Search results for: simulation model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18939

Search results for: simulation model

18429 Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction

Authors: Nitin Dewangan, Nitin Kattula, Megha Anawat

Abstract:

Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine.

Keywords: reservoir, turbulence model, transient model, level set, free-surface flow, moving frame of reference

Procedia PDF Downloads 131
18428 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids

Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo

Abstract:

Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.

Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium

Procedia PDF Downloads 161
18427 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 274
18426 Parallel Operated Rotary Frequency Converters within a Ship Micro-Grid System

Authors: Hamdy Ahmed Ashour

Abstract:

This paper studies the parallel operation of rotary frequency converters which can be used within a ship micro-grid system and also to supply ships and equipment in a harbour during off-sail and maintenance periods with their suitable voltage and frequency requirements in order to overcome the possible associated problems of overloading on a single converter. The paper theoretically and experimentally investigated the operation of 3-ph induction motor / 3-ph synchronous generator based rotary converters set. Concept of operation and merits of such converters has been discussed. Overall dynamic simulation model of two parallel operated rotary converters has been developed. Active and reactive load sharing of the two converters has been analyzed. Experimental setup has been implemented for proof of concept and practical validation. Simulation and experimental results have been obtained and well correlated; showing how the rotary converters based setup can be manipulated to achieve different requirements of operating conditions.

Keywords: experimental, frequency-converters, load-sharing, marine-applications, simulation, synchronization

Procedia PDF Downloads 428
18425 Time Lag Analysis for Readiness Potential by a Firing Pattern Controller Model of a Motor Nerve System Considered Innervation and Jitter

Authors: Yuko Ishiwaka, Tomohiro Yoshida, Tadateru Itoh

Abstract:

Human makes preparation called readiness potential unconsciously (RP) before awareness of their own decision. For example, when recognizing a button and pressing the button, the RP peaks are observed 200 ms before the initiation of the movement. It has been known that the preparatory movements are acquired before actual movements, but it has not been still well understood how humans can obtain the RP during their growth. On the proposition of why the brain must respond earlier, we assume that humans have to adopt the dangerous environment to survive and then obtain the behavior to cover the various time lags distributed in the body. Without RP, humans cannot take action quickly to avoid dangerous situations. In taking action, the brain makes decisions, and signals are transmitted through the Spinal Cord to the muscles to the body moves according to the laws of physics. Our research focuses on the time lag of the neuron signal transmitting from a brain to muscle via a spinal cord. This time lag is one of the essential factors for readiness potential. We propose a firing pattern controller model of a motor nerve system considered innervation and jitter, which produces time lag. In our simulation, we adopt innervation and jitter in our proposed muscle-skeleton model, because these two factors can create infinitesimal time lag. Q10 Hodgkin Huxley model to calculate action potentials is also adopted because the refractory period produces a more significant time lag for continuous firing. Keeping constant power of muscle requires cooperation firing of motor neurons because a refractory period stifles the continuous firing of a neuron. One more factor in producing time lag is slow or fast-twitch. The Expanded Hill Type model is adopted to calculate power and time lag. We will simulate our model of muscle skeleton model by controlling the firing pattern and discuss the relationship between the time lag of physics and neurons. For our discussion, we analyze the time lag with our simulation for knee bending. The law of inertia caused the most influential time lag. The next most crucial time lag was the time to generate the action potential induced by innervation and jitter. In our simulation, the time lag at the beginning of the knee movement is 202ms to 203.5ms. It means that readiness potential should be prepared more than 200ms before decision making.

Keywords: firing patterns, innervation, jitter, motor nerve system, readiness potential

Procedia PDF Downloads 804
18424 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.

Keywords: nanosecond, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 55
18423 Assessing Denitrification-Disintegration Model’s Efficacy in Simulating Greenhouse Gas Emissions, Crop Growth, Yield, and Soil Biochemical Processes in Moroccan Context

Authors: Mohamed Boullouz, Mohamed Louay Metougui

Abstract:

Accurate modeling of greenhouse gas (GHG) emissions, crop growth, soil productivity, and biochemical processes is crucial considering escalating global concerns about climate change and the urgent need to improve agricultural sustainability. The application of the denitrification-disintegration (DNDC) model in the context of Morocco's unique agro-climate is thoroughly investigated in this study. Our main research hypothesis is that the DNDC model offers an effective and powerful tool for precisely simulating a wide range of significant parameters, including greenhouse gas emissions, crop growth, yield potential, and complex soil biogeochemical processes, all consistent with the intricate features of environmental Moroccan agriculture. In order to verify these hypotheses, a vast amount of field data covering Morocco's various agricultural regions and encompassing a range of soil types, climatic factors, and crop varieties had to be gathered. These experimental data sets will serve as the foundation for careful model calibration and subsequent validation, ensuring the accuracy of simulation results. In conclusion, the prospective research findings add to the global conversation on climate-resilient agricultural practices while encouraging the promotion of sustainable agricultural models in Morocco. A policy architect's and an agricultural actor's ability to make informed decisions that not only advance food security but also environmental stability may be strengthened by the impending recognition of the DNDC model as a potent simulation tool tailored to Moroccan conditions.

