Search results for: two-dimentional mechanical treatments
59 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds
Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu
Abstract:
Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL
Procedia PDF Downloads 17558 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles
Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica
Abstract:
Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation
Procedia PDF Downloads 30057 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator
Authors: Kaushikk Iyer, Richard M Hall, David Keeling
Abstract:
Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator
Procedia PDF Downloads 16856 Smart and Active Package Integrating Printed Electronics
Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares
Abstract:
In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic
Procedia PDF Downloads 10655 Transition Metal Bis(Dicarbollide) Complexes in Design of Molecular Switches
Authors: Igor B. Sivaev
Abstract:
Design of molecular machines is an extraordinary growing and very important area of research that it was recognized by awarding Sauvage, Stoddart and Feringa the Nobel Prize in Chemistry in 2016 'for the design and synthesis of molecular machines'. Based on the type of motion being performed, molecular machines can be divided into two main types: molecular motors and molecular switches. Molecular switches are molecules or supramolecular complexes having bistability, i.e., the ability to exist in two or more stable forms, among which may be reversible transitions under external influence (heating, lighting, changing the medium acidity, the action of chemicals, exposure to magnetic or electric field). Molecular switches are the main structural element of any molecular electronics devices. Therefore, the design and the study of molecules and supramolecular systems capable of performing mechanical movement is an important and urgent problem of modern chemistry. There is growing interest in molecular switches and other devices of molecular electronics based on transition metal complexes; therefore choice of suitable stable organometallic unit is of great importance. An example of such unit is bis(dicarbollide) complexes of transition metals [3,3’-M(1,2-C₂B₉H₁₁)₂]ⁿ⁻. The control on the ligand rotation in such complexes can be reached by introducing substituents which could provide stabilization of certain rotamers due to specific interactions between the ligands, on the one hand, and which can participate as Lewis bases in complex formation with external metals resulting in a change in the rotation angle of the ligands, on the other hand. A series of isomeric methyl sulfide derivatives of cobalt bis(dicarbollide) complexes containing methyl sulfide substituents at boron atoms in different positions of the pentagonal face of the dicarbollide ligands [8,8’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻, rac-[4,4’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ and meso-[4,7’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ were synthesized by the reaction of CoCl₂ with the corresponding methyl sulfide carborane derivatives [10-MeS-7,8-C₂B₉H₁₁)₂]⁻ and [10-MeS-7,8-C₂B₉H₁₁)₂]⁻. In the case of asymmetrically substituted cobalt bis(dicarbollide) complexes the corresponding rac- and meso-isomers were successfully separated by column chromatography as the tetrabutylammonium salts. The compounds obtained were studied by the methods of ¹H, ¹³C, and ¹¹B NMR spectroscopy, single crystal X-ray diffraction, cyclic voltammetry, controlled potential coulometry and quantum chemical calculations. It was found that in the solid state, the transoid- and gauche-conformations of the 8,8’- and 4,4’-isomers are stabilized by four intramolecular CH···S(Me)B hydrogen bonds each one (2.683-2.712 Å and 2.709-2.752 Å, respectively), whereas gauche-conformation of the 4,7’-isomer is stabilized by two intramolecular CH···S hydrogen bonds (2.699-2.711 Å). The existence of the intramolecular CH·S(Me)B hydrogen bonding in solutions was supported by the 1H NMR spectroscopy. These data are in a good agreement with results of the quantum chemical calculations. The corresponding iron and nickel complexes were synthesized as well. The reaction of the methyl sulfide derivatives of cobalt bis(dicarbollide) with various labile transition metal complexes results in rupture of intramolecular hydrogen bonds and complexation of the methyl sulfide groups with external metal. This results in stabilization of other rotational conformation of cobalt bis(dicarbollide) and can be used in design of molecular switches. This work was supported by the Russian Science Foundation (16-13-10331).Keywords: molecular switches, NMR spectroscopy, single crystal X-ray diffraction, transition metal bis(dicarbollide) complexes, quantum chemical calculations
Procedia PDF Downloads 16954 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix
Authors: Natia Jalagonia, Tinatin Kuchukhidze
Abstract:
Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculatedKeywords: synthesis, PMHS, membrane, electrolyte
Procedia PDF Downloads 25653 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 24052 Regulation Effect of Intestinal Microbiota by Fermented Processing Wastewater of Yuba
Authors: Ting Wu, Feiting Hu, Xinyue Zhang, Shuxin Tang, Xiaoyun Xu
Abstract:
