Search results for: research data sharing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 41042

Search results for: research data sharing

40532 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 179
40531 Strategies to Improve Coastal and Marine Tourism Sustainability in Gqeberha, South Africa

Authors: Mihlali Mbangeni, Lynn C. Jonas, Rosemary Matikiti-Manyevere

Abstract:

Coastal and marine tourism is considered among the most rapidly developing subsectors of tourism. That has enabled coastal and marine environments to gain popularity and economically contribute to coastal regions globally. However, in coastal regions of developing cities such as Gqeberha, South Africa, pollution, specifically plastics and waste from ships, are among the prominent challenges in these areas. Thus, there is a need for the management and planning of sustainability in coastal and marine tourism. As a result, the study evaluates the effectiveness of the current sustainability strategies and highlights the barriers and challenges faced by the coastal region. This study made use of the interpretivist paradigm following a qualitative research approach when collecting data. This was done by conducting semi-structured interviews with local government officials, coastal and marine tourism business top managers, as well as ocean economy-related non-profit organization operators through a purposive sampling method. The study employed content analysis to analyse the interview transcripts using a computer-aided qualitative data analysis software that is Atlas.ti. The research findings present current coastal and marine tourism strategies used, such as local government having quarterly meetings with the private sector promoting collaboration between the two entities. A further measure discovered was non-profit organisations conducting educational talks, workshops, and visiting schools to educate pupils within the coastal region about pollution and sustainability. Current challenges experienced in the implementation of sustainability practices include a lack of awareness, low visibility of the local government in promoting sustainability within the regions, and poor participation of the local community in activities such as beach clean-ups. Recommendations for strategies are to equip decision-makers with knowledge and skills to make informed decisions that are inclusive. Furthermore, local community participation should be encouraged through providing incentives. Local government may also be encouraged to allocate adequate resources to assist non-profit organisations’ efforts towards sustainability. A further recommendation would be for coastal and marine tourism businesses to encourage them to create partnerships as well as collaborate with each other instead of competing in their sustainability efforts. The sharing of information about the sustainability of coastal and marine tourism between non-profit organisations, coastal and marine tourism businesses, local government as well as academia through research publications and ensured implementation, as well as evaluation, can contribute towards the sustainability of Gqeberha’s coastal and marine tourism products.

Keywords: coastal and marine tourism threats, coastal and marine tourism trends, strategies for coastal and marine tourism sustainability, sustainability

Procedia PDF Downloads 23
40530 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 64
40529 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 63
40528 The Effect of Data Integration to the Smart City

Authors: Richard Byrne, Emma Mulliner

Abstract:

Smart cities are a vision for the future that is increasingly becoming a reality. While a key concept of the smart city is the ability to capture, communicate, and process data that has long been produced through day-to-day activities of the city, much of the assessment models in place neglect this fact to focus on ‘smartness’ concepts. Although it is true technology often provides the opportunity to capture and communicate data in more effective ways, there are also human processes involved that are just as important. The growing importance with regards to the use and ownership of data in society can be seen by all with companies such as Facebook and Google increasingly coming under the microscope, however, why is the same scrutiny not applied to cities? The research area is therefore of great importance to the future of our cities here and now, while the findings will be of just as great importance to our children in the future. This research aims to understand the influence data is having on organisations operating throughout the smart cities sector and employs a mixed-method research approach in order to best answer the following question: Would a data-based evaluation model for smart cities be more appropriate than a smart-based model in assessing the development of the smart city? A fully comprehensive literature review concluded that there was a requirement for a data-driven assessment model for smart cities. This was followed by a documentary analysis to understand the root source of data integration to the smart city. A content analysis of city data platforms enquired as to the alternative approaches employed by cities throughout the UK and draws on best practice from New York to compare and contrast. Grounded in theory, the research findings to this point formulated a qualitative analysis framework comprised of: the changing environment influenced by data, the value of data in the smart city, the data ecosystem of the smart city and organisational response to the data orientated environment. The framework was applied to analyse primary data collected through the form of interviews with both public and private organisations operating throughout the smart cities sector. The work to date represents the first stage of data collection that will be built upon by a quantitative research investigation into the feasibility of data network effects in the smart city. An analysis into the benefits of data interoperability supporting services to the smart city in the areas of health and transport will conclude the research to achieve the aim of inductively forming a framework that can be applied to future smart city policy. To conclude, the research recognises the influence of technological perspectives in the development of smart cities to date and highlights this as a challenge to introduce theory applied with a planning dimension. The primary researcher has utilised their experience working in the public sector throughout the investigation to reflect upon what is perceived as a gap in practice of where we are today, to where we need to be tomorrow.