Keywords: greenhouse gas emissions, DNDC model, sustainable agriculture, Moroccan cropping systems

Procedia PDF Downloads 44
18422 Modelling and Simulation of Photovoltaic Cell

Authors: Fouad Berrabeh, Sabir Messalti

Abstract:

The performances of the photovoltaic systems are very dependent on different conditions, such as solar irradiation, temperature, etc. Therefore, it is very important to provide detailed studies for different cases in order to provide continuously power, so the photovoltaic system must be properly sized. This paper presents the modelling and simulation of the photovoltaic cell using single diode model. I-V characteristics and P-V characteristics are presented and it verified at different conditions (irradiance effect, temperature effect, series resistance effect).

Keywords: photovoltaic cell, BP SX 150 BP solar photovoltaic module, irradiance effect, temperature effect, series resistance effect, I–V characteristics, P–V characteristics

Procedia PDF Downloads 456
18421 Impact Characteristics of Fragile Cover Based on Numerical Simulation and Experimental Verification

Authors: Dejin Chen, Bin Lin, Xiaohui LI, Haobin Tian

Abstract:

In order to acquire stable impact performance of cover, the factors influencing the impact force of the cover were analyzed and researched. The influence of impact factors such as impact velocity, impact weight and fillet radius of warhead was studied by Orthogonal experiment. Through the range analysis and numerical simulation, the results show that the impact velocity has significant influences on impact force of cover. The impact force decreases with the increase of impact velocity and impact weight. The test results are similar to the numerical simulation. The cover broke up into four parts along the groove.

Keywords: fragile cover, numerical simulation, impact force, epoxy foam

Procedia PDF Downloads 240
18420 The Influence of Beta Shape Parameters in Project Planning

Authors: Αlexios Kotsakis, Stefanos Katsavounis, Dimitra Alexiou

Abstract:

Networks can be utilized to represent project planning problems, using nodes for activities and arcs to indicate precedence relationship between them. For fixed activity duration, a simple algorithm calculates the amount of time required to complete a project, followed by the activities that comprise the critical path. Program Evaluation and Review Technique (PERT) generalizes the above model by incorporating uncertainty, allowing activity durations to be random variables, producing nevertheless a relatively crude solution in planning problems. In this paper, based on the findings of the relevant literature, which strongly suggests that a Beta distribution can be employed to model earthmoving activities, we utilize Monte Carlo simulation, to estimate the project completion time distribution and measure the influence of skewness, an element inherent in activities of modern technical projects. We also extract the activity criticality index, with an ultimate goal to produce more accurate planning estimations.

Keywords: beta distribution, PERT, Monte Carlo simulation, skewness, project completion time distribution

Procedia PDF Downloads 126
18419 Optimization Model for Support Decision for Maximizing Production of Mixed Fresh Fruit Farms

Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal

Abstract:

Planning models for fresh products is a very useful tool for improving the net profits. To get an efficient supply chain model, several functions should be considered to get a complete simulation of several operational units. We consider a linear programming model to help farmers to decide if it is convenient to choose what area should be planted for three kinds of export fruits considering their future investment. We consider area, investment, water, productivity minimal unit, and harvest restrictions to develop a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability, and initial investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market. Also, this tool help to support decisions for government and individual farmers.

Keywords: mixed integer problem, fresh fruit production, support decision model, agricultural and biosystems engineering

Procedia PDF Downloads 415
18418 Improving Trainings of Mineral Processing Operators Through Gamification and Modelling and Simulation

Authors: Pedro A. S. Bergamo, Emilia S. Streng, Jan Rosenkranz, Yousef Ghorbani

Abstract:

Within the often-hazardous mineral industry, simulation training has speedily gained appreciation as an important method of increasing site safety and productivity through enhanced operator skill and knowledge. Performance calculations related to froth flotation, one of the most important concentration methods, is probably the hardest topic taught during the training of plant operators. Currently, most training teach those skills by traditional methods like slide presentations and hand-written exercises with a heavy focus on memorization. To optimize certain aspects of these pieces of training, we developed “MinFloat”, which teaches the operation formulas of the froth flotation process with the help of gamification. The simulation core based on a first-principles flotation model was implemented in Unity3D and an instructor tutoring system was developed, which presents didactic content and reviews the selected answers. The game was tested by 25 professionals with extensive experience in the mining industry based on a questionnaire formulated for training evaluations. According to their feedback, the game scored well in terms of quality, didactic efficacy and inspiring character. The feedback of the testers on the main target audience and the outlook of the mentioned solution is presented. This paper aims to provide technical background on the construction of educational games for the mining industry besides showing how feedback from experts can more efficiently be gathered thanks to new technologies such as online forms.

