Search results for: vector error correction model
18271 Malpractice Makes Perfect: A Thematic Analysis on How Doctors Handle Medical Errors
Authors: Kathleen Joy Hingan, Jessiraye Luienne Catubigan, Carlo Mercado, Janisse RañEses
Abstract:
In this research, the researchers wanted to explore how specialists and resident doctors in the fields of surgery, and obstetrics and gynecology handle their medical errors. They are interested in understanding the factors that contributed to the disclosure of medical error, the feelings after the occurrence of an error, and the way they coped with it given the power relations in place. The researchers conducted semi-structured interviews, transcribed the recordings, and analyzed the transcripts using thematic analysis. They found that doctors disclosed to their superiors and co-residents to cope with and to learn from the errors. In terms of disclosure to patients, the participants told them about the adverse event, but not about the error because of fear for themselves, their colleagues, their institution, and their patient. Doctors also performed compensatory actions to make up for the error and the nondisclosure of its occurrence. These actions functioned as a form of damage control too. Resident doctors and specialists receive different sanctions because of the power structures in the system.Keywords: coping, disclosure, doctors, interviews, medical errors, thematic analysis
Procedia PDF Downloads 28818270 Kinematic Analysis of Heel Height Effect on Knee Direction Correction in a Patient with Genu Recurvatum: A Case Study
Authors: Parya Salimitari, Farhad Tabatabai Ghomsheh, Siyamak Khorramymehr, Hossein Taghadosi, Mohammad Hossein Dashti
Abstract:
The aim of this study was to evaluate the effect of heel height on the knee joint direction in Genu recurvatum patients compared to normal state. The test was performed on a patient with Genu recurvatum and a healthy person with similar and match biomechanical conditions. Subjects were tested under six different positions of shoes with heels 0, 1, 2, 3, 4 and 5 cm after marking during the gate. The results of the spatial temporal geometry obtained from Vicon Motion System (six-camera T10 model, Oxford Metrics Ltd., Oxford, UK), and were used to compute and analyze the kinematic results. In this study, we tried to determine the effect of shoe heel intervention on knee joint direction correction. The results indicate that the 1 cm heel has been optimized and significantly improved in knee joint flexion and flexion-extension angle so that the difference in knee flexion-extension angle between the patient and the healthy person at some stages of walking has reached zero (good posture). The 3 cm heel compared with the 0 cm heel has reduced the knee recurvatum index (KRI) by up to 21.74% in the patient (from 219.233 mm to 47.6714 mm). According to the findings of this study, it can be concluded that heel increase is effective in correcting knee joints in Genu recurvatum and the optimum heel height is 1 cm.Keywords: joint alignment of knee, gait analysis, genu recurvatum, heel lift, kinematics, motion-analysis
Procedia PDF Downloads 20018269 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model
Authors: Zina Benouaret, Djamil Aissani
Abstract:
In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis
Procedia PDF Downloads 24718268 Optimization of Temperature Difference Formula at Thermoacoustic Cryocooler Stack with Genetic Algorithm
Authors: H. Afsari, H. Shokouhmand
Abstract:
When stack is placed in a thermoacoustic resonator in a cryocooler, one extremity of the stack heats up while the other cools down due to the thermoacoustic effect. In the present, with expression a formula by linear theory, will see this temperature difference depends on what factors. The computed temperature difference is compared to the one predicted by the formula. These discrepancies can not be attributed to non-linear effects, rather they exist because of thermal effects. Two correction factors are introduced for close up results among linear theory and computed and use these correction factors to modified linear theory. In fact, this formula, is optimized by GA (Genetic Algorithm). Finally, results are shown at different Mach numbers and stack location in resonator.Keywords: heat transfer, thermoacoustic cryocooler, stack, resonator, mach number, genetic algorithm
Procedia PDF Downloads 37718267 Reduction of Impulsive Noise in OFDM System using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, impulsive noise, SSRLS, BER
Procedia PDF Downloads 45518266 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 45418265 Neutral Heavy Scalar Searches via Standard Model Gauge Boson Decays at the Large Hadron Electron Collider with Multivariate Techniques
Authors: Luigi Delle Rose, Oliver Fischer, Ahmed Hammad
Abstract:
In this article, we study the prospects of the proposed Large Hadron electron Collider (LHeC) in the search for heavy neutral scalar particles. We consider a minimal model with one additional complex scalar singlet that interacts with the Standard Model (SM) via mixing with the Higgs doublet, giving rise to an SM-like Higgs boson and a heavy scalar particle. Both scalar particles are produced via vector boson fusion and can be tested via their decays into pairs of SM particles, analogously to the SM Higgs boson. Using multivariate techniques, we show that the LHeC is sensitive to heavy scalars with masses between 200 and 800 GeV down to scalar mixing of order 0.01.Keywords: beyond the standard model, large hadron electron collider, multivariate analysis, scalar singlet
Procedia PDF Downloads 13518264 Power Control of a Doubly-Fed Induction Generator Used in Wind Turbine by RST Controller
Authors: A. Boualouch, A. Frigui, T. Nasser, A. Essadki, A.Boukhriss
Abstract:
This work deals with the vector control of the active and reactive powers of a Double-Fed Induction generator DFIG used as a wind generator by the polynomial RST controller. The control of the statoric power transfer between the machine and the grid is achieved by acting on the rotor parameters and control is provided by the polynomial controller RST. The performance and robustness of the controller are compared with PI controller and evaluated by simulation results in MATLAB/simulink.Keywords: DFIG, RST, vector control, wind turbine
Procedia PDF Downloads 65718263 Evaluation of Ensemble Classifiers for Intrusion Detection
Authors: M. Govindarajan
Abstract:
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy
Procedia PDF Downloads 24618262 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 11918261 Sensor Registration in Multi-Static Sonar Fusion Detection
Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin
Abstract:
In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem
Procedia PDF Downloads 16718260 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 51918259 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 8418258 Effects of a Cooler on the Sampling Process in a Continuous Emission Monitoring System
Authors: J. W. Ahn, I. Y. Choi, T. V. Dinh, J. C. Kim
Abstract:
A cooler has been widely employed in the extractive system of the continuous emission monitoring system (CEMS) to remove water vapor in the gas stream. The effect of the cooler on analytical target gases was investigated in this research. A commercial cooler for the CEMS operated at 4 C was used. Several gases emitted from a coal power plant (i.e. CO2, SO2, NO, NO2 and CO) were mixed with humid air, and then introduced into the cooler to observe its effect. Concentrations of SO2, NO, NO2 and CO were made as 200 ppm. The CO2 concentration was 8%. The inlet absolute humidity was produced as 12.5% at 100 C using a bubbling method. It was found that the reduction rate of SO2 was the highest (~21%), followed by NO2 (~17%), CO2 (~11%) and CO (~10%). In contrast, the cooler was not affected by NO gas. The result indicated that the cooler caused a significant effect on the water soluble gases due to condensate water in the cooler. To overcome this problem, a correction factor may be applied. However, water vapor might be different, and emissions of target gases are also various. Therefore, the correction factor is not only a solution, but also a better available method should be employed.Keywords: cooler, CEMS, monitoring, reproductive, sampling
Procedia PDF Downloads 35718257 Enhanced Bit Error Rate in Visible Light Communication: A New LED Hexagonal Array Distribution
Authors: Karim Matter, Heba Fayed, Ahmed Abd-Elaziz, Moustafa Hussein
Abstract:
Due to the exponential growth of mobile devices and wireless services, a huge demand for radiofrequency has increased. The presence of several frequencies causes interference between cells, which must be minimized to get the lower Bit Error Rate (BER). For this reason, it is of great interest to use visible light communication (VLC). This paper suggests a VLC system that decreases the BER by applying a new LED distribution with a hexagonal shape using a Frequency Reuse (FR) concept to mitigate the interference between the reused frequencies inside the hexagonal shape. The BER is measured in two scenarios, Line of Sight (LoS) and Non-Line of Sight (Non-LoS), for each technique that we used. The recommended values of BER in the proposed model for Soft Frequency Reuse (SFR) in the case of Los at 4, 8, and 10 dB signal to noise ratio (SNR), are 3.6×10⁻⁶, 6.03×10⁻¹³, and 2.66×10⁻¹⁸, respectively.Keywords: visible light communication (VLC), field of view (FoV), hexagonal array, frequency reuse
Procedia PDF Downloads 15818256 Performance Evaluation of Distributed and Co-Located MIMO LTE Physical Layer Using Wireless Open-Access Research Platform
Authors: Ishak Suleiman, Ahmad Kamsani Samingan, Yeoh Chun Yeow, Abdul Aziz Bin Abdul Rahman
Abstract:
In this paper, we evaluate the benefits of distributed 4x4 MIMO LTE downlink systems compared to that of the co-located 4x4 MIMO LTE downlink system. The performance evaluation was carried out experimentally by using Wireless Open-Access Research Platform (WARP), where the comparison between the 4x4 MIMO LTE transmission downlink system in distributed and co-located techniques was examined. The measured Error Vector Magnitude (EVM) results showed that the distributed technique achieved better system performance compared to the co-located arrangement.Keywords: multiple-input-multiple-output (MIMO), distributed MIMO, co-located MIMO, LTE