Keywords: data, planning, policy development, smart cities

Procedia PDF Downloads 310
40527 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method

Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens

Abstract:

Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.

Keywords: healthcare, knowledge acquisition, maximal data sets, action design science

Procedia PDF Downloads 358
40526 Improving Digital Data Security Awareness among Teacher Candidates with Digital Storytelling Technique

Authors: Veysel Çelik, Aynur Aker, Ebru Güç

Abstract:

Developments in information and communication technologies have increased both the speed of producing information and the speed of accessing new information. Accordingly, the daily lives of individuals have started to change. New concepts such as e-mail, e-government, e-school, e-signature have emerged. For this reason, prospective teachers who will be future teachers or school administrators are expected to have a high awareness of digital data security. The aim of this study is to reveal the effect of the digital storytelling technique on the data security awareness of pre-service teachers of computer and instructional technology education departments. For this purpose, participants were selected based on the principle of volunteering among third-grade students studying at the Computer and Instructional Technologies Department of the Faculty of Education at Siirt University. In the research, the pretest/posttest half experimental research model, one of the experimental research models, was used. In this framework, a 6-week lesson plan on digital data security awareness was prepared in accordance with the digital narration technique. Students in the experimental group formed groups of 3-6 people among themselves. The groups were asked to prepare short videos or animations for digital data security awareness. The completed videos were watched and evaluated together with prospective teachers during the evaluation process, which lasted approximately 2 hours. In the research, both quantitative and qualitative data collection tools were used by using the digital data security awareness scale and the semi-structured interview form consisting of open-ended questions developed by the researchers. According to the data obtained, it was seen that the digital storytelling technique was effective in creating data security awareness and creating permanent behavior changes for computer and instructional technology students.

Keywords: digital storytelling, self-regulation, digital data security, teacher candidates, self-efficacy

Procedia PDF Downloads 126
40525 Obstetric Violence Consequences And Coping Strategies: Insights Through The Voices Of Arab And Jewish Women In Israel

Authors: Dganit Sharon, Raghda Alnabilsy

Abstract:

The goal of this qualitative research was to sound the voices of Jewish and Arab women in Israel who had experienced obstetric violence, to learn the consequences of the violence to them on different levels and over time, and to present their coping strategies from their perspective. Another goal was to expand the research knowledge on an issue that has not been studied among Arab and Jewish women in Israel. The premise of this study is the feminist approach that aims to promote human rights, and to eradicate phenomena related to cultural, structural, gender and patriarchal structures of women, their bodies, and their health. The research was based on the qualitative-constructivist methodology, by means of thematic analysis of 20 in-depth semi-structured interviews. Two main themes emerged from the analysis. First, the physical and emotional consequences of obstetric violence, consequences to spousal relationships, and mistrust of the health system and service providers. Second, women’s coping strategies with obstetric violence that included repression and avoidance as a way of coping with the pain and trauma of the abuse; garnering inner strengths, resilience, knowledge and awareness of the delivery process; recruiting and relying on external help; sharing on social media, and discussions with other women who had similar experiences; or reaching out to therapists / legal aid / public complaints.

Keywords: obstetric violence, Jewish and arab women in israel, consequences, coping strategies, gender-related perspective

Procedia PDF Downloads 69
40524 Effect of Combining Return Policy and Early Order Commitment on Supply Chain Performance

Authors: Hamed Homaei, Seyed Reza Hejazi, Iraj Mahdavi

Abstract:

Return policy (RP) is a strategy for supply chain coordination, whereby the retailer returns the unsold products to the manufacturer or the manufacturer offers a credit on unsold products to the retailer at the end of selling season. Early order commitment (EOC) is another efficient mechanism for channel coordination wherein the retailer commits to purchasing from the manufacturer a fixed order quantity a few periods in advance of the regular delivery lead time. This paper studies the coordination issue of a two-level supply chain with one retailer and one manufacturer through combining two mentioned contracts. The main purpose of this paper is to present an analytical model to show that how the contract which is created by combining RP and EOC can improve supply chain performance. Numerical analyses show that the supply chain coordination through mentioned contract in compare with EOC mechanism, can improve supply chain performance under certain ranges of model parameters. Furthermore, some numerical analyses are done to determine the best buyback price in order to achieve maximum cost saving in the supply chain. Finally, a revenue sharing scheme is presented in order to achieve a win-win condition in the supply chain.

