T. Elrazaz

Abstract:

This paper examines accrual and real earnings management by publicly listed targets around mergers and acquisitions. Prior literature shows that earnings management around mergers and acquisitions can have a significant economic impact because of the associated wealth transfers among stakeholders. More importantly, acting on behalf of their shareholders or pursuing their self-interests, managers of both targets and acquirers may be equally motivated to manipulate earnings prior to an acquisition to generate higher gains for their shareholders or themselves. Building on the grounds of information asymmetry, agency conflicts, stewardship theory, and the revelation principle, this study addresses the question of whether takeover targets employ accrual and real earnings management in the periods prior to the announcement of Mergers and Acquisitions (M&A). Additionally, this study examines whether acquirers are able to detect targets’ earnings management, and in response, adjust the acquisition premium paid in order not to face the risk of overpayment. This study uses an aggregate accruals approach in estimating accrual earnings management as proxied by estimated abnormal accruals. Additionally, real earnings management is proxied for by employing widely used models in accounting and finance literature. The results of this study indicate that takeover targets manipulate their earnings using accruals in the second year with an earnings release prior to the announcement of the M&A. Moreover, in partitioning the sample of targets according to the method of payment used in the deal, the results are restricted only to targets of stock-financed deals. These results are consistent with the argument that targets of cash-only or mixed-payment deals do not have the same strong motivations to manage their earnings as their stock-financed deals counterparts do additionally supporting the findings of prior studies that the method of payment in takeovers is value relevant. The findings of this study also indicate that takeover targets manipulate earnings upwards through cutting discretionary expenses the year prior to the acquisition while they do not do so by manipulating sales or production costs. Moreover, in partitioning the sample of targets according to the method of payment used in the deal, the results are restricted only to targets of stock-financed deals, providing further robustness to the results derived under the accrual-based models. Finally, this study finds evidence suggesting that acquirers are fully aware of the accrual-based techniques employed by takeover targets and can unveil such manipulation practices. These results are robust to alternative accrual and real earnings management proxies, as well as controlling for the method of payment in the deal.

Keywords: accrual earnings management, acquisition premium, real earnings management, takeover targets

Procedia PDF Downloads 115
8519 Utilizing Fiber-Based Modeling to Explore the Presence of a Soft Storey in Masonry-Infilled Reinforced Concrete Structures

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Recent seismic events have underscored the significant influence of masonry infill walls on the resilience of structures. The irregular positioning of these walls exacerbates their adverse effects, resulting in substantial material and human losses. Research and post-earthquake evaluations emphasize the necessity of considering infill walls in both the design and assessment phases. This study delves into the presence of soft stories in reinforced concrete structures with infill walls. Employing an approximate method relying on pushover analysis results, fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings shed light on the presence of soft first stories, revealing a notable 240% enhancement in resistance for weak column—strong beam-designed frames due to infill walls. Conversely, the effect is more moderate at 38% for strong column—weak beam-designed frames. Interestingly, the uniform distribution of infill walls throughout the structure's height does not influence soft-story emergence in the same seismic zone, irrespective of column-beam strength. In regions with low seismic intensity, infill walls dissipate energy, resulting in consistent seismic behavior regardless of column configuration. Despite column strength, structures with open-ground stories remain vulnerable to soft first-story emergence, underscoring the crucial role of infill walls in reinforced concrete structural design.

Keywords: masonry infill walls, soft Storey, pushover analysis, fiber section, macro-modeling

Procedia PDF Downloads 67
8518 Theoretical Investigations on Optical Properties of GaFeMnN Quaternary Compound

Authors: H. A. Bentounes, A. Abbad, W. Benstaali

Abstract:

Using first principles calculations based on the density functional theory and local spin density approximation, we investigate optical properties of GaFeMnN quaternary compound. Results show that optical properties confirm that GaFeMnN can be a good candidate in the design of thin film solar cells in the visible and ultraviolet parts of the spectrum, and a good sensor in the infrared

Keywords: GaN, optical absorption, semi-metallic, dielectric function

Procedia PDF Downloads 368
8517 Examination of the South African Fire Legislative Framework

Authors: Mokgadi Julia Ngoepe-Ntsoane

Abstract:

The article aims to make a case for a legislative framework for the fire sector in South Africa. Robust legislative framework is essential for empowering those with obligatory mandate within the sector. This article contributes to the body of knowledge in the field of policy reviews particularly with regards to the legal framework. It has been observed overtime that the scholarly contributions in this field are limited. Document analysis was the methodology selected for the investigation of the various legal frameworks existing in the country. It has been established that indeed the national legislation on the fire industry does not exist in South Africa. From the documents analysed, it was revealed that the sector is dominated by cartels who are exploiting the new entrants to the market particularly SMEs. It is evident that these cartels are monopolising the system as they have long been operating in the system turning it into self- owned entities. Commitment to addressing the challenges faced by fire services and creating a framework for the evolving role that fire brigade services are expected to execute in building safer and sustainable communities is vital. Legislation for the fire sector ought to be concluded with immediate effect. The outdated national fire legislation has necessitated the monopolisation and manipulation of the system by dominating organisations which cause a painful discrimination and exploitation of smaller service providers to enter the market for trading in that occupation. The barrier to entry bears long term negative effects on national priority areas such as employment creation, poverty, and others. This monopolisation and marginalisation practices by cartels in the sector calls for urgent attention by government because if left attended, it will leave a lot of people particularly women and youth being disadvantaged and frustrated. The downcast syndrome exercised within the fire sector has wreaked havoc and is devastating. This is caused by cartels that have been within the sector for some time, who know the strengths and weaknesses of processes, shortcuts, advantages and consequences of various actions. These people take advantage of new entrants to the sector who in turn find it difficult to manoeuvre, find the market dissonant and end up giving up their good ideas and intentions. There are many pieces of legislation which are industry specific such as housing, forestry, agriculture, health, security, environmental which are used to regulate systems within the institutions involved. Other regulations exist as bi-laws for guiding the management within the municipalities.

Keywords: sustainable job creation, growth and development, transformation, risk management

Procedia PDF Downloads 175
8516 Effect of Core Stability Exercises on Trunk Muscle Balance in Healthy Adult Individuals

Authors: Amira A. A. Abdallah, Amir A. Beltagi

Abstract:

Background: Core stability training has recently attracted attention for improving muscle balance and optimizing performance in healthy and unhealthy individuals. Purpose: This study investigated the effect of beginner’s core stability exercises on trunk flexors’/extensors’ peak torque ratio and trunk flexors’ and extensors’ peak torques. Methods: Thirty five healthy individuals participated in the study. They were randomly assigned to two groups; experimental “group I, n=20” and control “group II, n=15”. Their mean age, weight and height were 20.7±2.4 vs. 20.3±0.61 years, 66.5±12.1 vs. 68.57±12.2 kg and 166.7±7.8 vs. 164.28 ±7.59 cm. for group I vs. group II. Data were collected using the Biodex Isokinetic system. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The 2x2 Mixed Design ANOVA revealed that there were no significant differences (p>0.025) in the trunk flexors’/extensors’ peak torque ratio between the pre-test and post-test conditions for either group. Moreover, there were no significant differences (p>0.025) in the trunk flexion/extension ratios between both groups at either condition. However, the 2x2 Mixed Design MANOVA revealed significant increases (p<0.025) in the trunk flexors’ and extensors’ peak torques in the post-test condition compared with the pre-test in group I with no significant differences (p>0.025) in group II. Moreover, there was a significant increase (p<0.025) in the trunk flexors’ peak torque only in group I compared with group II in the post-test condition with no significant differences in the other conditions. Interpretation/Conclusion: The improvement in muscle performance indicated by the increase in the trunk flexors’ and extensors’ peak torques in the experimental group recommends including core stability training in the exercise programs that aim to improve muscle performance.

