Search results for: tropical deciduous forest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1405

Search results for: tropical deciduous forest

895 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species

Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das

Abstract:

Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.

Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker

Procedia PDF Downloads 197
894 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments

Authors: Naduni Ranasinghe

Abstract:

E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.

Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model

Procedia PDF Downloads 157
893 Landslide Vulnerability Assessment in Context with Indian Himalayan

Authors: Neha Gupta

Abstract:

Landslide vulnerability is considered as the crucial parameter for the assessment of landslide risk. The term vulnerability defined as the damage or degree of elements at risk of different dimensions, i.e., physical, social, economic, and environmental dimensions. Himalaya region is very prone to multi-hazard such as floods, forest fires, earthquakes, and landslides. With the increases in fatalities rates, loss of infrastructure, and economy due to landslide in the Himalaya region, leads to the assessment of vulnerability. In this study, a methodology to measure the combination of vulnerability dimension, i.e., social vulnerability, physical vulnerability, and environmental vulnerability in one framework. A combined result of these vulnerabilities has rarely been carried out. But no such approach was applied in the Indian Scenario. The methodology was applied in an area of east Sikkim Himalaya, India. The physical vulnerability comprises of building footprint layer extracted from remote sensing data and Google Earth imaginary. The social vulnerability was assessed by using population density based on land use. The land use map was derived from a high-resolution satellite image, and for environment vulnerability assessment NDVI, forest, agriculture land, distance from the river were assessed from remote sensing and DEM. The classes of social vulnerability, physical vulnerability, and environment vulnerability were normalized at the scale of 0 (no loss) to 1 (loss) to get the homogenous dataset. Then the Multi-Criteria Analysis (MCA) was used to assign individual weights to each dimension and then integrate it into one frame. The final vulnerability was further classified into four classes from very low to very high.

Keywords: landslide, multi-criteria analysis, MCA, physical vulnerability, social vulnerability

Procedia PDF Downloads 301
892 Water Balance in the Forest Basins Essential for the Water Supply in Central America

Authors: Elena Listo Ubeda, Miguel Marchamalo Sacristan

Abstract:

The demand for water doubles every twenty years, at a rate which is twice as fast as the world´s population growth. Despite it´s great importance, water is one of the most degraded natural resources in the world, mainly because of the reduction of natural vegetation coverage, population growth, contamination and changes in the soil use which reduces its capacity to collect water. This situation is especially serious in Central America, as reflected in the Human Development reports. The objective of this project is to assist in the improvement of water production and quality in Central America. In order to do these two watersheds in Costa Rica were selected as experiments: that of the Virilla-Durazno River, located in the extreme north east of the central valley which has an Atlantic influence; and that of the Jabillo River, which flows directly into the Pacific. The Virilla river watershed is located over andisols, and that of the Jabillo River is over alfisols, and both are of great importance for water supply to the Greater Metropolitan Area and the future tourist resorts respectively, as well as for the production of agriculture, livestock and hydroelectricity. The hydrological reaction in different soil-cover complexes, varying from the secondary forest to natural vegetation and degraded pasture, was analyzed according to the evaluation of the properties of the soil, infiltration, soil compaction, as well as the effects of the soil cover complex on erosion, calculated by the C factor of the Revised Universal Soil Loss Equation (RUSLE). A water balance was defined for each watershed, in which the volume of water that enters and leaves were estimated, as well as the evapotranspiration, runoff, and infiltration. Two future scenarios, representing the implementation of reforestation and deforestation plans, were proposed, and were analyzed for the effects of the soil cover complex on the water balance in each case. The results obtained show an increase of the ground water recharge in the humid forest areas, and an extension of the study of the dry areas is proposed since the ground water recharge here is diminishing. These results are of great significance for the planning, design of Payment Schemes for Environmental Services and the improvement of the existing water supply systems. In Central America spatial planning is a priority, as are the watersheds, in order to assess the water resource socially and economically, and securing its availability for the future.