As a by-product of yuba, processing wastewater of Yuba (PWY) contains many bioactive components such as soybean isoflavones, soybean polysaccharides and soybean oligosaccharides, which is a good source of prebiotics and has a potential of high value utilization. The use of Lactobacillus plantarum to ferment PWY can be considered as a potential biogenic element, which can regulate the balance of intestinal microbiota. In this study, firstly, Lactobacillus plantarum was used to ferment PWY to improve its content of active components and antioxidant activity. Then, the health effect of fermented processing wastewater of yuba (FPWY) was measured in vitro. Finally, microencapsulation technology was used applied to improve the sustained release of FPWY and reduce the loss of active components in the digestion process, as well as to improving the activity of FPWY. The main results are as follows: (1) FPWY presented a good antioxidant capacity with DPPH free radical scavenging ability (0.83 ± 0.01 mmol Trolox/L), ABTS free radical scavenging ability (7.47 ± 0.35 mmol Trolox/L) and iron ion reducing ability (1.11 ± 0.07 mmol Trolox/L). Compared with non-fermented processing wastewater of yuba (NFPWY), there was no significant difference in the content of total soybean isoflavones, but the content of glucoside soybean isoflavones decreased, and aglyconic soybean isoflavones increased significantly. After fermentation, PWY can effectively reduce the soluble monosaccharides, disaccharides and oligosaccharides, such as glucose, fructose, galactose, trehalose, stachyose, maltose, raffinose and sucrose. (2) FPWY can significantly enhance the growth of beneficial bacteria such as Bifidobacterium, Ruminococcus and Akkermansia, significantly inhibit the growth of harmful bacteria E.coli, regulate the structure of intestinal microbiota, and significantly increase the content of short-chain fatty acids such as acetic acid, propionic acid, butyric acid, isovaleric acid. Higher amount of lactic acid in the gut can be further broken down into short chain fatty acids. (3) In order to improve the stability of soybean isoflavones in FPWY during digestion, sodium alginate and chitosan were used as wall materials for embedding. The FPWY freeze-dried powder was embedded by the method of acute-coagulation bath. The results show that when the core wall ratio is 3:1, the concentration of chitosan is 1.5%, the concentration of sodium alginate is 2.0%, and the concentration of calcium is 3%, the embossing rate is 53.20%. In the simulated in vitro digestion stage, the release rate of microcapsules reached 59.36% at the end of gastric digestion and 82.90% at the end of intestinal digestion. Therefore, the core materials with good sustained-release performance of microcapsules were almost all released. The structural analysis results of FPWY microcapsules show that the microcapsules have good mechanical properties. Its hardness, springness, cohesiveness, gumminess, chewiness and resilience were 117.75± 0.21 g, 0.76±0.02, 0.54±0.01, 63.28±0.71 g·sec, 48.03±1.37 g·sec, 0.31±0.01, respectively. Compared with the unembedded FPWY, the infrared spectrum results showed that the microcapsules had embedded effect on the FPWY freeze-dried powder.Keywords: processing wastewater of yuba, lactobacillus plantarum, intestinal microbiota, microcapsule
Procedia PDF Downloads 7551 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System
Authors: Anas Hallak, Latifa Seblini, Juergen Wilde
Abstract:
In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive
Procedia PDF Downloads 19150 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components
Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia
Abstract:
Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses
Procedia PDF Downloads 5149 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage
Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti
Abstract:
Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage
Procedia PDF Downloads 15948 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research
Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde
Abstract:
Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing
Procedia PDF Downloads 9347 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level
Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni
Abstract:
In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.Keywords: tropocollagen, multiscale model, fibrils, knee ligaments
Procedia PDF Downloads 12746 Coil-Over Shock Absorbers Compared to Inherent Material Damping
Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major
Abstract:
Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.Keywords: damper structures, material damping, PDMS, TPU
Procedia PDF Downloads 11345 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications
Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken
Abstract:
High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state
Procedia PDF Downloads 33744 Energy Audit and Renovation Scenarios for a Historical Building in Rome: A Pilot Case Towards the Zero Emission Building Goal
Authors: Domenico Palladino, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Silvia Di Turi
Abstract:
The aim to achieve a fully decarbonized building stock by 2050 stands as one of the most challenging issues within the spectrum of energy and climate objectives. Numerous strategies are imperative, particularly emphasizing the reduction and optimization of energy demand. Ensuring the high energy performance of buildings emerges as a top priority, with measures aimed at cutting energy consumptions. Concurrently, it is imperative to decrease greenhouse gas emissions by using renewable energy sources for the on-site energy production, thereby striving for an energy balance leading towards zero-emission buildings. Italy's predominant building stock comprises ancient buildings, many of which hold historical significance and are subject to stringent preservation and conservation regulations. Attaining high levels of energy efficiency and reducing CO2 emissions in such buildings poses a considerable challenge, given their unique characteristics and the imperative to adhere to principles of conservation and restoration. Additionally, conducting a meticulous analysis of these buildings' current state is crucial for accurately quantifying their energy performance and predicting the potential impacts of proposed renovation strategies on energy consumption reduction. Within this framework, the paper presents a pilot case in Rome, outlining a methodological approach for the renovation of historic buildings towards achieving Zero Emission Building (ZEB) objective. The building has a mixed function with offices, a conference hall, and an exposition area. The building envelope is made of historical and precious materials used as cladding which must be preserved. A thorough understanding of the building's current condition serves as a prerequisite for analyzing its energy performance. This involves conducting comprehensive archival research, undertaking on-site diagnostic examinations to characterize the building envelope and its systems, and evaluating actual energy usage data derived from energy bills. Energy simulations and audit are the first step in the analysis with the assessment of the energy performance of the actual current state. Subsequently, different renovation scenarios are proposed, encompassing advanced building techniques, to pinpoint the key actions necessary for improving mechanical systems, automation and control systems, and the integration of renewable energy production. These scenarios entail different levels of renovation, ranging from meeting minimum energy performance goals to achieving the highest possible energy efficiency level. The proposed interventions are meticulously analyzed and compared to ascertain the feasibility of attaining the Zero Emission Building objective. In conclusion, the paper provides valuable insights that can be extrapolated to inform a broader approach towards energy-efficient refurbishment of historical buildings that may have limited potential for renovation in their building envelopes. By adopting a methodical and nuanced approach, it is possible to reconcile the imperative of preserving cultural heritage with the pressing need to transition towards a sustainable, low-carbon future.Keywords: energy conservation and transition, energy efficiency in historical buildings, buildings energy performance, energy retrofitting, zero emission buildings, energy simulation
Procedia PDF Downloads 6543 Calpoly Autonomous Transportation Experience: Software for Driverless Vehicle Operating on Campus
Authors: F. Tang, S. Boskovich, A. Raheja, Z. Aliyazicioglu, S. Bhandari, N. Tsuchiya
Abstract:
Calpoly Autonomous Transportation Experience (CATE) is a driverless vehicle that we are developing to provide safe, accessible, and efficient transportation of passengers throughout the Cal Poly Pomona campus for events such as orientation tours. Unlike the other self-driving vehicles that are usually developed to operate with other vehicles and reside only on the road networks, CATE will operate exclusively on walk-paths of the campus (potentially narrow passages) with pedestrians traveling from multiple locations. Safety becomes paramount as CATE operates within the same environment as pedestrians. As driverless vehicles assume greater roles in today’s transportation, this project will contribute to autonomous driving with pedestrian traffic in a highly dynamic environment. The CATE project requires significant interdisciplinary work. Researchers from mechanical engineering, electrical engineering and computer science are working together to attack the problem from different perspectives (hardware, software and system). In this abstract, we describe the software aspects of the project, with a focus on the requirements and the major components. CATE shall provide a GUI interface for the average user to interact with the car and access its available functionalities, such as selecting a destination from any origin on campus. We have developed an interface that provides an aerial view of the campus map, the current car location, routes, and the goal location. Users can interact with CATE through audio or manual inputs. CATE shall plan routes from the origin to the selected destination for the vehicle to travel. We will use an existing aerial map for the campus and convert it to a spatial graph configuration where the vertices represent the landmarks and edges represent paths that the car should follow with some designated behaviors (such as stay on the right side of the lane or follow an edge). Graph search algorithms such as A* will be implemented as the default path planning algorithm. D* Lite will be explored to efficiently recompute the path when there are any changes to the map. CATE shall avoid any static obstacles and walking pedestrians within some safe distance. Unlike traveling along traditional roadways, CATE’s route directly coexists with pedestrians. To ensure the safety of the pedestrians, we will use sensor fusion techniques that combine data from both lidar and stereo vision for obstacle avoidance while also allowing CATE to operate along its intended route. We will also build prediction models for pedestrian traffic patterns. CATE shall improve its location and work under a GPS-denied situation. CATE relies on its GPS to give its current location, which has a precision of a few meters. We have implemented an Unscented Kalman Filter (UKF) that allows the fusion of data from multiple sensors (such as GPS, IMU, odometry) in order to increase the confidence of localization. We also noticed that GPS signals can easily get degraded or blocked on campus due to high-rise buildings or trees. UKF can also help here to generate a better state estimate. In summary, CATE will provide on-campus transportation experience that coexists with dynamic pedestrian traffic. In future work, we will extend it to multi-vehicle scenarios.Keywords: driverless vehicle, path planning, sensor fusion, state estimate