Keywords: core stability, isokinetic, trunk muscles, muscle balance

Procedia PDF Downloads 260
8515 Multidisciplinarity, Interdisciplinarity and Transdisciplinarity in Peace Education and Peace Studies: A Content Analysis

Authors: Frances Bernard Kominkiewicz

Abstract:

Demonstrating the ability to build social justice and peace is integral in undergraduate and graduate education. Many disciplines are involved in peace education and peace studies, and the collaboration of those disciplines are examined in this paper. To the author’s best knowledge, no content analysis research previously existed regarding peace studies and peace education from a multidisciplinarity, interdisciplinarity, and transdisciplinarity perspective. Peacebuilding is taught through these approaches, which adds to the depth, breadth, and richness of peace education and peace studies. This paper presents a content analysis of academic peace studies programs and course descriptions. Variables studied include contributions and foci of disciplines in peace studies programs and students’ engagement in community peacebuilding. The social work discipline, for example, focuses on social and economic justice as one of the nine competencies that undergraduate and graduate students must attain before earning a Bachelor of Social Work degree or a Master of Social Work degree and becoming social work practitioners. Demonstrating the ability to build social justice and peace is integral in social work education. Peacebuilding is taught through such social work courses as conflict resolution, and social work practice with communities and organizations, and these courses are examined in this research through multidisciplinarity, interdisciplinarity, and transdisciplinarity approach. Peace and social justice are linked terms in various fields, including social work. Social justice is of paramount importance in social work programs, and social workers are trained to advocate for human rights and social, economic, and environmental justice. Social workers use knowledge of oppression, globally as well as nationally, in the practice of peace education and peace studies. Social work is at the forefront in advocating for social justice as a discipline and joins with other educators in strengthening the peacebuilding opportunities for students. The content analysis, conducted through a random sample of peace studies and peace education university and college programs in the United States, found that although courses teach the concepts of peace education and peace studies, courses often are not given these titles in the social work discipline. Therefore, this analysis also includes a discussion of the multidisciplinarity, interdisciplinarity, and transdisciplinarity approach to peace education, peace studies, and peacebuilding and the importance of these approaches in educating students about peace. The content analysis further found great variability in the number of disciplines involved in peace studies programs, the focus of those disciplines in peace education, the placement of peace studies and peace education within the university or college, and the number of courses and concentrations available in peace studies and peace education. In conclusion, the research points toward very robust and diverse approaches to peace education with opportunities for further research and discussion.

Keywords: content analysis, interdisciplinarity, multidisciplinarity, peace education programs

Procedia PDF Downloads 155
8514 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design

Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus

Abstract:

Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.

Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor

Procedia PDF Downloads 357
8513 Design and Simulation a Low Phase Noise CMOS LC VCO for IEEE802.11a WLAN Applications

Authors: Hooman Kaabi, Raziyeh Karkoub

Abstract:

This work proposes a structure of AMOS-varactors. A 5GHz LC-VCO designed in TSMC 0.18μm CMOS to improve phase noise and tuning range performance. The tuning range is from 5.05GHZ to 5.88GHz.The phase noise is -154.9dBc/Hz at 1MHz offset from the carrier. It meets the requirements for IEEE 802.11a WLAN standard.

Keywords: CMOS LC VCO, spiral inductor, varactor, phase noise, tuning range

Procedia PDF Downloads 536
8512 Design and Fabrication of Stiffness Reduced Metallic Locking Compression Plates through Topology Optimization and Additive Manufacturing

Authors: Abdulsalam A. Al-Tamimi, Chris Peach, Paulo Rui Fernandes, Paulo J. Bartolo

Abstract:

Bone fixation implants currently used to treat traumatic fractured bones and to promote fracture healing are built with biocompatible metallic materials such as stainless steel, cobalt chromium and titanium and its alloys (e.g., CoCrMo and Ti6Al4V). The noticeable stiffness mismatch between current metallic implants and host bone associates with negative outcomes such as stress shielding which causes bone loss and implant loosening leading to deficient fracture treatment. This paper, part of a major research program to design the next generation of bone fixation implants, describes the combined use of three-dimensional (3D) topology optimization (TO) and additive manufacturing powder bed technology (Electron Beam Melting) to redesign and fabricate the plates based on the current standard one (i.e., locking compression plate). Topology optimization is applied with an objective function to maximize the stiffness and constraint by volume reductions (i.e., 25-75%) in order to obtain optimized implant designs with reduced stress shielding phenomenon, under different boundary conditions (i.e., tension, bending, torsion and combined loads). The stiffness of the original and optimised plates are assessed through a finite-element study. The TO results showed actual reduction in the stiffness for most of the plates due to the critical values of volume reduction. Additionally, the optimized plates fabricated using powder bed techniques proved that the integration between the TO and additive manufacturing presents the capability of producing stiff reduced plates with acceptable tolerances.