Keywords: Costa Rica, infiltration, soil, water

Procedia PDF Downloads 385
891 Urbanization on Green Cover and Groundwater Relationships in Delhi, India

Authors: Kiranmay Sarma

Abstract:

Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover.

Keywords: groundwater, urbanization, GIS, green cover, Delhi

Procedia PDF Downloads 289
890 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 136
889 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI

Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De

Abstract:

Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.

Keywords: aquaculture farms, LULC, Mangrove, NDVI

Procedia PDF Downloads 184
888 Timber Urbanism: Assessing the Carbon Footprint of Mass-Timber, Steel, and Concrete Structural Prototypes for Peri-Urban Densification in the Hudson Valley’s Urban Fringe

Authors: Eleni Stefania Kalapoda

Abstract:

The current fossil-fuel based urbanization pattern and the estimated human population growth are increasing the environmental footprint on our planet’s precious resources. To mitigate the estimated skyrocketing in greenhouse gas emissions associated with the construction of new cities and infrastructure over the next 50 years, we need a radical rethink in our approach to construction to deliver a net zero built environment. This paper assesses the carbon footprint of a mass-timber, a steel, and a concrete structural alternative for peri-urban densification in the Hudson Valley's urban fringe, along with examining the updated policy and the building code adjustments that support synergies between timber construction in city making and sustainable management of timber forests. By quantifying the carbon footprint of a structural prototype for four different material assemblies—a concrete (post-tensioned), a mass timber, a steel (composite), and a hybrid (timber/steel/concrete) assembly applicable to the three updated building typologies of the IBC 2021 (Type IV-A, Type IV-B, Type IV-C) that range between a nine to eighteen-story structure alternative—and scaling-up that structural prototype to the size of a neighborhood district, the paper presents a quantitative and a qualitative approach for a forest-based construction economy as well as a resilient and a more just supply chain framework that ensures the wellbeing of both the forest and its inhabitants.

Keywords: mass-timber innovation, concrete structure, carbon footprint, densification

Procedia PDF Downloads 109
887 Access to the Forest Ecosystem Services: Understanding the Interaction between Livelihood Capitals and Access

Authors: Abu S. M. G. Kibria, Alison M. Behie, Robert Costanza, Colin Groves, Tracy Farrell

Abstract:

This study is aimed to understand the level of access and the influence of livelihood capitals in maintaining access and control of ecosystem services (ESS) in the Sundarbans, Bangladesh. Besides the villagers, we consider other stakeholders including the forest department, coast guard, police, merchants, pirates and villagers who ‘controlled’ or ‘maintained’ access to ESS (crab catching, shrimp fry, honey, shrimp, mixed fish, fuel wood) in this region. Villagers used human, physical, natural and social capitals to gain access to ESS. The highest level of access was observed in crab catching and the lowest was found in honey collection, both of which were done when balancing the costs and benefits of accessing one ESS against another. The outcomes of these ongoing access negotiations were determined by livelihood capitals of the households. In addition, it was often found that the certain variables could have a positive effect on one ESS and a negative effect on another. For instance, human, social and natural capitals (eldest daughter’s education and No. of livelihood group membership and) had significant positive effects on honey collection while two components of human and social capitals including ‘eldest son’s education’ and ‘severity of pirate problem’ had exactly the opposite impact. These complex interactions were also observed in access to other ESS. It thus seems that access to ESS is not anything which is provided, but rather it is achieved by using livelihood capitals. Protecting any ecosystem from over exploitation and improve wellbeing can be achieved by properly balancing the livelihood capital-access nexus.

Keywords: provisioning services, access level, livelihood capital, interaction, access gain

Procedia PDF Downloads 283
886 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning

Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene

Abstract:

This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.

