Search results for: smart camera networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4545

Search results for: smart camera networks

4035 Universality and Synchronization in Complex Quadratic Networks

Authors: Anca Radulescu, Danae Evans

Abstract:

The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.

Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity

Procedia PDF Downloads 308
4034 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 496
4033 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 299
4032 A System to Detect Inappropriate Messages in Online Social Networks

Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty

Abstract:

As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.

Keywords: machine learning, online social networks, soft text classifier, support vector machine

Procedia PDF Downloads 508
4031 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays

Authors: Sabri Arik

Abstract:

In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.

Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis

Procedia PDF Downloads 528
4030 Mobile Traffic Management in Congested Cells using Fuzzy Logic

Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh

Abstract:

To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.

Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells

Procedia PDF Downloads 120
4029 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks

Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang

Abstract:

Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.

Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks

Procedia PDF Downloads 604
4028 Adoption of Climate-Smart Agriculture Practices Among Farmers and Its Effect on Crop Revenue in Ethiopia

Authors: Fikiru Temesgen Gelata

Abstract:

Food security, adaptation, and climate change mitigation are all problems that can be resolved simultaneously with Climate-Smart Agriculture (CSA). This study examines determinants of climate-smart agriculture (CSA) practices among smallholder farmers, aiming to understand the factors guiding adoption decisions and evaluate the impact of CSA on smallholder farmer income in the study areas. For this study, three-stage sampling techniques were applied to select 230 smallholders randomly. Mann-Kendal test and multinomial endogenous switching regression model were used to analyze trends of decrease or increase within long-term temporal data and the impact of CSA on the smallholder farmer income, respectively. Findings revealed education level, household size, land ownership, off-farm income, climate information, and contact with extension agents found to be highly adopted CSA practices. On the contrary, erosion exerted a detrimental impact on all the agricultural practices examined within the study region. Various factors such as farming methods, the size of farms, proximity to irrigated farmlands, availability of extension services, distance to market hubs, and access to weather forecasts were recognized as key determinants influencing the adoption of CSA practices. The multinomial endogenous switching regression model (MESR) revealed that joint adoption of crop rotation and soil and water conservation practices significantly increased farm income by 1,107,245 ETB. The study recommends that counties and governments should prioritize addressing climate change in their development agendas to increase the adoption of climate-smart farming techniques.

Keywords: climate-smart practices, food security, Oincome, MERM, Ethiopia

Procedia PDF Downloads 34
4027 Creating Smart and Healthy Cities by Exploring the Potentials of Emerging Technologies and Social Innovation for Urban Efficiency: Lessons from the Innovative City of Boston

Authors: Mohammed Agbali, Claudia Trillo, Yusuf Arayici, Terrence Fernando

Abstract:

The wide-spread adoption of the Smart City concept has introduced a new era of computing paradigm with opportunities for city administrators and stakeholders in various sectors to re-think the concept of urbanization and development of healthy cities. With the world population rapidly becoming urban-centric especially amongst the emerging economies, social innovation will assist greatly in deploying emerging technologies to address the development challenges in core sectors of the future cities. In this context, sustainable health-care delivery and improved quality of life of the people is considered at the heart of the healthy city agenda. This paper examines the Boston innovation landscape from the perspective of smart services and innovation ecosystem for sustainable development, especially in transportation and healthcare. It investigates the policy implementation process of the Healthy City agenda and eHealth economy innovation based on the experience of Massachusetts’s City of Boston initiatives. For this purpose, three emerging areas are emphasized, namely the eHealth concept, the innovation hubs, and the emerging technologies that drive innovation. This was carried out through empirical analysis on results of public sector and industry-wide interviews/survey about Boston’s current initiatives and the enabling environment. The paper highlights few potential research directions for service integration and social innovation for deploying emerging technologies in the healthy city agenda. The study therefore suggests the need to prioritize social innovation as an overarching strategy to build sustainable Smart Cities in order to avoid technology lock-in. Finally, it concludes that the Boston example of innovation economy is unique in view of the existing platforms for innovation and proper understanding of its dynamics, which is imperative in building smart and healthy cities where quality of life of the citizenry can be improved.