Keywords: additive manufacturing, locking compression plate, finite element, topology optimization

Procedia PDF Downloads 199
8511 Simulation of Bird Strike on Airplane Wings by Using SPH Methodology

Authors: Tuğçe Kiper Elibol, İbrahim Uslan, Mehmet Ali Guler, Murat Buyuk, Uğur Yolum

Abstract:

According to the FAA report, 142603 bird strikes were reported for a period of 24 years, between 1990 – 2013. Bird strike with aerospace structures not only threaten the flight security but also cause financial loss and puts life in danger. The statistics show that most of the bird strikes are happening with the nose and the leading edge of the wings. Also, a substantial amount of bird strikes is absorbed by the jet engines and causes damage on blades and engine body. Crash proof designs are required to overcome the possibility of catastrophic failure of the airplane. Using computational methods for bird strike analysis during the product development phase has considerable importance in terms of cost saving. Clearly, using simulation techniques to reduce the number of reference tests can dramatically affect the total cost of an aircraft, where for bird strike often full-scale tests are considered. Therefore, development of validated numerical models is required that can replace preliminary tests and accelerate the design cycle. In this study, to verify the simulation parameters for a bird strike analysis, several different numerical options are studied for an impact case against a primitive structure. Then, a representative bird mode is generated with the verified parameters and collided against the leading edge of a training aircraft wing, where each structural member of the wing was explicitly modeled. A nonlinear explicit dynamics finite element code, LS-DYNA was used for the bird impact simulations. SPH methodology was used to model the behavior of the bird. Dynamic behavior of the wing superstructure was observed and will be used for further design optimization purposes.

Keywords: bird impact, bird strike, finite element modeling, smoothed particle hydrodynamics

Procedia PDF Downloads 327
8510 Re-Designing Community Foodscapes to Enhance Social Inclusion in Sustainable Urban Environments

Authors: Carles Martinez-Almoyna Gual, Jiwon Choi

Abstract:

Urban communities face risks of disintegration and segregation as a consequence of globalised migration processes towards urban environments. Linking social and cultural components with environmental and economic dimensions becomes the goal of all the disciplines that aim to shape more sustainable urban environments. Solutions require interdisciplinary approaches and the use of a complex array of tools. One of these tools is the implementation of urban farming, which provides a wide range of advantages for creating more inclusive spaces and integrated communities. Since food is strongly related to the values and identities of any cultural group, it can be used as a medium to promote social inclusion in the context of urban multicultural societies. By bringing people together into specific urban sites, food production can be integrated into multifunctional spaces while addressing social, economic and ecological goals. The goal of this research is to assess different approaches to urban agriculture by analysing three existing community gardens located in Newtown, a suburb of Wellington, New Zealand. As a context for developing research, Newtown offers different approaches to urban farming and is really valuable for observing current trends of socialization in diverse and multicultural societies. All three spaces are located on public land owned by Wellington City Council and confined to a small, complex and progressively denser urban area. The developed analysis was focused on social, cultural and physical dimensions, combining community engagement with different techniques of spatial assessment. At the same time, a detailed investigation of each community garden was conducted with comparative analysis methodologies. This multidirectional setting of the analysis was established for extracting from the case studies both specific and typological knowledge. Each site was analysed and categorised under three broad themes: people, space and food. The analysis revealed that all three case studies had really different spatial settings, different approaches to food production and varying profiles of supportive communities. The main differences identified were demographics, values, objectives, internal organization, appropriation, and perception of the space. The community gardens were approached as case studies for developing design research. Following participatory design processes with the different communities, the knowledge gained from the analysis was used for proposing changes in the physical environment. The end goal of the design research was to improve the capacity of the spaces to facilitate social inclusiveness. In order to generate tangible changes, a range of small, strategic and feasible spatial interventions was explored. The smallness of the proposed interventions facilitates implementation by reducing time frames, technical resources, funding needs, and legal processes, working within the community´s own realm. These small interventions are expected to be implemented over time as part of an ongoing collaboration between the different communities, the university, and the local council. The applied research methodology showcases the capacity of universities to develop civic engagement by working with real communities that have concrete needs and face overall threats of disintegration and segregation.