Procedia PDF Downloads 14342 Experimental Study of the Antibacterial Activity and Modeling of Non-isothermal Crystallization Kinetics of Sintered Seashell Reinforced Poly(Lactic Acid) And Poly(Butylene Succinate) Biocomposites Planned for 3D Printing
Authors: Mohammed S. Razali, Kamel Khimeche, Dahah Hichem, Ammar Boudjellal, Djamel E. Kaderi, Nourddine Ramdani
Abstract:
The use of additive manufacturing technologies has revolutionized various aspects of our daily lives. In particular, 3D printing has greatly advanced biomedical applications. While fused filament fabrication (FFF) technologies have made it easy to produce or prototype various medical devices, it is crucial to minimize the risk of contamination. New materials with antibacterial properties, such as those containing compounded silver nanoparticles, have emerged on the market. In a previous study, we prepared a newly sintered seashell filler (SSh) from bio-based seashells found along the Mediterranean coast using a suitable heat treatment process. We then prepared a series of polylactic acid (PLA) and polybutylene succinate (PBS) biocomposites filled with these SSh particles using a melt mixing technique with a twin-screw extruder to use them as feedstock filaments for 3D printing. The study consisted of two parts: evaluating the antibacterial activity of newly prepared biocomposites made of PLA and PBS reinforced with a sintered seashell in the first part and experimental and modeling analysis of the non-isothermal crystallization kinetics of these biocomposites in the second part. In the first part, the bactericidal activity of the biocomposites against three different bacteria, including Gram-negative bacteria such as (E. coli and Pseudomonas aeruginosa), as well as Gram-positive bacteria such as (Staphylococcus aureus), was examined. The PLA-based biocomposite containing 20 wt.% of SSh particles exhibited an inhibition zone with radial diameters of 8mm and 6mm against E. coli and Pseudo. Au, respectively, while no bacterial activity was observed against Staphylococcus aureus. In the second part, the focus was on investigating the effect of the sintered seashell filler particles on the non-isothermal crystallization kinetics of PLA and PBS 3D-printing composite materials. The objective was to understand the impact of the filler particles on the crystallization mechanism of both PLA and PBS during the cooling process of a melt-extruded filament in (FFF) to manage the dimensional accuracy and mechanical properties of the final printed part. We conducted a non-isothermal melt crystallization kinetic study of a series of PLA-SS and PBS-SS composites using differential scanning calorimetry at various cooling rates. We analyzed the obtained kinetic data using different crystallization kinetic models such as modified Avrami, Ozawa, and Mo's methods. Dynamic mode describes the relative crystallinity as a function of temperature; it found that time half crystallinity (t1/2) of neat PLA decreased from 17 min to 7.3 min for PLA+5 SSh and the (t1/2) of virgin PBS was reduced from 3.5 min to 2.8 min for the composite containing 5wt.% of SSh. We found that the coated SS particles with stearic acid acted as nucleating agents and had a nucleation activity, as observed through polarized optical microscopy. Moreover, we evaluated the effective energy barrier of the non-isothermal crystallization process using the Iso conversional methods of Flynn-Wall-Ozawa (F-W-O) and Kissinger-Akahira-Sunose (K-A-S). The study provides significant insights into the crystallization behavior of PLA and PBS biocomposites.Keywords: avrami model, bio-based reinforcement, dsc, gram-negative bacteria, gram-positive bacteria, isoconversional methods, non-isothermal crystallization kinetics, poly(butylene succinate), poly(lactic acid), antbactirial activity
Procedia PDF Downloads 8041 Anesthesia for Spinal Stabilization Using Neuromuscular Blocking Agents in Dog: Case Report
Authors: Agata Migdalska, Joanna Berczynska, Ewa Bieniek, Jacek Sterna
Abstract:
Muscle relaxation is considered important during general anesthesia for spine stabilization. In a presented case peripherally acting muscle relaxant was applied during general anesthesia for spine stabilization surgery. The patient was a dog, 11-years old, 26 kg, male, mix breed. Spine fracture was situated between Th13-L1-L2, probably due to the car accident. Preanesthetic physical examination revealed no sign underlying health issues. The dog was premedicated with midazolam 0.2 mg IM and butorphanol 2.4 mg IM. General anesthesia was induced with propofol IV. After the induction, the dog was intubated with an endotracheal tube and connected to an open-ended rebreathing system and maintained with the use of inhalation anesthesia with isoflurane in oxygen. 0,5 mg/ kg of rocuronium was given IV. Use of muscle relaxant was accompanied by an assessment of the degree of neuromuscular blockade by peripheral nerve stimulator. Electrodes were attached to the skin overlying at the peroneal nerve at the lateral cranial tibia. Four electrical pulses were applied to the nerve over a 2 second period. When satisfying nerve block was detected dog was prepared for the surgery. No further monitoring of the effectiveness of blockade was performed during surgery. Mechanical ventilation was kept during anesthesia. During surgery dog maintain stable, and no anesthesiological complication occur. Intraoperatively surgeon claimed that neuromuscular blockade results in a better approach to the spine and easier muscle manipulation which was helpful in order to see the fracture and replace bone fragments. Finally, euthanasia was performed intraoperatively as a result of vast myelomalacia process of the spinal cord. This prevented examination of the recovering process. Neuromuscular blocking agents act at the neuromuscular junction to provide profound muscle relaxation throughout the body. Muscle blocking agents are neither anesthetic nor analgesic; therefore inappropriately used may cause paralysis in fully conscious and feeling pain patient. They cause paralysis of all skeletal muscles, also diaphragm and intercostal muscles when given in higher doses. Intraoperative management includes maintaining stable physiological conditions, which involves adjusting hemodynamic parameters, ensuring proper ventilation, avoiding variations in temperature, maintain normal blood flow to promote proper oxygen exchange. Neuromuscular blocking agent can cause many side effects like residual paralysis, anaphylactic or anaphylactoid reactions, delayed recovery from anesthesia, histamine release, recurarization. Therefore reverse drug like neostigmine (with glikopyrolat) or edrofonium (with atropine) should be used in case of a life-threatening situation. Another useful drug is sugammadex, although the cost of this drug strongly limits its use. Muscle relaxant improves surgical conditions during spinal surgery, especially in heavily muscled individuals. They are also used to facilitate the replacement of dislocated joints as they improve conditions during fracture reduction. It is important to emphasize that in a patient with muscle weakness neuromuscular blocking agents may result in intraoperative and early postoperative cardiovascular and respiratory complications, as well as prolonged recovery from anesthesia. This should not appear in patients with recent spine fracture or luxation. Therefore it is believed that neuromuscular blockers could be useful during spine stabilization procedures.Keywords: anesthesia, dog, neuromuscular block, spine surgery
Procedia PDF Downloads 18040 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs
Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut
Abstract:
Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT
Procedia PDF Downloads 22939 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells
Authors: Salvatore Brischetto, Domenico Cesare
Abstract:
Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach
Procedia PDF Downloads 6638 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering
Authors: Emre Kara, Ali Kurşun, Halil Aykul
Abstract:
The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application
Procedia PDF Downloads 33937 Revolutionizing Manufacturing: Embracing Additive Manufacturing with Eggshell Polylactide (PLA) Polymer
Authors: Choy Sonny Yip Hong
Abstract:
This abstract presents an exploration into the creation of a sustainable bio-polymer compound for additive manufacturing, specifically 3D printing, with a focus on eggshells and polylactide (PLA) polymer. The project initially conducted experiments using a variety of food by-products to create bio-polymers, and promising results were obtained when combining eggshells with PLA polymer. The research journey involved precise measurements, drying of PLA to remove moisture, and the utilization of a filament-making machine to produce 3D printable filaments. The project began with exploratory research and experiments, testing various combinations of food by-products to create bio-polymers. After careful evaluation, it was discovered that eggshells and PLA polymer produced promising results. The initial mixing of the two materials involved heating them just above the melting point. To make the compound 3D printable, the research focused on finding the optimal formulation and production process. The process started with precise measurements of the PLA and eggshell materials. The PLA was placed in a heating oven to remove any absorbed moisture. Handmade testing samples were created to guide the planning for 3D-printed versions. The scrap PLA was recycled and ground into a powdered state. The drying process involved gradual moisture evaporation, which required several hours. The PLA and eggshell materials were then placed into the hopper of a filament-making machine. The machine's four heating elements controlled the temperature of the melted compound mixture, allowing for optimal filament production with accurate and consistent thickness. The filament-making machine extruded the compound, producing filament that could be wound on a wheel. During the testing phase, trials were conducted with different percentages of eggshell in the PLA mixture, including a high percentage (20%). However, poor extrusion results were observed for high eggshell