Keywords: computing paradigm, emerging technologies, equitable healthcare, healthy cities, open data, smart city, social innovation

Procedia PDF Downloads 336
4026 Social Networks in a Communication Strategy of a Large Company

Authors: Kherbache Mehdi

Abstract:

Within the framework of the validation of the Master in business administration marketing and sales in INSIM institute international in management Blida, we get the opportunity to do a professional internship in Sonelgaz Enterprise and a thesis. The thesis deals with the integration of social networking in the communication strategy of a company. The problematic is: How communicate with social network can be a solution for companies? The challenges stressed by this thesis were to suggest limits and recommendations to Sonelgaz Enterprise concerning social networks. The whole social networks represent more than a billion people as a potential target for the companies. Thanks to research and a qualitative approach, we have identified tree valid hypothesis. The first hypothesis allows confirming that using social networks cannot be ignored by any company in its communication strategy. However, the second hypothesis demonstrates that it’s necessary to prepare a strategy that integrates social networks in the communication plan of the company. The risk of this strategy is very limited because failure on social networks is not a restraint for the enterprise, social networking is not expensive and, a bad image which could result from it is not as important in the long-term. Furthermore, the return on investment is difficult to evaluate. Finally, the last hypothesis shows that firms establish a new relation between consumers and brands thanks to the proximity allowed by social networks. After the validation of the hypothesis, we suggested some recommendations to Sonelgaz Enterprise regarding the communication through social networks. Firstly, the company must use the interactivity of social network in order to have fruitful exchanges with the community. We also recommended having a strategy to treat negative comments. The company must also suggest delivering resources to the community thanks to a community manager, in order to have a good relation with the community. Furthermore, we advised using social networks to do business intelligence. Sonelgaz Enterprise can have some creative and interactive contents with some amazing applications on Facebook for example. Finally, we recommended to the company to be not intrusive with “fans” or “followers” and to be open to all the platforms: Twitter, Facebook, Linked-In for example.

Keywords: social network, buzz, communication, consumer, return on investment, internet users, web 2.0, Facebook, Twitter, interaction

Procedia PDF Downloads 422
4025 Impact of Tablet Based Learning on Continuous Assessment (ESPRIT Smart School Framework)

Authors: Mehdi Attia, Sana Ben Fadhel, Lamjed Bettaieb

Abstract:

Mobile technology has become a part of our daily lives and assist learners (despite their level and age) in their leaning process using various apparatus and mobile devices (laptop, tablets, etc.). This paper presents a new learning framework based on tablets. This solution has been developed and tested in ESPRIT “Ecole Supérieure Privée d’Igénieurie et de Technologies”, a Tunisian school of engineering. This application is named ESSF: Esprit Smart School Framework. In this work, the main features of the proposed solution are listed, particularly its impact on the learners’ evaluation process. Learner’s assessment has always been a critical component of the learning process as it measures students’ knowledge. However, traditional evaluation methods in which the learner is evaluated once or twice each year cannot reflect his real level. This is why a continuous assessment (CA) process becomes necessary. In this context we have proved that ESSF offers many important features that enhance and facilitate the implementation of the CA process.

Keywords: continuous assessment, mobile learning, tablet based learning, smart school, ESSF

Procedia PDF Downloads 334
4024 Clustering the Wheat Seeds Using SOM Artificial Neural Networks

Authors: Salah Ghamari

Abstract:

In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari.

Keywords: artificial neural networks, clustering, self organizing map, wheat variety

Procedia PDF Downloads 656
4023 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 169
4022 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 70
4021 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities

Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan

Abstract:

The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.

Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility

Procedia PDF Downloads 76
4020 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 320
4019 A CM-Based Model for 802.11 Networks Security Policies Enforcement

Authors: Karl Mabiala Dondia, Jing Ma

Abstract:

In recent years, networks based on the 802.11 standards have gained a prolific deployment. The reason for this massive acceptance of the technology by both home users and corporations is assuredly due to the "plug-and-play" nature of the technology and the mobility. The lack of physical containment due to inherent nature of the wireless medium makes maintenance very challenging from a security standpoint. This study examines via continuous monitoring various predictable threats that 802.11 networks can face, how they are executed, where each attack may be executed and how to effectively defend against them. The key goal is to identify the key components of an effective wireless security policy.