Procedia PDF Downloads 42018255 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 49818254 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings
Authors: Ayhan Ince
Abstract:
In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to non-proportional loading paths.Keywords: elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue
Procedia PDF Downloads 46518253 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory
Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming
Abstract:
To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model
Procedia PDF Downloads 40918252 The Effect of Explicit Focus on Form on Second Language Learning Writing Performance
Authors: Keivan Seyyedi, Leila Esmaeilpour, Seyed Jamal Sadeghi
Abstract:
Investigating the effectiveness of explicit focus on form on the written performance of the EFL learners was the aim of this study. To provide empirical support for this study, sixty male English learners were selected and randomly assigned into two groups of explicit focus on form and meaning focused. Narrative writing was employed for data collection. To measure writing performance, participants were required to narrate a story. They were given 20 minutes to finish the task and were asked to write at least 150 words. The participants’ output was coded then analyzed utilizing Independent t-test for grammatical accuracy and fluency of learners’ performance. Results indicated that learners in explicit focus on form group appear to benefit from error correction and rule explanation as two pedagogical techniques of explicit focus on form with respect to accuracy, but regarding fluency they did not yield any significant differences compared to the participants of meaning-focused group.Keywords: explicit focus on form, rule explanation, accuracy, fluency
Procedia PDF Downloads 50918251 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 34818250 Creation and Evaluation of an Academic Blog of Tools for the Self-Correction of Written Production in English
Authors: Brady, Imelda Katherine, Da Cunha Fanego, Iria
Abstract:
Today's university students are considered digital natives and the use of Information Technologies (ITs) forms a large part of their study and learning. In the context of language studies, applications that help with revisions of grammar or vocabulary are particularly useful, especially if they are open access. There are studies that show the effectiveness of this type of application in the learning of English as a foreign language and that using IT can help learners become more autonomous in foreign language acquisition, given that these applications can enhance awareness of the learning process; this means that learners are less dependent on the teacher for corrective feedback. We also propose that the exploitation of these technologies also enhances the work of the language instructor wishing to incorporate IT into his/her practice. In this context, the aim of this paper is to present the creation of a repository of tools that provide support in the writing and correction of texts in English and the assessment of their usefulness on behalf of university students enrolled in the English Studies Degree. The project seeks to encourage the development of autonomous learning through the acquisition of skills linked to the self-correction of written work in English. To comply with the above, our methodology follows five phases. First of all, a selection of the main open-access online applications available for the correction of written texts in English is made: AutoCrit, Hemingway, Grammarly, LanguageTool, OutWrite, PaperRater, ProWritingAid, Reverso, Slick Write, Spell Check Plus and Virtual Writing Tutor. Secondly, the functionalities of each of these tools (spelling, grammar, style correction, etc.) are analyzed. Thirdly, explanatory materials (texts and video tutorials) are prepared on each tool. Fourth, these materials are uploaded into a repository of our university in the form of an institutional blog, which is made available to students and the general public. Finally, a survey was designed to collect students’ feedback. The survey aimed to analyse the usefulness of the blog and the quality of the explanatory materials as well as the degree of usefulness that students assigned to each of the tools offered. In this paper, we present the results of the analysis of data received from 33 students in the 1st semester of the 21-22 academic year. One result we highlight in our paper is that the students have rated this resource very highly, in addition to offering very valuable information on the perceived usefulness of the applications provided for them to review. Our work, carried out within the framework of a teaching innovation project funded by our university, emphasizes that teachers need to design methodological strategies that help their students improve the quality of their productions written in English and, by extension, to improve their linguistic competence.Keywords: academic blog, open access tools, online self-correction, written production in English, university learning