percentage mixtures. Samples were created, and continuous improvement and optimization were pursued to achieve filaments with good performance. To test the 3D printability of the DIY filament, a 3D printer was utilized, set to print the DIY filament smoothly and consistently. Samples were printed and mechanically tested using a universal testing machine to determine their mechanical properties. This testing process allowed for the evaluation of the filament's performance and suitability for additive manufacturing applications. In conclusion, the project explores the creation of a sustainable bio-polymer compound using eggshells and PLA polymer for 3D printing. The research journey involved precise measurements, drying of PLA, and the utilization of a filament-making machine to produce 3D printable filaments. Continuous improvement and optimization were pursued to achieve filaments with good performance. The project's findings contribute to the advancement of additive manufacturing, offering opportunities for design innovation, carbon footprint reduction, supply chain optimization, and collaborative potential. The utilization of eggshell PLA polymer in additive manufacturing has the potential to revolutionize the manufacturing industry, providing a sustainable alternative and enabling the production of intricate and customized products.Keywords: additive manufacturing, 3D printing, eggshell PLA polymer, design innovation, carbon footprint reduction, supply chain optimization, collaborative potential
Procedia PDF Downloads 7136 Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs
Authors: Imdad Ullah Khan, Yongseok Yoon, Kyeung Uk Choi, Kwang Rae Jo, Namyul Kim, Eunbee Lee, Wan Hee Kim, Oh-Kyeong Kweon
Abstract:
The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs.Keywords: HO-1 MSCs, BDNF MSCs, neuroregeneration, inflammation, anti-inflammation, spinal cord injury, dogs
Procedia PDF Downloads 11735 Evaluation of the Biological Activity of New Antimicrobial and Biodegradable Textile Materials for Protective Equipment
Authors: Safa Ladhari, Alireza Saidi, Phuong Nguyen-Tri
Abstract:
During health crises, such as COVID-19, using disposable protective equipment (PEs) (masks, gowns, etc.) causes long-term problems, increasing the volume of hazardous waste that must be handled safely and expensively. Therefore, producing textiles for antimicrobial and reusable materials is highly desirable to decrease the use of disposable PEs that should be treated as hazardous waste. In addition, if these items are used regularly in the workplace or for daily activities by the public, they will most likely end up in household waste. Furthermore, they may pose a high risk of contagion to waste collection workers if contaminated. Therefore, to protect the whole population in times of sanitary crisis, it is necessary to equip these materials with tools that make them resilient to the challenges of carrying out daily activities without compromising public health and the environment and without depending on them external technologies and producers. In addition, the materials frequently used for EPs are plastics of petrochemical origin. The subject of the present work is replacing petroplastics with bioplastic since it offers better biodegradability. The chosen polymer is polyhydroxybutyrate (PHB), a family of polyhydroxyalkanoates synthesized by different bacteria. It has similar properties to conventional plastics. However, it is renewable, biocompatible, and has attractive barrier properties compared to other polyesters. These characteristics make it ideal for EP protection applications. The current research topic focuses on the preparation and rapid evaluation of the biological activity of nanotechnology-based antimicrobial agents to treat textile surfaces used for PE. This work will be carried out to provide antibacterial solutions that can be transferred to a workplace application in the fight against short-term biological risks. Three main objectives are proposed during this research topic: 1) the development of suitable methods for the deposition of antibacterial agents on the surface of textiles; 2) the development of a method for measuring the antibacterial activity of the prepared textiles and 3) the study of the biodegradability of the prepared textiles. The studied textile is a non-woven fabric based on a biodegradable polymer manufactured by the electrospinning method. Indeed, nanofibers are increasingly studied due to their unique characteristics, such as high surface-to-volume ratio, improved thermal, mechanical, and electrical properties, and confinement effects. The electrospun film will be surface modified by plasma treatment and then loaded with hybrid antibacterial silver and titanium dioxide nanoparticles by the dip-coating method. This work uses simple methods with emerging technologies to fabricate nanofibers with suitable size and morphology to be used as components for protective equipment. The antibacterial agents generally used are based on silver, zinc, copper, etc. However, to our knowledge, few researchers have used hybrid nanoparticles to ensure antibacterial activity with biodegradable polymers. Also, we will exploit visible light to improve the antibacterial effectiveness of the fabric, which differs from the traditional contact mode of killing bacteria and presents an innovation of active protective equipment. Finally, this work will allow for the innovation of new antibacterial textile materials through a simple and ecological method.Keywords: protective equipment, antibacterial textile materials, biodegradable polymer, electrospinning, hybrid antibacterial nanoparticles