Keywords: limit pressure of soil, xgboost, random forest, bearing capacity

Procedia PDF Downloads 25
885 Flood Risk Assessment and Adapted to the Climate Change by a Trade-Off Process in Land Use Planning

Authors: Nien-Ming Hong, Kuei-Fang Huang

Abstract:

Climate change is an important issue in future, which seriously affects water resources for a long term planning and management. Flood assessment is highly related with climate and land use. Increasing rainfall and urbanization will induce the inundated area in future. For adapting the impacts of climate change, a land use planning is a good strategy for reducing flood damage. The study is to build a trade-off process with different land use types. The Ta-Liao watershed is the study area with three types of land uses that are build-up, farm and forest. The build-up area is concentrated in the downstream of the watershed. Different rainfall amounts are applied for assessing the land use in 1996, 2005 and 2013. The adapted strategies are based on retarding the development of urban and a trade-off process. When a land changes from farm area to built-up area in downstream, this study is to search for a farm area and change it to forest/grass area or building a retention area in the upstream. For assessing the effects of the strategy, the inundation area is simulated by the Flo-2D model with different rainfall conditions and land uses. The results show inundation maps of several cases with land use change planning. The results also show the trade-off strategies and retention areas can decrease the inundated area and divide the inundated area, which are better than retarding urban development. The land use change is usually non-reverse and the planning should be constructed before the climate change.

Keywords: climate change, land use change, flood risk assessment, land use planning

Procedia PDF Downloads 338
884 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 79
883 Risk Factors for Severe Typhoid Fever in Children: A French Retrospective Study about 78 Cases from 2000-2017 in Six Parisian Hospitals

Authors: Jonathan Soliman, Thomas Cavasino, Virginie Pommelet, Lahouari Amor, Pierre Mornand, Simon Escoda, Nina Droz, Soraya Matczak, Julie Toubiana, François Angoulvant, Etienne Carbonnelle, Albert Faye, Loic de Pontual, Luu-Ly Pham

Abstract:

Background: Typhoid and paratyphoid fever are systemic infections caused by Salmonella enterica serovar Typhi or paratyphi (A, B, C). Children traveling to tropical areas are at risk to contract these diseases which can be complicated. Methods: Clinical, biological and bacteriological data were collected from 78 pediatric cases reported between 2000 and 2017 in six Parisian hospitals. Children aged 0 to 18 years old, with a diagnosis of typhoid or paratyphoid fever confirmed by bacteriological exams, were included. Epidemiologic, clinical, biological features and presence of multidrug-resistant (MDR) bacteria or intermediate susceptibility to ciprofloxacin (nalidixic acid resistant) were examined by univariate analysis and by logistic regression analysis to identify risk factors of severe typhoid in children. Results: 84,6% of the children were imported cases of typhoid fever (n=66/78) and 15,4% were autochthonous cases (n=12/78). 89,7% were caused by S.typhi (n=70/78) and 12,8% by S.paratyphi (n=10/78) including 2 co-infections. 19,2% were intrafamilial cases (n=15/78). Median age at diagnosis was 6,4 years-old [6 months-17,9 years]. 28,2% of the cases were complicated forms (n=22/78): digestive (n=8; 10,3%), neurological (n=7; 9%), pulmonary complications (n=4; 5,1%) and hemophagocytic syndrome (n=4; 5,1%). Only 5% of the children had prior immunization with typhoid non-conjugated vaccine (n=4/78). 28% of the cases (n=22/78) were caused by resistant bacteria. Thrombocytopenia and diagnosis delay was significantly associated with severe infection (p= 0.029 and p=0,01). Complicated forms were more common with MDR (p=0,1) and not statistically associated with a young age or sex in this study. Conclusions: Typhoid and paratyphoid fever are not rare in children back from tropical areas. This multicentric pediatric study seems to show that thrombocytopenia, diagnosis delay, and multidrug resistant bacteria are associated with severe typhoid fever and complicated forms in children.