Keywords: community gardening, landscape architecture, participatory design, placemaking, social inclusion

Procedia PDF Downloads 126
8509 Tasting Terroir: A Gourmet Adventure in Food and Wine Tourism

Authors: Sunita Boro, Saurabh Kumar Dixit

Abstract:

Terroir, an intricate fusion of geography, climate, soil, and human expertise, has long been acknowledged as a defining factor in the character of wines and foods. This research embarks on an exploration of terroir's profound influence on gastronomic tourism, shedding light on the intricate interplay between the physical environment and culinary artistry. Delving into the intricate science of terroir, we scrutinize its role in shaping the sensory profiles of wines and foods, emphasizing the profound impact of specific regions on flavor, aroma, and texture. We deploy a multifaceted methodology, amalgamating sensory analysis, chemical profiling, geographical information systems, and qualitative interviews to unearth the nuanced nuances of terroir expression. Through an exhaustive review of the literature, we elucidate the historical roots of terroir, unveil the intricate cultural dimensions shaping it, and provide a comprehensive examination of prior studies in the field. Our findings underscore the pivotal role of terroir in promoting regional identities, enhancing the economic viability of locales, and attracting gastronomic tourists. The paper also dissects the marketing strategies employed to promote terroir-driven food and wine experiences. We elucidate the utilization of storytelling, branding, and collaborative endeavors in fostering a robust terroir-based tourism industry. This elucidates both the potential for innovation and the challenges posed by oversimplification or misrepresentation of terroir. Our research spotlights the intersection of terroir and sustainability, emphasizing the significance of environmentally conscious practices in terroir-driven productions. We discern the harmonious relationship between sustainable agriculture, terroir preservation, and responsible tourism, encapsulating the essence of ecological integrity in gastronomic tourism. Incorporating compelling case studies of regions and businesses excelling in the terroir-based tourism realm, we offer in-depth insights into successful models and strategies, with an emphasis on their replicability and adaptability to various contexts. Ultimately, this paper not only contributes to the scholarly understanding of terroir's role in the world of food and wine tourism but also provides actionable recommendations for stakeholders to leverage terroir's allure, preserve its authenticity, and foster sustainable and enriching culinary tourism experiences.

Keywords: terroir, food tourism, wine tourism, sustainability

Procedia PDF Downloads 60
8508 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm

Authors: Frodouard Minani

Abstract:

Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.

Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks

Procedia PDF Downloads 144
8507 Network Analysis to Reveal Microbial Community Dynamics in the Coral Reef Ocean

Authors: Keigo Ide, Toru Maruyama, Michihiro Ito, Hiroyuki Fujimura, Yoshikatu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama

Abstract:

Understanding environmental system is one of the important tasks. In recent years, conservation of coral environments has been focused for biodiversity issues. The damage of coral reef under environmental impacts has been observed worldwide. However, the casual relationship between damage of coral and environmental impacts has not been clearly understood. On the other hand, structure/diversity of marine bacterial community may be relatively robust under the certain strength of environmental impact. To evaluate the coral environment conditions, it is necessary to investigate relationship between marine bacterial composition in coral reef and environmental factors. In this study, the Time Scale Network Analysis was developed and applied to analyze the marine environmental data for investigating the relationship among coral, bacterial community compositions and environmental factors. Seawater samples were collected fifteen times from November 2014 to May 2016 at two locations, Ishikawabaru and South of Sesoko in Sesoko Island, Okinawa. The physicochemical factors such as temperature, photosynthetic active radiation, dissolved oxygen, turbidity, pH, salinity, chlorophyll, dissolved organic matter and depth were measured at the coral reef area. Metagenome and metatranscriptome in seawater of coral reef were analyzed as the biological factors. Metagenome data was used to clarify marine bacterial community composition. In addition, functional gene composition was estimated from metatranscriptome. For speculating the relationships between physicochemical and biological factors, cross-correlation analysis was applied to time scale data. Even though cross-correlation coefficients usually include the time precedence information, it also included indirect interactions between the variables. To elucidate the direct regulations between both factors, partial correlation coefficients were combined with cross correlation. This analysis was performed against all parameters such as the bacterial composition, the functional gene composition and the physicochemical factors. As the results, time scale network analysis revealed the direct regulation of seawater temperature by photosynthetic active radiation. In addition, concentration of dissolved oxygen regulated the value of chlorophyll. Some reasonable regulatory relationships between environmental factors indicate some part of mechanisms in coral reef area.