Procedia PDF Downloads 8034 Micro-Oculi Facades as a Sustainable Urban Facade
Authors: Ok-Kyun Im, Kyoung Hee Kim
Abstract:
We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades
Procedia PDF Downloads 25533 Tensile and Direct Shear Responses of Basalt-Fibre Reinforced Composite Using Alkali Activate Binder
Authors: S. Candamano, A. Iorfida, L. Pagnotta, F. Crea
Abstract:
Basalt fabric reinforced cementitious composites (FRCM) have attracted great attention because they result in being effective in structural strengthening and eco-efficient. In this study, authors investigate their mechanical behavior when an alkali-activated binder, with tuned properties and containing high amounts of industrial by-products, such as ground granulated blast furnace slag, is used. Reinforcement is made up of a balanced, coated bidirectional fabric made out of basalt fibres and stainless steel micro-wire, with a mesh size of 8x8 mm and an equivalent design thickness equal to 0.064 mm. Mortars mixes have been prepared by maintaining constant the water/(reactive powders) and sand/(reactive powders) ratios at 0.53 and 2.7 respectively. Tensile tests were carried out on composite specimens of nominal dimensions equal to 500 mm x 50 mm x 10 mm, with 6 embedded rovings in the loading direction. Direct shear tests (DST), aimed to the stress-transfer mechanism and failure modes of basalt-FRCM composites, were carried out on brickwork substrate using an externally bonded basalt-FRCM composite strip 10 mm thick, 50 mm wide and a bonded length of 300 mm. Mortars exhibit, after 28 days of curing, a compressive strength of 32 MPa and a flexural strength of 5.5 MPa. Main hydration product is a poorly crystalline CASH gel. The constitutive behavior of the composite has been identified by means of direct tensile tests, with response curves showing a tri-linear behavior. The first linear phase represents the uncracked (I) stage, the second (II) is identified by crack development and the third (III) corresponds to cracked stage, completely developed up to failure. All specimens exhibit a crack pattern throughout the gauge length and failure occurred as a result of sequential tensile failure of the fibre bundles, after reaching the ultimate tensile strength. The behavior is mainly governed by cracks development (II) and widening (III) up to failure. The main average values related to the stages are σI= 173 MPa and εI= 0.026% that are the stress and strain of the transition point between stages I and II, corresponding to the first mortar cracking; σu = 456 MPa and εu= 2.20% that are the ultimate tensile strength and strain, respectively. The tensile modulus of elasticity in stage III is EIII= 41 GPa. All single-lap shear test specimens failed due to composite debonding. It occurred at the internal fabric-to-matrix interface, and it was the result of fracture of the matrix between the fibre bundles. For all specimens, transversal cracks were visible on the external surface of the composite and involved only the external matrix layer. This cracking appears when the interfacial shear stresses increase and slippage of the fabric at the internal matrix layer interface occurs. Since the external matrix layer is bonded to the reinforcement fabric, it translates with the slipped fabric. Average peak load around 945 N, peak stress around 308 MPa, and global slip around 6 mm were measured. The preliminary test results allow affirming that Alkali Activated Binders can be considered a potentially valid alternative to traditional mortars in designing FRCM composites.Keywords: alkali activated binders, basalt-FRCM composites, direct shear tests, structural strengthening
Procedia PDF Downloads 12232 Antibacterial Nanofibrous Film Encapsulated with 4-terpineol/β-cyclodextrin Inclusion Complexes: Relative Humidity-Triggered Release and Shrimp Preservation Application
Authors: Chuanxiang Cheng, Tiantian Min, Jin Yue
Abstract:
Antimicrobial active packaging enables extensive biological effects to improve food safety. However, the efficacy of antimicrobial packaging hinges on factors including the diffusion rate of the active agent toward the food surface, the initial content in the antimicrobial agent, and the targeted food shelf life. Among the possibilities of antimicrobial packaging design, an interesting approach involves the incorporation of volatile antimicrobial agents into the packaging material. In this case, the necessity for direct contact between the active packaging material and the food surface is mitigated, as the antimicrobial agent exerts its action through the packaging headspace atmosphere towards the food surface. However, it still remains difficult to achieve controlled and precise release of bioactive compounds to the specific target location with required quantity in food packaging applications. Remarkably, the development of stimuli-responsive materials for electrospinning has introduced the possibility of achieving controlled release of active agents under specific conditions, thereby yielding enduring biological effects. Relative humidity (RH) for the storage of food categories such as meat and aquatic products typically exceeds 90%. Consequently, high RH can be used as an abiotic trigger for the release of active agents to prevent microbial growth. Hence, a novel RH - responsive polyvinyl alcohol/chitosan (PVA/CS) composite nanofibrous film incorporated with 4-terpineol/β-cyclodextrin inclusion complexes (4-TA@β-CD