Keywords: antimicrobial resistance, children, Salmonella enterica typhi and paratyphi, severe typhoid

Procedia PDF Downloads 183
882 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 78
881 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 86
880 Ganoderma Infection in Acacia mangium: Difference of Plant Hosts to Virulency of Ganoderma

Authors: Rosa Suryantini, Reine S. Wulandari, Slamet Rifanjani

Abstract:

Acacia (Acacia mangium) is a forest plant species which is produced to pulp and paper. The high demand for pulp and paper increase the acacia plantation forest area. However, the outbreak of Ganoderma (root rot pathogen) infection becomes obstacles for the development of acacia plantations. This is due to the extent of host range and species of Ganoderma. Ganoderma has also the ability to survive the long-term without hosts. The diversity of the host and Ganoderma species affects its virulence. Therefore, this study aimed to determine the virulence of Ganoderma from different hosts (acacia, palm oil (Elaeis guineensis) and rubber (Hevea brasiliensis)). The methods were isolation and morphology identification of Ganoderma, and inoculation of Ganoderma isolates on acacia seedlings. The results showed that the three isolates of Ganoderma from different hosts had a morphological similarity with G. Lucidum (according to Ganoderma isolated from acacia or G1), G. boninense (according to Ganoderma isolated from palm oil or G2) and G. applanatum (according to Ganoderma isolated from rubber or G3). Symptoms of infection in acacia were seen at 3 months of age. The symptoms were begun with chlorosis, necrosis and death of seedlings (such as burning). Necrosis was started from the tip of the leaf. Based on this visible symptoms, G1 was moderate virulence isolate and G2 was low virulence isolate while G3 was avirulen isolate. The symptoms were still growing in accordance with the development of plant so it affected the value of diseases severity index. Ganoderma infection decreased the dry weight of seedlings, ie. 3.82 g (seedlings that were inoculated by G1), 4.01 g (seedlings that were inoculated by G2); and 5.02 g (seedlings that were inoculated by G3) when the dry weight of seedlings control was 10,02 g. These results provide information for early control of Ganoderma diseases on acacia especially those planted near rubber and oil palm crops.

Keywords: Acacia, Ganoderma, infection, virulence

Procedia PDF Downloads 193
879 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes

Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono

Abstract:

Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is a widely used approach for LV segmentation but suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is proposed to improve the accuracy and speed of the model-based segmentation. Firstly, a robust and efficient detector based on Hough forest is proposed to localize cardiac feature points, and such points are used to predict the initial fitting of the LV shape model. Secondly, to achieve more accurate and detailed segmentation, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. The performance of the proposed method is evaluated on a dataset of 800 cardiac ultrasound images that are mostly of abnormal shapes. The proposed method is compared to several combinations of ASM and existing initialization methods. The experiment results demonstrate that the accuracy of feature point detection for initialization was improved by 40% compared to the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops, thus speeding up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.

Keywords: hough forest, active shape model, segmentation, cardiac left ventricle

Procedia PDF Downloads 341
878 Phenotype of Cutaneous Squamous Cell Carcinoma in a Brazilian City with a Tropical Climate

Authors: Julia V. F. Cortes, Maria E. V. Amarante, Carolina L. Cerdeira, Roberta B. V. Silva

Abstract:

Nonmelanoma skin cancer is more commonly diagnosed than all other malignancies combined. In that group, cutaneous squamous cell carcinoma stands out for having the highest probability of metastasis and recurrence after treatment, in addition to being the second most prevalent form of skin cancer. Its main risk factors include exposure to carcinogens, such as ultraviolet radiation related to sunlight exposure, smoking, alcohol consumption, and human papillomavirus (HPV) infection. Considering the increased risk of skin cancer in the Brazilian population, caused by the high incidence of solar radiation, and the importance of identifying risk phenotypes for the accomplishment of public health actions, an epidemiological study was conducted in a city with a tropical climate located in southeastern Brazil, aiming to identify the target population and assist in primary and secondary prevention. This study describes the profile of patients with cutaneous squamous cell cancer, correlating the variables, sex, age, and differentiation. The study used as primary data source the results of anatomopathological exams delivered from January 2015 to December 2019 for patients registered at one pathology service, which analyzes the results of biopsies, Thus, 66 patients with cutaneous squamous cell carcinoma were analyzed. The most affected age group was 60 years or older (78.79%), emphasizing that moderately differentiated (79.49%) and well-differentiated forms (66.67%) are prevalent in this age group, resulting in a difference of 12.82 percentage points between them. In addition, the predominant sex was male (58%), and it was found that half of the women and 65.79% of men had a moderately differentiated type, whereas the well-differentiated type was slightly more frequent in women. It is worth noting that the moderately differentiated subtype has a 59.20% prevalence among all cases. Thus, it was concluded that the most affected age group was 60 years or older and that men were more affected. As for the subtype, the moderately differentiated one, which is recognized for presenting the second-highest risk for metastasis, was prevalent in this study, affecting 6.6% more men and predominating in the elderly.

Keywords: cutaneous squamous cell carcinoma, epidemiology, skin cancer, spinal cell cancer

Procedia PDF Downloads 119
877 Understanding the Dynamics of Human-Snake Negative Interactions: A Study of Indigenous Perceptions in Tamil Nadu, Southern India

Authors: Ramesh Chinnasamy, Srishti Semalty, Vishnu S. Nair, Thirumurugan Vedagiri, Mahesh Ganeshan, Gautam Talukdar, Karthy Sivapushanam, Abhijit Das

Abstract:

Snakes form an integral component of ecological systems. Human population explosion and associated acceleration of habitat destruction and degradation, has led to a rapid increase in human-snake encounters. The study aims at understanding the level of awareness, knowledge, and attitude of the people towards human-snake negative interaction and role of awareness programmes in the Moyar river valley, Tamil Nadu. The study area is part of the Mudumalai and the Sathyamangalam Tiger Reserves, which are significant wildlife corridors between the Western Ghats and the Eastern Ghats in the Nilgiri Biosphere Reserve. The data was collected using questionnaire covering 644 respondents spread across 18 villages between 2018 and 2019. The study revealed that 86.5% of respondents had strong negative perceptions towards snakes which were propelled by fear, superstitions, and threat of snakebite which was common and did not vary among different villages (F=4.48; p = <0.05) and age groups (X2 = 1.946; p = 0.962). Cobra 27.8% (n = 294) and rat snake 21.3% (n = 225) were the most sighted species and most snake encounter occurred during the monsoon season i.e., July 35.6 (n = 218), June 19.1% (n = 117) and August 18.4% (n = 113). At least 1 out of 5 respondents was reportedly bitten by snakes during their lifetime. The most common species of snakes that were the cause of snakebite were Saw scaled viper (32.6%, n = 42) followed by Cobra 17.1% (n = 22). About 21.3% (n = 137) people reported livestock loss due to pythons and other snakes 21.3% (n = 137). Most people, preferred medical treatment for snakebite (87.3%), whereas 12.7%, still believed in traditional methods. The majority (82.3%) used precautionary measure by keeping traditional items such as garlic, kerosene, and snake plant to avoid snakes. About 30% of the respondents expressed need for technical and monetary support from the forest department that could aid in reducing the human-snake conflict. It is concluded that the general perception in the study area is driven by fear and negative attitude towards snakes. Though snakes such as Cobra were widely worshiped in the region, there are still widespread myths and misconceptions that have led to the irrational killing of snakes. Awareness and innovative education programs rooted in the local context and language should be integrated at the village level, to minimize risk and the associated threat of snakebite among the people. Results from this study shall help policy makers to devise appropriate conservation measures to reduce human-snake conflicts in India.