Keywords: wireless LAN, IEEE 802.11 standards, continuous monitoring, security policy

Procedia PDF Downloads 380
4018 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 41
4017 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing

Authors: McClain Thiel

Abstract:

Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.

Keywords: monocular distancing, computer vision, facial analysis, 3D localization

Procedia PDF Downloads 139
4016 Key Concepts of 5th Generation Mobile Technology

Authors: Magri Hicham, Noreddine Abghour, Mohamed Ouzzif

Abstract:

The 5th generation of mobile networks is term used in various research papers and projects to identify the next major phase of mobile telecommunications standards. 5G wireless networks will support higher peak data rate, lower latency and provide best connections with QoS guarenty. In this article, we discuss various promising technologies for 5G wireless communication systems, such as IPv6 support, World Wide Wireless Web (WWWW), Dynamic Adhoc Wireless Networks (DAWN), BEAM DIVISION MULTIPLE ACCESS (BDMA), Cloud Computing and cognitive radio technology.

Keywords: WWWW, BDMA, DAWN, 5G, 4G, IPv6, Cloud Computing

Procedia PDF Downloads 514
4015 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 456
4014 Social Networks Global Impact on Protest Movements and Human Rights Activism

Authors: Marcya Burden, Savonna Greer

Abstract:

In the wake of social unrest around the world, protest movements have been captured like never before. As protest movements have evolved, so too have their visibility and sources of coverage. Long gone are the days of print media as our only glimpse into the action surrounding a protest. Now, with social networks such as Facebook, Instagram and Snapchat, we have access to real-time video footage of protest movements and human rights activism that can reach millions of people within seconds. This research paper investigated various social media network platforms’ statistical usage data in the areas of human rights activism and protest movements, paralleling with other past forms of media coverage. This research demonstrates that social networks are extremely important to protest movements and human rights activism. With over 2.9 billion users across social media networks globally, these platforms are the heart of most recent protests and human rights activism. This research shows the paradigm shift from the Selma March of 1965 to the more recent protests of Ferguson in 2014, Ni Una Menos in 2015, and End Sars in 2018. The research findings demonstrate that today, almost anyone may use their social networks to protest movement leaders and human rights activists. From a student to an 80-year-old professor, the possibility of reaching billions of people all over the world is limitless. Findings show that 82% of the world’s internet population is on social networks 1 in every 5 minutes. Over 65% of Americans believe social media highlights important issues. Thus, there is no need to have a formalized group of people or even be known online. A person simply needs to be engaged on their respective social media networks (Facebook, Twitter, Instagram, Snapchat) regarding any cause they are passionate about. Information may be exchanged in real time around the world and a successful protest can begin.

Keywords: activism, protests, human rights, networks

Procedia PDF Downloads 95
4013 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging

Authors: Chang Liu, John Nash, Stephen D. Prior

Abstract:

This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, the aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infrared video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.

Keywords: unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video

Procedia PDF Downloads 327
4012 Tracking the Mind's Mouth: Use of Smart Technology for Effective Teaching of Speaking to Pupils with Developmental Co-ordination Disorder

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Ayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Fatehi Eissa

Abstract:

Developmental co-ordination disorder (DCD) (also known as dyspraxia) causes a child to speak less well than expected in social conversations. We propose that the smart speaking technology could help improve sound production mechanism at both phonetic and phonological levels, which leads to better articulation of an utterance. The participants are twelve privately beginner pupils aged between 6-12 years old and diagnosed with DCD (apraxia) divided into two groups: Experimental group (n=6) and control group (called apraxic control group) (n=6). A total of fifty typically developing and achieving (TD) pupils participated as control group 2 in both groups and were preassigned into two groups (27 pupils with the treatment group and 23 with the apraxic control group). Weekly quizzes were given to all participants each week for four continuous months and results were analyzed by psychoneurolinguists and a statistician. Although being taught by the same speech-language therapist (SLT), treatment group along with TD groups were taught a full-time speaking course with sociolinguistic themes covering both phonetic and phonological properties. The course lasted for a whole semester whereby smart speaking aids have become dominant while apraxic control group and its TD group were not. Compared with apraxic control group and its TD subgroup, results show obvious changes in speaking behavioral mechanism of the DCD experimental group and its TD subgroup. Improvement could be taken from the scores where the zero marks disappeared in the fourth week (end of the first month of treatment). Good marks (5 +/10) were seen starting from the eighth week and culminating with full marks in the week number 15 of treatment where some participants scored full mark. This study concludes to support the primacy of the smart educational technology for speaking purposes and also shows that such aids can expand the range of academic performance differential categories. Further research is required to evaluate the current demonizing of smart educational aids and weighting more reasonably the relationship specificity that speaking aids can offer to other language skills, as well as their limitations.