ICs) was engineered by electrospinning that can be deposited as a functional packaging materials. The characterization results showed the thermal stability of the films was enhanced after the incorporation due to the hydrogen bonds between ICs and polymers. Remarkably, the 4 wt% 4-TA@β-CD ICs/PVA/CS film exhibited enhanced crystallinity, moderate hydrophilic (Water contact angle of 81.53°), light barrier property (Transparency of 1.96%) and water resistance (Water vapor permeability of 3.17 g mm/m2 h kPa). Moreover, this film also showed optimized mechanical performance with a Young’s modulus of 11.33 MPa, a tensile strength of 19.99 MPa and an elongation at break of 4.44 %. Notably, the antioxidant and antibacterial properties of this packaging material were significantly improved. The film demonstrated the half-inhibitory concentrations (IC50) values of 87.74% and 85.11% for scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic) (ABTS) free radicals, respectively, in addition to an inhibition efficiency of 65% against Shewanella putrefaciens, the characteristic bacteria in aquatic products. Most importantly, the film achieved controlled release of 4-TA under high 98% RH by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. Consequently, low relative humidity is suitable for the preservation of nanofibrous film, while high humidity conditions typical in fresh food packaging environments effectively stimulated the release of active compounds in the film. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. This attractive design could pave the way for the development of new food packaging materials.Keywords: controlled release, electrospinning, nanofibrous film, relative humidity–responsive, shrimp preservation
Procedia PDF Downloads 6831 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers
Authors: Catherine Vasnetsov, Victor Vasnetsov
Abstract:
Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers
Procedia PDF Downloads 6830 Stromal Vascular Fraction Regenerative Potential in a Muscle Ischemia/Reperfusion Injury Mouse Model
Authors: Anita Conti, Riccardo Ossanna, Lindsey A. Quintero, Giamaica Conti, Andrea Sbarbati
Abstract:
Ischemia/reperfusion (IR) injury induces muscle fiber atrophy and skeletal muscle fiber death with subsequently functionality loss. The heterogeneous pool of cells, especially mesenchymal stem cells, contained in the stromal vascular fraction (SVF) of adipose tissue could promote muscle fiber regeneration. To prevent SVF dispersion, it has been proposed the use of injectable biopolymers that work as cells carrier. A significant element of the extracellular matrix is hyaluronic acid (HA), which has been widely used in regenerative medicine as a cell scaffold given its biocompatibility, degradability, and the possibility of chemical functionalization. Connective tissue micro-fragments enriched with SVF obtained from mechanical disaggregation of adipose tissue were evaluated for IR muscle injury regeneration using low molecular weight HA as a scaffold. IR induction. Hindlimb ischemia was induced in 9 athymic nude mice through the clamping of the right quadriceps using a plastic band. Reperfusion was induced by cutting the plastic band after 3 hours of ischemic period. Contralateral (left) muscular tissue was used as healthy control. Treatment. Twenty-four hours after the IR induction, animals (n=3) were intramuscularly injected with 100 µl of SVF mixed with HA (SVF-HA). Animals treated with 100 µl of HA (n=3) and 100 µl saline solution (n=3) were used as control. Treatment monitoring. All animals were in vivo monitored by magnetic resonance imaging (MRI) at 5, 7, 14 and 18 days post-injury (dpi). High-resolution morphological T2 weighed, quantitative T2 map and Dynamic Contrast-Enhanced (DCE) images were acquired in order to assess the regenerative potential of SVF-HA treatment. Ex vivo evaluation. After 18 days from IR induction, animals were sacrificed, and the muscles were harvested for histological examination. At 5 dpi T2 high-resolution MR images clearly reveal the presence of an extensive edematous area due to IR damage for all groups identifiable as an increase of signal intensity (SI) of muscular and surrounding tissue. At 7 dpi, animals of the SVF-HA group showed a reduction of SI, and the T2relaxation time of muscle tissue of the HA-SVF group was 29±0.5ms, comparable with the T2relaxation time of contralateral muscular tissue (30±0.7ms). These suggest a reduction of edematous overflow and swelling. The T2relaxation time at 7dpi of HA and saline groups were 84±2ms and 90±5ms, respectively, which remained elevated during the rest of the study. The evaluation of vascular regeneration showed similar results. Indeed, DCE-MRI analysis revealed a complete recovery of muscular tissue perfusion after 14 dpi for the SVF-HA group, while for the saline and HA group, controls remained in a damaged state. Finally, the histological examination of SVF-HA treated animals exhibited well-defined and organized fibers morphology with a lateralized nucleus, similar to contralateral healthy muscular tissue. On the contrary, HA and saline-treated animals presented inflammatory infiltrates, with HA slightly improving the diameter of the fibers and less degenerated tissue. Our findings show that connective tissue micro-fragments enriched with SVF induce higher muscle homeostasis and perfusion restoration in contrast to control groups.Keywords: ischemia/reperfusion injury, regenerative medicine, resonance imaging, stromal vascular fraction
Procedia PDF Downloads 125