Keywords: Envenomation, Health-Education, Human-Wildlife Conflict, Neglected Tropical Disease, Snakebite Mitigation, Traditional Practitioners

Procedia PDF Downloads 228
876 Molluscicidal Effect of Cassia occidentalis and Physalis angulata Leaf Extract in the Elimination of Water Snail

Authors: Haruna Karamba, Nafisa Muhammad Danyaro

Abstract:

The study describe the action of natural latex (extract) of two sub-aquatic macrophytes plants i.e., Cassia occidentalis and Physalis angulata which were tested against two water snail species; Bulinus globusus and Lymnaea natalensis, the intermediate host of Bilharziasis (chistosomiasis) in the tropical countries. Bilherziasis is a disease prevalent and endermic to tropical Africa, seriously undermining health status of Nigerian youth. The easiest way to eradicate the disease is to eliminate the secondary host of the pathogen, chistosoma species. Therefore we carried out a research to investigate the molluscicidal effect of the leaf extract of C. occidentalis and P. angulata on mortality rate of B. globusus and L. natalensis water snails using pond water in the laboratory of science laboratory department of Kano State Polytechnic, Nigeria. One hundred and fifty juveniles’ snails were collected from Jakara Dam in the Northeastern part of Kano, Nigeria. The snails were put inside a plastic container and transported immediately to the laboratory where they were transferred into reservoir tank containing pond water and kept for 48 hours to get acclimatized with laboratory environment. Twelve water bathes 2/3 filled with pond water were prepared and kept in the laboratory. Leaf extract of the plants were obtained by blending and homogenizing the leaf tissue from which the extract were obtained and prepared in 10, 20, 30, 40 and 50 ppm, in addition to 0 ppm, which served as control. Ten snails were placed in each of the twelve water bathes. Six water bathes for the species of C. accidentalis extract and other six for P. angulata. The treatment combinations were maintained for 2 days after which the number of living snails present in each water bathes were counted and subsequently at 2 days intervals. The result indicated that extracts from both plants were lethal to the snails as concentration of the extract increases particularly mortality rate was highest at 40 and 50 ppm. Conclusively the toxicity of the extracts from these plants proven lethal to snails and hence can be used as molluscicides for cheap and easy method of eliminating water snails and therefore reducing the incidence of Bilharziasis.

Keywords: schistosomiasis, bilharziasis, Bulinus globusus, Lymnea natalensis, Physalis angulata, Cassia occidentalis, Kano

Procedia PDF Downloads 357
875 Examination of Public Hospital Unions Technical Efficiencies Using Data Envelopment Analysis and Machine Learning Techniques

Authors: Songul Cinaroglu

Abstract:

Regional planning in health has gained speed for developing countries in recent years. In Turkey, 89 different Public Hospital Unions (PHUs) were conducted based on provincial levels. In this study technical efficiencies of 89 PHUs were examined by using Data Envelopment Analysis (DEA) and machine learning techniques by dividing them into two clusters in terms of similarities of input and output indicators. Number of beds, physicians and nurses determined as input variables and number of outpatients, inpatients and surgical operations determined as output indicators. Before performing DEA, PHUs were grouped into two clusters. It is seen that the first cluster represents PHUs which have higher population, demand and service density than the others. The difference between clusters was statistically significant in terms of all study variables (p ˂ 0.001). After clustering, DEA was performed for general and for two clusters separately. It was found that 11% of PHUs were efficient in general, additionally 21% and 17% of them were efficient for the first and second clusters respectively. It is seen that PHUs, which are representing urban parts of the country and have higher population and service density, are more efficient than others. Random forest decision tree graph shows that number of inpatients is a determinative factor of efficiency of PHUs, which is a measure of service density. It is advisable for public health policy makers to use statistical learning methods in resource planning decisions to improve efficiency in health care.

Keywords: public hospital unions, efficiency, data envelopment analysis, random forest

Procedia PDF Downloads 127
874 Sponge Urbanism as a Resilient City Design to Overcome Urban Flood Risk, for the Case of Aluva, Kerala, India

Authors: Gayathri Pramod, Sheeja K. P.