Keywords: smart educational technology, speaking aids, pupils with SCD, apraxia

Procedia PDF Downloads 50
4011 Analyses of Defects in Flexible Silicon Photovoltaic Modules via Thermal Imaging and Electroluminescence

Authors: S. Maleczek, K. Drabczyk, L. Bogdan, A. Iwan

Abstract:

It is known that for industrial applications using solar panel constructed from silicon solar cells require high-efficiency performance. One of the main problems in solar panels is different mechanical and structural defects, causing the decrease of generated power. To analyse defects in solar cells, various techniques are used. However, the thermal imaging is fast and simple method for locating defects. The main goal of this work was to analyze defects in constructed flexible silicon photovoltaic modules via thermal imaging and electroluminescence method. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. Thermal behavior was observed using thermographic camera (VIGOcam v50, VIGO System S.A, Poland) using a DC conventional source. Electroluminescence was observed by Steinbeis Center Photovoltaics (Stuttgart, Germany) equipped with a camera, in which there is a Si-CCD, 16 Mpix detector Kodak KAF-16803type. The camera has a typical spectral response in the range 350 - 1100 nm with a maximum QE of 60 % at 550 nm. In our work commercial silicon solar cells with the size 156 × 156 mm were cut for nine parts (called single solar cells) and used to create photovoltaic modules with the size of 160 × 70 cm (containing about 80 single solar cells). Flexible silicon photovoltaic modules on polyamides or polyester fabric were constructed and investigated taking into consideration anomalies on the surface of modules. Thermal imaging provided evidence of visible voltage-activated conduction. In electro-luminescence images, two regions are noticeable: darker, where solar cell is inactive and brighter corresponding with correctly working photovoltaic cells. The electroluminescence method is non-destructive and gives greater resolution of images thereby allowing a more precise evaluation of microcracks of solar cell after lamination process. Our study showed good correlations between defects observed by thermal imaging and electroluminescence. Finally, we can conclude that the thermographic examination of large scale photovoltaic modules allows us the fast, simple and inexpensive localization of defects at the single solar cells and modules. Moreover, thermographic camera was also useful to detection electrical interconnection between single solar cells.

Keywords: electro-luminescence, flexible devices, silicon solar cells, thermal imaging

Procedia PDF Downloads 316
4010 Filmmaking with a Smartphone and National Cinema of Pakistan

Authors: Ahmad Bilal

Abstract:

Digital and convergent media can be helpful in terms of acquiring film production skills and knowledge, and it has also reduced the cost of production. Thus, allowing filmmakers greater opportunities and access to the medium of film. Both these dimensions of new and convergent media have been challenging the established cinema of Pakistan, as traditionally, it has been controlled by the authorities through censorship policies. The use of the smartphone as a movie camera, editing machine, and a transmitter can further challenge the control in a postcolonial society. To explore the impact of new and convergent media on the art of filmmaking, a film 'Sohni Dharti: An untrue story' is produced. It is shot both on a smartphone and a Digital Single Lens Reflex Camera (DSLR), with almost zero budgets. It is distributed through Vimeo from Pakistan. This process reveals how the technologies that are available today, and the increased knowledge of film production that they bring, allow a more inclusive experience of the film production and distribution. At the same time, however, it also discloses the limitations that accompany new technologies within the context of a postcolonial society. This paper will investigate the role of technology to bring filmmaking at a level of pencil and paper.