Keywords: training evaluation, simulation based training, modelling, and simulation, froth flotation

Procedia PDF Downloads 96
18417 On the Application and Comparison of Two Geostatistics Methods in the Parameterisation Step to Calibrate Groundwater Model: Grid-Based Pilot Point and Head-Zonation Based Pilot Point Methods

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Properly selecting the most suitable and effective geostatistics method in the parameterization step of groundwater modeling is critical to attain a satisfactory model. In this paper, two geostatistics methods, i.e., Grid-Based Pilot Point (GB-PP) and Head-Zonation Based Pilot Point (HZB-PP) methods, were applied in an eogenetic karst catchment and compared using as model performances and computation time the criteria. Overall, the results show that appropriate selection of method is substantial in the parameterization of physically-based groundwater models, as it influences both the accuracy and simulation times. It was found that GB-PP method performed comparably superior to HZB-PP method. However, reflecting its model performances, HZB-PP method is promising for further application in groundwater modeling.

Keywords: groundwater model, geostatistics, pilot point, parameterization step

Procedia PDF Downloads 145
18416 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation

Procedia PDF Downloads 63
18415 Equivalent Electrical Model of a Shielded Pulse Planar Transformer in Isolated Gate Drivers for SiC MOSFETs

Authors: Loreine Makki, Marc Anthony Mannah, Christophe Batard, Nicolas Ginot, Julien Weckbrodt

Abstract:

Planar transformers are extensively utilized in high-frequency, high power density power electronic converters. The breakthrough of wide-bandgap technology compelled power electronic system miniaturization while inducing pivotal effects on system modeling and manufacturing within the power electronics industry. A significant consideration to simulate and model the unanticipated parasitic parameters emerges with the requirement to mitigate electromagnetic disturbances. This paper will present an equivalent circuit model of a shielded pulse planar transformer quantifying leakage inductance and resistance in addition to the interwinding capacitance of the primary and secondary windings. ANSYS Q3D Extractor was utilized to model and simulate the transformer, intending to study the immunity of the simulated equivalent model to high dv/dt occurrences. A convenient correlation between simulation and experimental results is presented.

Keywords: Planar transformers, wide-band gap, equivalent circuit model, shielded, ANSYS Q3D Extractor, dv/dt

Procedia PDF Downloads 186
18414 Adaptive Control of Magnetorheological Damper Using Duffing-Like Model

Authors: Hung-Jiun Chi, Cheng-En Tsai, Jia-Ying Tu

Abstract:

Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques.

Keywords: magnetorheological damper, duffing equation, model-reference adaptive control, Lyapunov function, hysteresis

Procedia PDF Downloads 345
18413 The Fit of the Partial Pair Distribution Functions of BaMnFeF7 Fluoride Glass Using the Buckingham Potential by the Hybrid RMC Simulation

Authors: Sidi Mohamed Mesli, Mohamed Habchi, Arslane Boudghene Stambouli, Rafik Benallal

Abstract:

The BaMnMF7 (M=Fe,V, transition metal fluoride glass, assuming isomorphous replacement) have been structurally studied through the simultaneous simulation of their neutron diffraction patterns by reverse Monte Carlo (RMC) and by the Hybrid Reverse Monte Carlo (HRMC) analysis. This last is applied to remedy the problem of the artificial satellite peaks that appear in the partial pair distribution functions (PDFs) by the RMC simulation. The HRMC simulation is an extension of the RMC algorithm, which introduces an energy penalty term (potential) in acceptance criteria. The idea of this work is to apply the Buckingham potential at the title glass by ignoring the van der Waals terms, in order to make a fit of the partial pair distribution functions and give the most possible realistic features. When displaying the partial PDFs, we suggest that the Buckingham potential is useful to describe average correlations especially in similar interactions.