Procedia PDF Downloads 10118249 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 33118248 0.13-μm CMOS Vector Modulator for Wireless Backhaul System
Authors: J. S. Kim, N. P. Hong
Abstract:
In this paper, a CMOS vector modulator designed for wireless backhaul system based on 802.11ac is presented. A poly phase filter and sign select switches yield two orthogonal signal paths. Two variable gain amplifiers with strongly reduced phase shift of only ±5 ° are used to weight these paths. It has a phase control range of 360 ° and a gain range of -10 dB to 10 dB. The current drawn from a 1.2 V supply amounts 20.4 mA. Using a 0.13 mm technology, the chip die area amounts 1.47x0.75 mm².Keywords: CMOS, phase shifter, backhaul, 802.11ac
Procedia PDF Downloads 38318247 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian
Authors: Sanja Seljan, Ivan Dunđer
Abstract:
The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition
Procedia PDF Downloads 48118246 Analysis of a Power Factor Correction Converter for Light Emitting Diode Driver Application
Authors: Edwina G. Rodrigues, S. J. Bindhu, A. V. Rajesh
Abstract:
This paper proposes a switched capacitor based driver circuit for high power light emitting diodes with a front end rectifier. LEDs are low-voltage light sources, requiring a constant DC voltage or current to operate optimally. LEDs, therefore, require a device that can convert incoming AC power to the proper DC voltage, and regulate the current flowing through the LED during operation. Proposed topology has a front end converter. It is an AC-DC rectifier that works on bridgeless boost topology which shapes the input current waveform. The front end converter is followed by a DC-DC converter which provides a constant DC voltage across the LEDs. A 12V AC input is given to the input of frontend converter which rectifies and boost the voltage to 24v DC and gives it to the DC-DC converter. The DC-DC converter converts the 24V DC and regulates this constant DC voltage across the LEDs.Keywords: bridgeless rectifier, power factor correction(PFC), SC converter, total harmonic distortion (THD)
Procedia PDF Downloads 87018245 Comparison of Linear Discriminant Analysis and Support Vector Machine Classifications for Electromyography Signals Acquired at Five Positions of Elbow Joint
Authors: Amna Khan, Zareena Kausar, Saad Malik
Abstract:
Bio Mechatronics has extended applications in the field of rehabilitation. It has been contributing since World War II in improving the applicability of prosthesis and assistive devices in real life scenarios. In this paper, classification accuracies have been compared for two classifiers against five positions of elbow. Electromyography (EMG) signals analysis have been acquired directly from skeletal muscles of human forearm for each of the three defined positions and at modified extreme positions of elbow flexion and extension using 8 electrode Myo armband sensor. Features were extracted from filtered EMG signals for each position. Performance of two classifiers, support vector machine (SVM) and linear discriminant analysis (LDA) has been compared by analyzing the classification accuracies. SVM illustrated classification accuracies between 90-96%, in contrast to 84-87% depicted by LDA for five defined positions of elbow keeping the number of samples and selected feature the same for both SVM and LDA.Keywords: classification accuracies, electromyography, linear discriminant analysis (LDA), Myo armband sensor, support vector machine (SVM)
Procedia PDF Downloads 36618244 Adjustment and Compensation Techniques for the Rotary Axes of Five-axis CNC Machine Tools
Authors: Tung-Hui Hsu, Wen-Yuh Jywe
Abstract:
Five-axis computer numerical control (CNC) machine tools (three linear and two rotary axes) are ideally suited to the fabrication of complex work pieces, such as dies, turbo blades, and cams. The locations of the axis average line and centerline of the rotary axes strongly influence the performance of these machines; however, techniques to compensate for eccentric error in the rotary axes remain weak. This paper proposes optical (Non-Bar) techniques capable of calibrating five-axis CNC machine tools and compensating for eccentric error in the rotary axes. This approach employs the measurement path in ISO/CD 10791-6 to determine the eccentric error in two rotary axes, for which compensatory measures can be implemented. Experimental results demonstrate that the proposed techniques can improve the performance of various five-axis CNC machine tools by more than 90%. Finally, a result of the cutting test using a B-type five-axis CNC machine tool confirmed to the usefulness of this proposed compensation technique.Keywords: calibration, compensation, rotary axis, five-axis computer numerical control (CNC) machine tools, eccentric error, optical calibration system, ISO/CD 10791-6
Procedia PDF Downloads 38018243 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 14618242 A Clustering Algorithm for Massive Texts
Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen
Abstract:
Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process
Procedia PDF Downloads 433