Keywords: convergent media, filmmaking, smartphone, Pakistan

Procedia PDF Downloads 280
4009 Performance Analysis of Wireless Sensor Networks in Areas for Sports Activities and Environmental Preservation

Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Ítalo de Pontes Oliveira

Abstract:

This paper presents a analysis of performance the Received Strength Signal Indicator (RSSI) to Wireless Sensor Networks, with a finality of investigate a behavior of ZigBee devices operating into real environments. The test of performance was realize using two Series 1 ZigBee Module and two modules of development Arduino Uno R3, evaluating in this form a measurements of RSSI into environments like places of sports, preservation forests and water reservoir.

Keywords: wireless sensor networks, RSSI, Arduino, environments

Procedia PDF Downloads 619
4008 Estimating Gait Parameter from Digital RGB Camera Using Real Time AlphaPose Learning Architecture

Authors: Murad Almadani, Khalil Abu-Hantash, Xinyu Wang, Herbert Jelinek, Kinda Khalaf

Abstract:

Gait analysis is used by healthcare professionals as a tool to gain a better understanding of the movement impairment and track progress. In most circumstances, monitoring patients in their real-life environments with low-cost equipment such as cameras and wearable sensors is more important. Inertial sensors, on the other hand, cannot provide enough information on angular dynamics. This research offers a method for tracking 2D joint coordinates using cutting-edge vision algorithms and a single RGB camera. We provide an end-to-end comprehensive deep learning pipeline for marker-less gait parameter estimation, which, to our knowledge, has never been done before. To make our pipeline function in real-time for real-world applications, we leverage the AlphaPose human posture prediction model and a deep learning transformer. We tested our approach on the well-known GPJATK dataset, which produces promising results.

Keywords: gait analysis, human pose estimation, deep learning, real time gait estimation, AlphaPose, transformer

Procedia PDF Downloads 118
4007 Colour Quick Response Code with High Damage Resistance Capability

Authors: Minh Nguyen

Abstract:

Today, QR or Quick Response Codes are prevalent, and mobile/smart devices can efficiently read and understand them. Therefore, we can see their appearance in many areas, such as storing web pages/websites, business phone numbers, redirecting to an app download, business location, social media. The popularity of the QR Code is mainly because of its many advantages, such as it can hold a good amount of information, is small, easy to scan and read by a general RGB camera, and it can still work with some damages on its surface. However, there are still some issues. For instance, some areas needed to be kept untouched for its successful decode (e.g., the “Finder Patterns,” the “Quiet Zone,” etc.), the capability of built-in auto-correction is not robust enough, and it is not flexible enough for many application such as Augment Reality (AR). We proposed a new Colour Quick Response Code that has several advantages over the original ones: (1) there is no untouchable area, (2) it allows up to 40% of the entire code area to be damaged, (3) it is more beneficial for Augmented Reality applications, and (4) it is back-compatible and readable by available QR Code scanners such as Pyzbar. From our experience, our Colour Quick Response Code is significantly more flexible on damage compared to the original QR Code. Our code is believed to be suitable in situations where standard 2D Barcodes fail to work, such as curved and shiny surfaces, for instance, medical blood test sample tubes and syringes.

Keywords: QR code, computer vision, image processing, 2D barcode

Procedia PDF Downloads 118
4006 Case for Simulating Consumer Response to Feed in Tariff Based on Socio-Economic Parameters

Authors: Fahad Javed, Tasneem Akhter, Maria Zafar, Adnan Shafique

Abstract:

Evaluation and quantification of techniques is critical element of research and development of technology. Simulations and models play an important role in providing the tools for such assessments. When we look at technologies which impact or is dependent on an average Joe consumer then modeling the socio-economic and psychological aspects of the consumer also gain an importance. For feed in tariff for home consumers which is being deployed for average consumer may force many consumers to be adapters of the technology. Understanding how consumers will adapt this technologies thus hold as much significance as evaluating how the techniques would work in consumer agnostic scenarios. In this paper we first build the case for simulators which accommodate socio-economic realities of the consumers to evaluate smart grid technologies, provide a glossary of data that can aid in this effort and present an abstract model to capture and simulate consumers' adaptation and behavioral response to smart grid technologies. We provide a case study to express the power of such simulators.

Keywords: smart grids, simulation, socio-economic parameters, feed in tariff (FiT), forecasting

Procedia PDF Downloads 358