Keywords: coral environment, marine microbiology, network analysis, omics data analysis

Procedia PDF Downloads 254
8506 Daylight Performance of a Single Unit in Distinct Arrangements

Authors: Rifat Tabassoom

Abstract:

Recently multistoried housing projects are accelerating in the capital of Bangladesh- Dhaka, to house its massive population. Insufficient background research leads to a building design trend where a single unit is designed and then multiplied all through the buildings. Therefore, although having identical designs, all the units cannot perform evenly considering daylight, which also alters their household activities. This paper aims to understand if a single unit can be an optimum solution regarding daylight for a selected housing project.

Keywords: daylight, orientation, performance, simulations

Procedia PDF Downloads 123
8505 Examining the Design of a Scaled Audio Tactile Model for Enhancing Interpretation of Visually Impaired Visitors in Heritage Sites

Authors: A. Kavita Murugkar, B. Anurag Kashyap

Abstract:

With the Rights for Persons with Disabilities Act (RPWD Act) 2016, the Indian government has made it mandatory for all establishments, including Heritage Sites, to be accessible for People with Disabilities. However, recent access audit surveys done under the Accessible India Campaign by Ministry of Culture indicate that there are very few accessibility measures provided in the Heritage sites for people with disabilities. Though there are some measures for the mobility impaired, surveys brought out that there are almost no provisions for people with vision impairment (PwVI) in heritage sites thus depriving them of a reasonable physical & intellectual access that facilitates an enjoyable experience and enriching interpretation of the Heritage Site. There is a growing need to develop multisensory interpretative tools that can help the PwVI in perceiving heritage sites in the absence of vision. The purpose of this research was to examine the usability of an audio-tactile model as a haptic and sound-based strategy for augmenting the perception and experience of PwVI in a heritage site. The first phase of the project was a multi-stage phenomenological experimental study with visually impaired users to investigate the design parameters for developing an audio-tactile model for PwVI. The findings from this phase included user preferences related to the physical design of the model such as the size, scale, materials, details, etc., and the information that it will carry such as braille, audio output, tactile text, etc. This was followed by the second phase in which a working prototype of an audio-tactile model is designed and developed for a heritage site based on the findings from the first phase of the study. A nationally listed heritage site from the author’s city was selected for making the model. The model was lastly tested by visually impaired users for final refinements and validation. The prototype developed empowers People with Vision Impairment to navigate independently in heritage sites. Such a model if installed in every heritage site, can serve as a technological guide for the Person with Vision Impairment, giving information of the architecture, details, planning & scale of the buildings, the entrances, location of important features, lifts, staircases, and available, accessible facilities. The model was constructed using 3D modeling and digital printing technology. Though designed for the Indian context, this assistive technology for the blind can be explored for wider applications across the globe. Such an accessible solution can change the otherwise “incomplete’’ perception of the disabled visitor, in this case, a visually impaired visitor and augment the quality of their experience in heritage sites.

Keywords: accessibility, architectural perception, audio tactile model , inclusive heritage, multi-sensory perception, visual impairment, visitor experience

Procedia PDF Downloads 106
8504 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation

Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau

Abstract:

In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.

Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa

Procedia PDF Downloads 156
8503 Control of a Quadcopter Using Genetic Algorithm Methods

Authors: Mostafa Mjahed

Abstract:

This paper concerns the control of a nonlinear system using two different methods, reference model and genetic algorithm. The quadcopter is a nonlinear unstable system, which is a part of aerial robots. It is constituted by four rotors placed at the end of a cross. The center of this cross is occupied by the control circuit. Its motions are governed by six degrees of freedom: three rotations around 3 axes (roll, pitch and yaw) and the three spatial translations. The control of such system is complex, because of nonlinearity of its dynamic representation and the number of parameters, which it involves. Numerous studies have been developed to model and stabilize such systems. The classical PID and LQ correction methods are widely used. If the latter represent the advantage to be simple because they are linear, they reveal the drawback to require the presence of a linear model to synthesize. It also implies the complexity of the established laws of command because the latter must be widened on all the domain of flight of these quadcopter. Note that, if the classical design methods are widely used to control aeronautical systems, the Artificial Intelligence methods as genetic algorithms technique receives little attention. In this paper, we suggest comparing two PID design methods. Firstly, the parameters of the PID are calculated according to the reference model. In a second phase, these parameters are established using genetic algorithms. By reference model, we mean that the corrected system behaves according to a reference system, imposed by some specifications: settling time, zero overshoot etc. Inspired from the natural evolution of Darwin's theory advocating the survival of the best, John Holland developed this evolutionary algorithm. Genetic algorithm (GA) possesses three basic operators: selection, crossover and mutation. We start iterations with an initial population. Each member of this population is evaluated through a fitness function. Our purpose is to correct the behavior of the quadcopter around three axes (roll, pitch and yaw) with 3 PD controllers. For the altitude, we adopt a PID controller.

Keywords: quadcopter, genetic algorithm, PID, fitness, model, control, nonlinear system

Procedia PDF Downloads 431
8502 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing

Authors: Jonathan Martino, Kristof Harri

Abstract:

In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.

Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration

Procedia PDF Downloads 270
8501 The Future of Insurance: P2P Innovation versus Traditional Business Model

Authors: Ivan Sosa Gomez

Abstract:

Digitalization has impacted the entire insurance value chain, and the growing movement towards P2P platforms and the collaborative economy is also beginning to have a significant impact. P2P insurance is defined as innovation, enabling policyholders to pool their capital, self-organize, and self-manage their own insurance. In this context, new InsurTech start-ups are emerging as peer-to-peer (P2P) providers, based on a model that differs from traditional insurance. As a result, although P2P platforms do not change the fundamental basis of insurance, they do enable potentially more efficient business models to be established in terms of ensuring the coverage of risk. It is therefore relevant to determine whether p2p innovation can have substantial effects on the future of the insurance sector. For this purpose, it is considered necessary to develop P2P innovation from a business perspective, as well as to build a comparison between a traditional model and a P2P model from an actuarial perspective. Objectives: The objectives are (1) to represent P2P innovation in the business model compared to the traditional insurance model and (2) to establish a comparison between a traditional model and a P2P model from an actuarial perspective. Methodology: The research design is defined as action research in terms of understanding and solving the problems of a collectivity linked to an environment, applying theory and best practices according to the approach. For this purpose, the study is carried out through the participatory variant, which involves the collaboration of the participants, given that in this design, participants are considered experts. For this purpose, prolonged immersion in the field is carried out as the main instrument for data collection. Finally, an actuarial model is developed relating to the calculation of premiums that allows for the establishment of projections of future scenarios and the generation of conclusions between the two models. Main Contributions: From an actuarial and business perspective, we aim to contribute by developing a comparison of the two models in the coverage of risk in order to determine whether P2P innovation can have substantial effects on the future of the insurance sector.

Keywords: Insurtech, innovation, business model, P2P, insurance

Procedia PDF Downloads 92
8500 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows

Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican

Abstract:

This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.

Keywords: laboratory-process, optimization, pathology, computer simulation, workflow

Procedia PDF Downloads 286
8499 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 51
8498 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization

Authors: Wenqi Liu, Reginald Bailey

Abstract:

This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.

Keywords: machine learning, XGBoost, regression, decision making framework, system engineering

Procedia PDF Downloads 17
8497 Impact of Heat Moisture Treatment on the Yield of Resistant Starch and Evaluation of Functional Properties of Modified Mung Bean (Vigna radiate) Starch

Authors: Sreejani Barua, P. P. Srivastav

Abstract:

Formulation of new functional food products for diabetes patients and obsessed people is a challenge for food industries till date. Starch is a certainly happening, ecological, reasonable and profusely obtainable polysaccharide in plant material. In the present scenario, there is a great interest in modifying starch functional properties without destroying its granular structure using different modification techniques. Resistant starch (RS) contains almost zero calories and can control blood glucose level to prevent diabetes. The current study focused on modification of mung bean starch which is a good source of legumes carbohydrate for the production of functional food. Heat moisture treatment (HMT) of mung starch was conducted at moisture content of 10-30%, temperature of 80-120 °C and time of 8-24 h.The content of resistant starch after modification was significantly increased from native starches containing RS 7.6%. The design combinations of HMT had been completed through Central Composite Rotatable Design (CCRD). The effects of HMT process variables on the yield of resistant starch was studied through Rapid Surface Methodology (RSM). The highest increase of resistant starch was found up to 34.39% when treated the native starch with 30% m.c at 120 °C temperature for 24 h.The functional properties of both native and modified mung bean starches showed that there was a reduction in the swelling power and swelling volume of HMT starches. However, the solubility of the HMT starches was higher than that of untreated native starch and also observed change in structural (scanning electron microscopy), X-Ray diffraction (XRD) pattern, blue value and thermal (differential scanning calorimetry) properties. Therefore, replacing native mung bean starch with heat-moisture treated mung bean starch leads to the development of new products with higher resistant starch levels and functional properties.

Keywords: Mung bean starch, heat moisture treatment, functional properties, resistant starch

Procedia PDF Downloads 202
8496 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin

Authors: T. Yılmaz, Ş. Tavman

Abstract:

In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.

Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction

Procedia PDF Downloads 332
8495 A 0-1 Goal Programming Approach to Optimize the Layout of Hospital Units: A Case Study in an Emergency Department in Seoul

Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee

Abstract:

This paper proposes a method to optimize the layout of an emergency department (ED) based on real executions of care processes by considering several planning objectives simultaneously. Recently, demand for healthcare services has been dramatically increased. As the demand for healthcare services increases, so do the need for new healthcare buildings as well as the need for redesign and renovating existing ones. The importance of implementation of a standard set of engineering facilities planning and design techniques has been already proved in both manufacturing and service industry with many significant functional efficiencies. However, high complexity of care processes remains a major challenge to apply these methods in healthcare environments. Process mining techniques applied in this study to tackle the problem of complexity and to enhance care process analysis. Process related information such as clinical pathways extracted from the information system of an ED. A 0-1 goal programming approach is then proposed to find a single layout that simultaneously satisfies several goals. The proposed model solved by optimization software CPLEX 12. The solution reached using the proposed method has 42.2% improvement in terms of walking distance of normal patients and 47.6% improvement in walking distance of critical patients at minimum cost of relocation. It has been observed that lots of patients must unnecessarily walk long distances during their visit to the emergency department because of an inefficient design. A carefully designed layout can significantly decrease patient walking distance and related complications.

Keywords: healthcare operation management, goal programming, facility layout problem, process mining, clinical processes

Procedia PDF Downloads 295
8494 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces

Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani

Abstract:

A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.

Keywords: readiness, maturity, system, integration

Procedia PDF Downloads 92
8493 Effect of Volute Tongue Shape and Position on Performance of Turbo Machinery Compressor

Authors: Anuj Srivastava, Kuldeep Kumar

Abstract:

This paper proposes a numerical study of volute tongue design, which affects the centrifugal compressor operating range and pressure recovery. Increased efficiency has been the traditional importance of compressor design. However, the increased operating range has become important in an age of ever-increasing productivity and energy costs in the turbomachinery industry. Efficiency and overall operating range are the two most important parameters studied to evaluate the aerodynamic performance of centrifugal compressor. Volute is one of the components that have significant effect on these two parameters. Choice of volute tongue geometry has major role in compressor performance, also affects performance map. The author evaluates the trade-off on using pull-back tongue geometry on centrifugal compressor performance. In present paper, three different tongue positions and shapes are discussed. These designs are compared in terms of pressure recovery coefficient, pressure loss coefficient, and stable operating range. The detailed flow structures for various volute geometries and pull back angle near tongue are studied extensively to explore the fluid behavior. The viscous Navier-Stokes equations are used to simulate the flow inside the volute. The numerical calculations are compared with thermodynamic 1-D calculations. Author concludes that the increment in compression ratio accompanies with more uniform pressure distribution in the modified tongue shape and location, a uniform static pressure around the circumferential which build a more uniform flow in the impeller and diffuser. Also, the blockage at the tongue of the volute was causing circumferentially nonuniformed pressure along the volute. This nonuniformity may lead impeller and diffuser to operate unstably. However, it is not the volute that directly controls the stall.

Keywords: centrifugal compressor volute, tongue geometry, pull-back, compressor performance, flow instability

Procedia PDF Downloads 163