Keywords: supply chain coordination, early order commitment, return policy, revenue sharing

Procedia PDF Downloads 294
40523 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 64
40522 Assessing the Self-Directed Learning Skills of the Undergraduate Nursing Students in a Medical University in Bahrain: A Quantitative Study

Authors: Catherine Mary Abou-Zaid

Abstract:

This quantitative study discusses the concerns with the self-directed learning (SDL) skills of the undergraduate nursing students in a medical university in Bahrain. The nursing undergraduate student SDL study was conducted taking all 4 years and compiling data collected from the students themselves by survey questionnaire. The aim of the study is to understand and change the attitudes of self-directed learning among the undergraduate students. The SDL of the undergraduate student nurses has been noticed to be lacking and motivation to actually perform without supervision while out-with classrooms are very low. Their use of the resources available on the virtual learning environment and also within the university is not as good as it should be for a university student at this level. They do not use them to their own advantage. They are not prepared for the transition from high school to an academic environment such as a university or college. For some students it is the first time in their academic lives that they have faced sharing a classroom with the opposite sex. For some this is a major issue and we as academics need to be aware of all issues that they come to higher education with. Design Methodology: The design methodology that was chosen was a quantitative design using convenience sampling of the students who would be asked to complete survey questionnaire. This sampling method was chosen because of the time constraint. This was completed by the undergraduate students themselves while in class. The questionnaire was analyzed by the statistical package for social sciences (SPSS), the results interpreted by the researcher and the findings published in the paper. The analyzed data will also be reported on and from this information we as educators will be able to see the student’s weaknesses regarding self-directed learning. The aims and objectives of the research will be used as recommendations for the improvement of resources for the students to improve their SDL skills. Conclusion: The results will be able to give the educators an insight to how we can change the self-directed learning techniques of the students and enable them to embrace the skills and to focus more on being self-directed in their studies rather than having to be put on to a SDL pathway from the educators themselves. This evidence will come from the analysis of the statistical data. It may even change the way in which the students are selected for the nursing programme. These recommendations will be reported to the head of school and also to the nursing faculty.

Keywords: self-directed learning, undergraduate students, transition, statistical package for social sciences (SPSS), higher education

Procedia PDF Downloads 315
40521 The Water-Way Route Management for Cultural Tourism Promotion at Angsila District: Challenge and Opportunity

Authors: Teera Intararuang

Abstract:

The purpose of this research is to study on the challenge and opportunity for waterway route management for promoting cultural tourism in Angsila District, Chonburi Province. To accomplish the goals and objectives, qualitative research will be applied. The research instruments used are observation, basic interviews, in-depth interviews, and interview key local performance. The study also uses both primary data and secondary data. From research result, it is revealed that all respondents had appreciated and strongly agree to promote their waterway route tourism as an intend for further increase for their income. However, it has some challenges to success this project due to natural obstacles such as water level, seasons and high temperature. Moreover, they lack financial support from government sectors also.

Keywords: Angsila community, waterway tourism route, cultural tourism, way of life

Procedia PDF Downloads 248
40520 Identifying the Goals of a Multicultural Curriculum for the Primary Education Course

Authors: Fatemeh Havas Beigi

Abstract:

The purpose of this study is to identify the objectives of a multicultural curriculum for the primary education period from the perspective of ethnic teachers and education experts and cultural professionals. The research paradigm is interpretive, the research approach is qualitative, the research strategy is content analysis, the sampling method is purposeful and it is a snowball, and the sample of informants in the research for Iranian ethnic teachers and experts until the theoretical saturation was estimated to be 67 people. The data collection tools used were based on semi-structured interviews and individual interviews and focal interviews were used to collect information. The data format was also in audio format and the first period coding and the second coding were used to analyze the data. Based on data analysis 11 Objective: Paying attention to ethnic equality, expanding educational opportunities and justice, peaceful coexistence, anti-ethnic and racial discrimination education, paying attention to human value and dignity, accepting religious diversity, getting to know ethnicities and cultures, promoting teaching-learning, fostering self-confidence, building national unity, and developing cultural commonalities for a multicultural curriculum were identified.