Abstract:

Urban flooding has been seen rising in cities for the past few years. This rise in urban flooding is the result of increasing urbanization and increasing climate change. A resilient city design focuses on 'living with water'. This means that the city is capable of accommodating the floodwaters without having to risk any loss of lives or properties. The resilient city design incorporates green infrastructure, river edge treatment, open space design, etc. to form a city that functions as a whole for resilience. Sponge urbanism is a recent method for building resilient cities and is founded by China in 2014. Sponge urbanism is the apt method for resilience building for a tropical town like Aluva of Kerala. Aluva is a tropical town that experiences rainfall of about 783 mm per month during the rainy season. Aluva is an urbanized town which faces the risk of urban flooding and riverine every year due to the presence of Periyar River in the town. Impervious surfaces and hard construction and developments contribute towards flood risk by posing as interference for a natural flow and natural filtration of water into the ground. This type of development is seen in Aluva also. Aluva is designed in this research as a town that have resilient strategies of sponge city and which focusses on natural methods of construction. The flood susceptibility of Aluva is taken into account to design the spaces for sponge urbanism and in turn, reduce the flood susceptibility for the town. Aluva is analyzed, and high-risk zones for development are identified through studies. These zones are designed to withstand the risk of flooding. Various catchment areas are identified according to the natural flow of water, and then these catchment areas are designed to act as a public open space and as detention ponds in case of heavy rainfall. Various development guidelines, according to land use, is also prescribed, which help in increasing the green cover of the town. Aluva is then designed to be a completely flood-adapted city or sponge city according to the guidelines and interventions.

Keywords: climate change, flooding, resilient city, sponge city, sponge urbanism, urbanization

Procedia PDF Downloads 156
873 Environmental Law and Payment for Environmental Services: Perceptions of the Family Farmers of the Federal District, Brazil

Authors: Kever Bruno Paradelo Gomes, Rosana Carvalho Cristo Martins

Abstract:

Payment for Environmental Services (PSA) has been a strategy used since the late 1990s by Latin American countries to finance environmental conservation. Payment for Environmental Services has been absorbing a growing amount of time in the discussions around environmentally sustainable development strategies in the world. In Brazil, this theme has permeated the discussions since the publication of the new Forest Code. The objective of this work was to verify the perception of the resident farmers in the region of Ponte Alta, Gama, Federal District, Brazil, on environmental legislation and Payments for Environmental Services. The work was carried out in 99 rural properties of the family farmers of the Rural Nucleus Ponte Alta, Administrative Region of Gama, in the city of Brasília, Federal District, Brazil. The present research is characterized methodologically as a quantitative, exploratory, and descriptive nature. The data treatment was performed through descriptive statistical analysis and hypothesis testing. The perceptions about environmental legislation in the rural area of Ponte Alta, Gama, DF respondents were positive. Although most of the family farmers interviewed have some knowledge about environmental legislation, it is perceived that in practice, the environmental adequacy of property is ineffective given the current situation of sustainable rural development; there is an abyss between what is envisaged by legislation and reality in the field. Thus, as in the reports of other researchers, it is verified that the majority of respondents are not aware of PSA (62.62%). Among those interviewed who were aware of the subject, two learned through the course, three through the university, two through TV and five through other people. The planting of native forest species on the rural property was the most informed practice by farmers if they received some Environmental Service Payment (PSA). Reflections on the environment allow us to infer that the effectiveness and fulfillment of the incentives and rewards in the scope of public policies to encourage the maintenance of environmental services, already existing in all spheres of government, are of great relevance to the process of environmental sustainability of rural properties. The relevance of the present research is an important tool to promote the discussion and formulation of public policies focused on sustainable rural development, especially on payments for environmental services; it is a space of great interest for the strengthening of the social group dedicated to production. Public policies that are efficient and accessible to the small rural producers become decisive elements for the promotion of changes in behavior in the field, be it economic, social, or environmental.