Keywords: fluoride glasses, RMC simulation, hybrid RMC simulation, Buckingham potential, partial pair distribution functions

Procedia PDF Downloads 480
18412 Analysis of Sweat Evaporation and Heat Transfer on Skin Surface: A Pointwise Numerical Study

Authors: Utsav Swarnkar, Rabi Pathak, Rina Maiti

Abstract:

This study aims to investigate the thermoregulatory role of sweating by comprehensively analyzing the evaporation process and its thermal cooling impact on local skin temperature at various time intervals. Traditional experimental methods struggle to fully capture these intricate phenomena. Therefore, numerical simulations play a crucial role in assessing sweat production rates and associated thermal cooling. This research utilizes transient computational fluid dynamics (CFD) to enhance our understanding of the evaporative cooling process on human skin. We conducted a simulation employing the k-w SST turbulence model. This simulation includes a scenario where sweat evaporation occurs over the skin surface, and at particular time intervals, temperatures at different locations have been observed and its effect explained. During this study, sweat evaporation was monitored on the skin surface following the commencement of the simulation. Subsequent to the simulation, various observations were made regarding temperature fluctuations at specific points over time intervals. It was noted that points situated closer to the periphery of the droplets exhibited higher levels of heat transfer and lower temperatures, whereas points within the droplets displayed contrasting trends.

Keywords: CFD, sweat, evaporation, multiphase flow, local heat loss

Procedia PDF Downloads 38
18411 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs

Authors: Amir Ahmad Dehghani, Morteza Nabizadeh

Abstract:

This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.

Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam

Procedia PDF Downloads 456
18410 Multi-Stage Optimization of Local Environmental Quality by Comprehensive Computer Simulated Person as Sensor for Air Conditioning Control

Authors: Sung-Jun Yoo, Kazuhide Ito

Abstract:

In this study, a comprehensive computer simulated person (CSP) that integrates computational human model (virtual manikin) and respiratory tract model (virtual airway), was applied for estimation of indoor environmental quality. Moreover, an inclusive prediction method was established by integrating computational fluid dynamics (CFD) analysis with advanced CSP which is combined with physiologically-based pharmacokinetic (PBPK) model, unsteady thermoregulation model for analysis targeting micro-climate around human body and respiratory area with high accuracy. This comprehensive method can estimate not only the contaminant inhalation but also constant interaction in the contaminant transfer between indoor spaces, i.e., a target area for indoor air quality (IAQ) assessment, and respiratory zone for health risk assessment. This study focused on the usage of the CSP as an air/thermal quality sensor in indoors, which means the application of comprehensive model for assessment of IAQ and thermal environmental quality. Demonstrative analysis was performed in order to examine the applicability of the comprehensive model to the heating, ventilation, air conditioning (HVAC) control scheme. CSP was located at the center of the simple model room which has dimension of 3m×3m×3m. Formaldehyde which is generated from floor material was assumed as a target contaminant, and flow field, sensible/latent heat and contaminant transfer analysis in indoor space were conducted by using CFD simulation coupled with CSP. In this analysis, thermal comfort was evaluated by thermoregulatory analysis, and respiratory exposure risks represented by adsorption flux/concentration at airway wall surface were estimated by PBPK-CFD hybrid analysis. These Analysis results concerning IAQ and thermal comfort will be fed back to the HVAC control and could be used to find a suitable ventilation rate and energy requirement for air conditioning system.

Keywords: CFD simulation, computer simulated person, HVAC control, indoor environmental quality

Procedia PDF Downloads 339
18409 Methodology of Construction Equipment Optimization for Earthwork

Authors: Jaehyun Choi, Hyunjung Kim, Namho Kim

Abstract:

Earthwork is one of the critical civil construction operations that require large-quantities of resources due to its intensive dependency upon construction equipment. Therefore, efficient construction equipment management can highly contribute to productivity improvements and cost savings. Earthwork operation utilizes various combinations of construction equipment in order to meet project requirements such as time and cost. Identification of site condition and construction methods should be performed in advance in order to develop a proper execution plan. The factors to be considered include capacity of equipment assigned, the method of construction, the size of the site, and the surrounding condition. In addition, optimal combination of various construction equipment should be selected. However, in real world practice, equipment utilization plan is performed based on experience and intuition of management. The researchers evaluated the efficiency of various alternatives of construction equipment combinations by utilizing the process simulation model, validated the model from a case study project, and presented a methodology to find optimized plan among alternatives.