Keywords: objective, multicultural curriculum, connect, elementary education period

Procedia PDF Downloads 94
40519 Local Pricing Strategy Should Be the Entry Point of Equitable Benefit Sharing and Poverty Reduction in Community Based Forest Management: Some Evidences from Lowland Community Forestry in Nepal

Authors: Dhruba Khatri

Abstract:

Despite the short history of community based forest management, the community forestry program of Nepal has produced substantial positive effects to organize the local people at a local level institution called Community Forest User Group and manage the local forest resources in the line of poverty reduction since its inception in 1970s. Moreover, each CFUG has collected a community fund from the sale of forest products and non-forestry sources as well and the fund has played a vital role to improve the livelihood of user households living in and around the forests. The specific study sites were selected based on the criteria of i) community forests having dominancy of Sal forests, and ii) forests having 3-5 years experience of community forest management. The price rates of forest products fixed by the CFUGs and the distribution records were collected from the respective community forests. Nonetheless, the relation between pricing strategy and community fund collection revealed that the small change in price of forest products could greatly affect in community fund collection and carry out of forest management, community development, and income generation activities in the line of poverty reduction at local level.

Keywords: benefit sharing, community forest, equitable, Nepal

Procedia PDF Downloads 384
40518 Study on the Stages of Knowledge Flow in Central Libraries of Tehran Universities by the Pattern of American Productivity & Quality Center

Authors: Amir Reza Asnafi, Ehsan Tajabadi, Mohsen Hajizeinolabedini

Abstract:

The purpose of this study is to identify the concept of knowledge flow in central libraries of Tehran universities in by the pattern of American Productivity & Quality Center (APQC). The present study is an applied and descriptive survey in terms of its purpose and the methodology used. In this study, APQC framework was used for data collection. The study population is managers and supervisors of central libraries’ departments of public universities of Tehran belonging to the Ministry of Science, Research and Technology. These libraries include: Central Libraries of Al-Zahra University, Amir Kabir, Tarbiat Modarres, Tehran, Khajeh Nasir Toosi University of Technology, Shahed, Sharif, Shahid Beheshti, Allameh Tabataba'i University, Iran University of Science and Technology. Due to the limited number of members of the community, sampling was not performed and the census was conducted instead. The study of knowledge flow in central libraries of public universities in Tehran showed that in seven dimensions of knowledge flow of APQC, these libraries are far from desirable level and to achieve the ideal point, many activities in the field of knowledge flow need to be made, therefore suggestions were made in this study to reach the desired level. One Sample t Test in this research showed that these libraries are at a poor level in terms of these factors: in the dimensions of creation, identification and use of knowledge at a medium level and in the aspects of knowledge acquisition, review, sharing and access and also Manova test or Multivariable Analyze of Variance proved that there was no significant difference between the dimensions of knowledge flow between these libraries and the status of the knowledge flow in these libraries is at the same level as well. Except for the knowledge creation aspect that is slightly different in this regard that was mentioned before.

Keywords: knowledge flow, knowledge management, APQC, Tehran’s academic university libraries

Procedia PDF Downloads 164
40517 The Development of Small and Medium Enterprise Entrepreneurs’ Potential Based on Sufficiency Economics Philosophy

Authors: Luedech Girdwichai, Witthaya Mekhum

Abstract:

This research analyses the factors affecting the success and develops a guideline for self- reliance planning of the entrepreneurs for effective implementation. Samples in this study included 42 awarded winners from the 2nd Sufficiency Economics Philosophy (SEP) National Contest arranged by Office of the Royal Development Projects Board. The results revealed 4 main factors affecting the success as follows: 1) there is a need to encourage unity and cooperation in the enterprise in conducting development plan. 2) The entrepreneur must be a knowledge seeker and lead by example on SEP life. 3) The entrepreneur must be able to apply traditional local wisdom with his present experience and knowledge in defining product identity. 4) The entrepreneur should provide career training for the staffs to develop their competencies. The guideline for self-reliance planning consisted of 4 aspects: 1) Human resource development: the enterprise should develop its staffs especially on integrity, honesty, and public minded. 2) Local community development: there should be a clear target for the local community development. 3) Local community economic development: by encouraging additional incomes through experience sharing. 4) Enterprise development planning: by arranging monthly meeting to conduct the development plan including analysing problems and synthesizing data.