Keywords: forest code, public policy, rural development, sustainable agriculture

Procedia PDF Downloads 156
872 Coexistence and Conservation of Sympatric Large Carnivores in Gir Protected Area, Gujarat, Western India

Authors: Nazneen Zehra

Abstract:

Gir Protected Area (PA) is home to two sympatric large carnivores, the Asiatic lion and the common leopard, which share the same habitat. Understanding their interactions and coexistence is crucial for effective conservation management. From 2009 to 2012, we studied the availability and consumption of prey by these two carnivores to understand the dynamics of their interactions and coexistence. Ungulates provided approximately 3634.45 kg/km² of prey biomass, primarily composed of chital (ca. 2711.25 kg/km²), sambar (ca. 411.78 kg/km²), and nilgai (ca. 511.52 kg/km²). Other prey included peafowl (75.76 kg/km²) and langur (ca. 158.72 kg/km²). Both carnivores prioritized chital as their key prey species. The diet of Asiatic lions was predominantly composed of ungulates, with biomass contributions of chital (301.14 kg), sambar (378.75 kg), and nilgai (291.42 kg). Other prey species, such as peafowl and langur, contributed 1.36 kg and 2.40 kg, respectively, to the lions' diet. For leopards, the diet also heavily relied on chital (311.49 kg), followed by sambar (44.03 kg) and nilgai (172.78 kg). The biomass of other prey species in the leopards' diet included peafowl (2.08 kg) and langur (36.07 kg). Both species were found to primarily utilize teak-mixed forest, followed by riverine forest and teak-acacia-zizyphus habitats. The similarities in diet composition and habitat use indicate competition between these sympatric species. This competition may require one predator species to bear certain costs for the benefit of the other, which can influence conservation and management strategies. Effective conservation strategies are necessary to ensure the long-term survival of both the Asiatic lion and the common leopard equally and to maintain ecological balance in Gir PA.

Keywords: large carnivores, Gir PA, coexistence, resource utilization

Procedia PDF Downloads 30
871 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms

Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel

Abstract:

Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.

Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning

Procedia PDF Downloads 170
870 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar

Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati

Abstract:

Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.

Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse

Procedia PDF Downloads 393
869 Determining the Sources of Sediment at Different Areas of the Catchment: A Case Study of Welbedacht Reservoir, South Africa

Authors: D. T. Chabalala, J. M. Ndambuki, M. F. Ilunga

Abstract:

Sedimentation includes the processes of erosion, transportation, deposition, and the compaction of sediment. Sedimentation in reservoir results in a decrease in water storage capacity, downstream problems involving aggregation and degradation, blockage of the intake, and change in water quality. A study was conducted in Caledon River catchment in the upstream of Welbedacht Reservoir located in the South Eastern part of Free State province, South Africa. The aim of this research was to investigate and develop a model for an Integrated Catchment Modelling of Sedimentation processes and management for the Welbedacht reservoir. Revised Universal Soil Loss Equation (RUSLE) was applied to determine sources of sediment at different areas of the catchment. The model has been also used to determine the impact of changes from management practice on erosion generation. The results revealed that the main sources of sediment in the watershed are cultivated land (273 ton per hectare), built up and forest (103.3 ton per hectare), and grassland, degraded land, mining and quarry (3.9, 9.8 and 5.3 ton per hectare) respectively. After application of soil conservation practices to developed Revised Universal Soil Loss Equation model, the results revealed that the total average annual soil loss in the catchment decreased by 76% and sediment yield from cultivated land decreased by 75%, while the built up and forest area decreased by 42% and 99% respectively. Thus, results of this study will be used by government departments in order to develop sustainable policies.

Keywords: Welbedacht reservoir, sedimentation, RUSLE, Caledon River

Procedia PDF Downloads 196
868 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle

Authors: Hu Ding, Kai Liu, Guoan Tang

Abstract:

The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest

Procedia PDF Downloads 218
867 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 320
866 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food

Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez

Abstract:

The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.

Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion

Procedia PDF Downloads 253