Keywords: earthwork operation, construction equipment, process simulation, optimization

Procedia PDF Downloads 404
18408 Application of the Concept of Comonotonicity in Option Pricing

Authors: A. Chateauneuf, M. Mostoufi, D. Vyncke

Abstract:

Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems. A drawback of the method is its high computational cost, especially in a high-dimensional setting, such as estimating the Tail Value-at-Risk for large portfolios or pricing basket options and Asian options. For these types of problems, one can construct an upper bound in the convex order by replacing the copula by the comonotonic copula. This comonotonic upper bound can be computed very quickly, but it gives only a rough approximation. In this paper we introduce the Comonotonic Monte Carlo (CoMC) simulation, by using the comonotonic approximation as a control variate. The CoMC is of broad applicability and numerical results show a remarkable speed improvement. We illustrate the method for estimating Tail Value-at-Risk and pricing basket options and Asian options when the logreturns follow a Black-Scholes model or a variance gamma model.

Keywords: control variate Monte Carlo, comonotonicity, option pricing, scientific computing

Procedia PDF Downloads 489
18407 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel

Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid

Abstract:

This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.

Keywords: earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity

Procedia PDF Downloads 163
18406 A Simulation Model and Parametric Study of Triple-Effect Desalination Plant

Authors: Maha BenHamad, Ali Snoussi, Ammar Ben Brahim

Abstract:

A steady-state analysis of triple-effect thermal vapor compressor desalination unit was performed. A mathematical model based on mass, salinity and energy balances is developed. The purpose of this paper is to develop a connection between process simulator and process optimizer in order to study the influence of several operating variables on the performance and the produced water cost of the unit. A MATLAB program is used to solve the model equations, and Aspen HYSYS is used to model the plant. The model validity is examined against a commercial plant and showed a good agreement between industrial data and simulations results. Results show that the pressures of the last effect and the compressed vapor have an important influence on the produced cost, and the increase of the difference temperature in the condenser decreases the specific heat area about 22%.

Keywords: steady-state, triple effect, thermal vapor compressor, Matlab, Aspen Hysys

Procedia PDF Downloads 153
18405 Development of a Mathematical Model to Characterize the Oil Production in the Federal Republic of Nigeria Environment

Authors: Paul C. Njoku, Archana Swati Njoku

Abstract:

The study deals with the development of a mathematical model to characterize the oil production in Nigeria. This is calculated by initiating the dynamics of oil production in million barrels revenue plan cost of oil production in million nairas and unit cost of production from 1974-1982 in the contest of the federal Republic of Nigeria. This country export oil to other countries as well as importing specialized crude. The transport network from origin/destination tij to pairs is taking into account simulation runs, optimization have been considered in this study.

Keywords: mathematical oil model development dynamics, Nigeria, characterization barrels, dynamics of oil production

Procedia PDF Downloads 364
18404 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies

Authors: Yuanjin Liu

Abstract:

Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.

Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model

Procedia PDF Downloads 49
18403 Numerical Simulation of the Bond Behavior Between Concrete and Steel Reinforcing Bars in Specialty Concrete

Authors: Camille A. Issa, Omar Masri

Abstract:

In the study, the commercial finite element software Abaqus was used to develop a three-dimensional nonlinear finite element model capable of simulating the pull-out test of reinforcing bars from underwater concrete. The results of thirty-two pull-out tests that have different parameters were implemented in the software to study the effect of the concrete cover, the bar size, the use of stirrups, and the compressive strength of concrete. The interaction properties used in the model provided accurate results in comparison with the experimental bond-slip results, thus the model has successfully simulated the pull-out test. The results of the finite element model are used to better understand and visualize the distribution of stresses in each component of the model, and to study the effect of the various parameters used in this study including the role of the stirrups in preventing the stress from reaching to the sides of the specimens.

Keywords: pull-out test, bond strength, underwater concrete, nonlinear finite element analysis, abaqus

Procedia PDF Downloads 416
18402 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model

Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo

Abstract:

In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.

Keywords: climatic change, artificial neural networks, dorado fish, CPUE

Procedia PDF Downloads 221
18401 Enhancing Security and Privacy Protocols in Telehealth: A Comprehensive Approach across IoT/Fog/Cloud Environments

Authors: Yunyong Guo, Man Wang, Bryan Guo, Nathan Guo

Abstract:

This paper introduces an advanced security and privacy model tailored for Telehealth systems, emphasizing end-to-end protection across IoT, Fog, and Cloud components. The proposed model integrates encryption, key management, intrusion detection, and privacy-preserving measures to safeguard patient data. A comprehensive simulation study evaluates the model's effectiveness in scenarios such as unauthorized access, physical breaches, and insider threats. Results indicate notable success in detecting and mitigating threats yet underscore areas for refinement. The study contributes insights into the intricate balance between security and usability in Telehealth environments, setting the stage for continued advancements.

Keywords: cloud, enhancing security, fog, IoT, telehealth

Procedia PDF Downloads 41
18400 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard

Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni

Abstract:

The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.

Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model

Procedia PDF Downloads 126