Keywords: potential development, SME entrepreneurs, sufficiency economics philosophy, finance, management

Procedia PDF Downloads 345
40516 Determination of the Factors Affecting Adjustment Levels of First Class Students at Elementary School

Authors: Sibel Yoleri

Abstract:

In this research it is aimed to determine the adjustment of students who attend the first class at elementary school to school in terms of several variables. The study group of the research consists of 286 students (131 female, 155 male) who continue attending the first class of elementary school in 2013-2014 academic year, in the city center of Uşak. In the research, ‘Personal Information Form’ and ‘Walker-Mcconnell Scale of Social Competence and School Adjustment’ have been used as data collection tools. In the analysis of data, the t-test has been applied in the independent groups to determine whether the sampling group students’ scores of school adjustment differ according to the sex variable or not. For the evaluation of data identified as not showing normal distribution, Mann Whitney U test has been applied for paired comparison, Kruskal Wallis H test has been used for multiple comparisons. In the research, all the statistical processes have been evaluated bidirectional and the level of significance has been accepted as .05. According to the results gathered from the research, a meaningful difference could not been identified in the level of students’ adjustment to school in terms of sex variable. At the end of the research, it is identified that the adjustment level of the students who have started school at the age of seven is higher than the ones who have started school at the age of five and the adjustment level of the students who have preschool education before the elementary school is higher than the ones who have not taken.

Keywords: starting school, preschool education, school adjustment, Walker-Mcconnell Scale

Procedia PDF Downloads 488
40515 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data

Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin

Abstract:

Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.

Keywords: big data, machine learning, ontology model, urban data model

Procedia PDF Downloads 418
40514 Enhancing Learning for Research Higher Degree Students

Authors: Jenny Hall, Alison Jaquet

Abstract:

Universities’ push toward the production of high quality research is not limited to academic staff and experienced researchers. In this environment of research rich agendas, Higher Degree Research (HDR) students are increasingly expected to engage in the publishing of good quality papers in high impact journals. IFN001: Advanced Information Research Skills (AIRS) is a credit bearing mandatory coursework requirement for Queensland University of Technology (QUT) doctorates. Since its inception in 1989, this unique blended learning program has provided the foundations for new researchers to produce original and innovative research. AIRS was redeveloped in 2012, and has now been evaluated with reference to the university’s strategic research priorities. Our research is the first comprehensive evaluation of the program from the learner perspective. We measured whether the program develops essential transferrable skills and graduate capabilities to ensure best practice in the areas of publishing and data management. In particular, we explored whether AIRS prepares students to be agile researchers with the skills to adapt to different research contexts both within and outside academia. The target group for our study consisted of HDR students and supervisors at QUT. Both quantitative and qualitative research methods were used for data collection. Gathering data was by survey and focus groups with qualitative responses analyzed using NVivo. The results of the survey show that 82% of students surveyed believe that AIRS assisted their research process and helped them learn skills they need as a researcher. The 18% of respondents who expressed reservation about the benefits of AIRS were also examined to determine the key areas of concern. These included trends related to the timing of the program early in the candidature and a belief among some students that their previous research experience was sufficient for postgraduate study. New insights have been gained into how to better support HDR learners in partnership with supervisors and how to enhance learning experiences of specific cohorts, including international students and mature learners.

Keywords: data management, enhancing learning experience, publishing, research higher degree students, doctoral students

Procedia PDF Downloads 274
40513 Processing Big Data: An Approach Using Feature Selection

Authors: Nikat Parveen, M. Ananthi

Abstract:

Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.

Keywords: big data, key value, feature selection, retrieval, performance

Procedia PDF Downloads 341
40512 Building Information Management Advantages, Adaptation, and Challenges of Implementation in Kabul Metropolitan Area

Authors: Mohammad Rahim Rahimi, Yuji Hoshino

Abstract:

Building Information Management (BIM) at recent years has widespread consideration on the Architecture, Engineering and Construction (AEC). BIM has been bringing innovation in AEC industry and has the ability to improve the construction industry with high quality, reduction time and budget of project. Meanwhile, BIM support model and process in AEC industry, the process include the project time cycle, estimating, delivery and generally the way of management of project but not limited to those. This research carried the BIM advantages, adaptation and challenges of implementation in Kabul region. Capital Region Independence Development Authority (CRIDA) have responsibilities to implement the development projects in Kabul region. The method of study were considers on advantages and reasons of BIM performance in Afghanistan based on online survey and data. Besides that, five projects were studied, the reason of consideration were many times design revises and changes. Although, most of the projects had problems regard to designing and implementation stage, hence in canal project was discussed in detail with the main reason of problems. Which were many time changes and revises due to the lack of information, planning, and management. In addition, two projects based on BIM utilization in Japan were also discussed. The Shinsuizenji Station and Oita River dam projects. Those are implemented and implementing consequently according to the BIM requirements. The investigation focused on BIM usage, project implementation process. Eventually, the projects were the comparison with CRIDA and BIM utilization in Japan. The comparison will focus on the using of the model and the way of solving the problems based upon on the BIM. In conclusion, that BIM had the capacity to prevent many times design changes and revises. On behalf of achieving those objectives are required to focus on data management and sharing, BIM training and using new technology.

Keywords: construction information management, implementation and adaptation of BIM, project management, developing countries

Procedia PDF Downloads 129
40511 Time Series Analysis on the Production of Fruit Juice: A Case Study of National Horticultural Research Institute (Nihort) Ibadan, Oyo State

Authors: Abiodun Ayodele Sanyaolu

Abstract:

The research was carried out to investigate the time series analysis on quarterly production of fruit juice at the National Horticultural Research Institute Ibadan from 2010 to 2018. Documentary method of data collection was used, and the method of least square and moving average were used in the analysis. From the calculation and the graph, it was glaring that there was increase, decrease, and uniform movements in both the graph of the original data and the tabulated quarter values of the original data. Time series analysis was used to detect the trend in the highest number of fruit juice and it appears to be good over a period of time and the methods used to forecast are additive and multiplicative models. Since it was observed that the production of fruit juice is usually high in January of every year, it is strongly advised that National Horticultural Research Institute should make more provision for fruit juice storage outside this period of the year.

Keywords: fruit juice, least square, multiplicative models, time series

Procedia PDF Downloads 142
40510 Re-Invent Corporate Governance - Ethical Way

Authors: Talha Sareshwala

Abstract:

The purpose of this research paper is to help entrepreneurs build an environment of trust, transparency and accountability necessary for fostering long term investment, financial stability and business integrity and to guide future Entrepreneurs into a promising future. The study presents a broader review on Corporate Governance, starting from its definition and antecedents. This is the most important aspect of ethical business. In fact, the 3 main pillars of corporate governance are: Transparency; Accountability; Security. The combination of these 3 pillars in running a company successfully and forming solid professional relationships among its stakeholders, which includes key managerial employees and, most important, the shareholders This paper is sharing an experience how an entrepreneur can act as a catalyst while ensuring them that ethics and transparency do pay in business when followed in true spirit and action.

Keywords: business, entrepreneur, ethics, governance, transparency.

Procedia PDF Downloads 74
40509 Evaluating Effectiveness of Training and Development Corporate Programs: The Russian Agribusiness Context

Authors: Ekaterina Tikhonova

Abstract:

This research is aimed to evaluate the effectiveness of T&D (Training and Development) on the example of two T&D programs for the Executive TOP Management run in 2012, 2015-2016 in Komos Group. This study is commissioned to research the effectiveness of two similar corporate T&D programs (within one company) in two periods of time (2012, 2015-2016) through evaluating the programs’ effectiveness using the four-level Kirkpatrick’s model of evaluating T&D programs and calculating ROI as an instrument for T&D program measuring by Phillips’ formula. The research investigates the correlation of two figures: the ROI calculated and the rating percentage scale per the ROI implementation (Wagle’s scale). The study includes an assessment of feedback 360 (Kirkpatrick's model) and Phillips’ ROI Methodology that provides a step-by-step process for collecting data, summarizing and processing the collected information. The data is collected from the company accounting data, the HR budgets, MCFO and the company annual reports for the research periods. All analyzed data and reports are organized and presented in forms of tables, charts, and graphs. The paper also gives a brief description of some constrains of the research considered. After ROI calculation, the study reveals that ROI ranges between the average implementation (65% to 75%) by Wagle’s scale that can be considered as a positive outcome. The paper also gives some recommendations how to use ROI in practice and describes main benefits of ROI implementation.

Keywords: ROI, organizational performance, efficacy of T&D program, employee performance

Procedia PDF Downloads 250
40508 Determinants of Financial Performance of South African Businesses in Africa: Evidence from JSE Listed Telecommunications Companies

Authors: Nomakhosi Tshuma, Carley Chetty

Abstract:

This study employed panel regression analysis to investigate the financial performance determinants of MTN and Vodacom’s rest of Africa businesses between 2012 to 2020. It used net profit margin, return on assets (ROA), and return on equity (ROE) as financial performance proxies. Financial performance determinants investigated were asset size, debt ratio, liquidity, number of subscribers, and exchange rate. Data relating to exchange rates were obtained from the World Bank website, while financial data and subscriber information were obtained from the companies’ audited financial statements. The study found statistically significant negative relationships between debt and both ROA and net profit, exchange rate and both ROA and net profit, and subscribers and ROE. It also found significant positive relationships between ROE and both asset size and exchange rate. The study recommends strategic options that optimise on the above findings, and these include infrastructure sharing to reduce infrastructure costs and the minimisation of foreign-denominated debt.

Keywords: financial performance, determinants of financial performance, business in Africa, telecommunications industry

Procedia PDF Downloads 99
40507 Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application

Authors: Sergio Paez Moncaleano, Alvaro Mauricio Montenegro

Abstract:

This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia.

Keywords: item response theory, dimensionality, submodel theory, factorial analysis

Procedia PDF Downloads 372
40506 A Research Agenda for Learner Models for Adaptive Educational Digital Learning Environments

Authors: Felix Böck

Abstract:

Nowadays, data about learners and their digital activities are collected, which could help educational institutions to better understand learning processes, improve them and be able to provide better learning assistance. In this research project, custom knowledge- and data-driven recommendation algorithms will be used to offer students in higher education integrated learning assistance. The pre-requisite for this is a learner model that is as comprehensive as possible, which should first be created and then kept up-to-date largely automatically for being able to individualize and personalize the learning experience. In order to create such a learner model, a roadmap is presented that describes the individual phases up to the creation and evaluation of the finished model. The methodological process for the research project is disclosed, and the research question of how learners can be supported in their learning with personalized, customized learning recommendations is explored.

Keywords: research agenda, user model, learner model, higher education, adaptive educational digital learning environments, personalized learning paths, recommendation system, adaptation, personalization

Procedia PDF Downloads 16
40505 Inclusive Practices in Health Sciences: Equity Proofing Higher Education Programs

Authors: Mitzi S. Brammer

Abstract:

Given that the cultural make-up of programs of study in institutions of higher learning is becoming increasingly diverse, much has been written about cultural diversity from a university-level perspective. However, there are little data in the way of specific programs and how they address inclusive practices when teaching and working with marginalized populations. This research study aimed to discover baseline knowledge and attitudes of health sciences faculty, instructional staff, and students related to inclusive teaching/learning and interactions. Quantitative data were collected via an anonymous online survey (one designed for students and another designed for faculty/instructional staff) using a web-based program called Qualtrics. Quantitative data were analyzed amongst the faculty/instructional staff and students, respectively, using descriptive and comparative statistics (t-tests). Additionally, some participants voluntarily engaged in a focus group discussion in which qualitative data were collected around these same variables. Collecting qualitative data to triangulate the quantitative data added trustworthiness to the overall data. The research team analyzed collected data and compared identified categories and trends, comparing those data between faculty/staff and students, and reported results as well as implications for future study and professional practice.

Keywords: inclusion, higher education, pedagogy, equity, diversity

Procedia PDF Downloads 67
40504 Industry 4.0 and Supply Chain Integration: Case of Tunisian Industrial Companies

Authors: Rym Ghariani, Ghada Soltane, Younes Boujelbene

Abstract:

Industry 4.0, a set of emerging smart and digital technologies, has been the main focus of operations management researchers and practitioners in recent years. The objective of this research paper is to study the impact of Industry 4.0 on the integration of the supply chain (SCI) in Tunisian industrial companies. A conceptual model to study the relationship between Industry 4.0 technologies and supply chain integration was designed. This model contains three explained variables (Big data, Internet of Things, and Robotics) and one variable to be explained (supply chain integration). In order to answer our research questions and investigate the research hypotheses, principal component analysis and discriminant analysis were used using SPSS26 software. The results reveal that there is a statistically positive impact significant impact of Industry 4.0 (Big data, Internet of Things and Robotics) on the integration of the supply chain. Interestingly, big data has a greater positive impact on supply chain integration than the Internet of Things and robotics.

Keywords: industry 4.0 (I4.0), big data, internet of things, robotics, supply chain integration

Procedia PDF Downloads 59
40503 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 146