Search results for: progress monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4501

Search results for: progress monitoring

3991 Effects of IPPC Permits on Ambient Air Quality

Authors: C. Cafaro, P. Ceci, L. De Giorgi

Abstract:

The aim of this paper is to give an assessment of environmental effects of IPPC permit conditions of installations that are in the specific territory with a high concentration of industrial activities. The IPPC permit is the permit that each operator should hold to operate the installation as stated by the directive 2010/75/UE on industrial emissions (integrated pollution prevention and control), known as IED (Industrial Emissions Directive). The IPPC permit includes all the measures necessary to achieve a high level of protection of the environment as a whole, also defining the monitoring requirements as measurement methodology, frequency, and evaluation procedure. The emissions monitoring of a specific plant may also give indications of the contribution of these emissions on the air quality of a definite area. So, it is clear that the IPPC permits are important tools both to improve the environmental framework and to achieve the air quality standards, assisting in assessing the possible industrial sources contributions to air pollution.

Keywords: IPPC, IED, emissions, permits, air quality, large combustion plants

Procedia PDF Downloads 449
3990 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 211
3989 Process Monitoring Based on Parameterless Self-Organizing Map

Authors: Young Jae Choung, Seoung Bum Kim

Abstract:

Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.

Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property

Procedia PDF Downloads 273
3988 Switched Uses of a Bidirectional Microphone as a Microphone and Sensors with High Gain and Wide Frequency Range

Authors: Toru Shionoya, Yosuke Kurihara, Takashi Kaburagi, Kajiro Watanabe

Abstract:

Mass-produced bidirectional microphones have attractive characteristics. They work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. We present novel multiple functional uses of the microphones. A mathematical model for explaining the high-pass-filtering characteristics of bidirectional microphones was presented. Based on the model, the characteristics of the microphone were investigated, and a novel use for the microphone as a sensor with a wide frequency range was presented. In this study, applications for using the microphone as a security sensor and a human biosensor were introduced. The mathematical model was validated through experiments, and the feasibility of the abovementioned applications for security monitoring and the biosignal monitoring were examined through experiments.

Keywords: bidirectional microphone, low-frequency, mathematical model, frequency response

Procedia PDF Downloads 542
3987 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams

Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname

Abstract:

Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.

Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams

Procedia PDF Downloads 138
3986 Negotiating Story Telling: Rhetoric and Reality of Rural Marginalization in the Era of Visual Culture

Authors: Vishnu Satya

Abstract:

Rural communities form the backbone of our society. These communities are self-contained, for the most part, in how they can sustain themselves. Except for the essentials, they are primarily dependent on the state for their development and prosperity. The state claims to provide these through policies and agencies which are designed to guide their livelihood and future. It is assumed that the state-run policies are effective and are reaching the intended audience. Though in reality, there is an ever-widening gap between the two. The interviews conducted with farmers suggests that the support provided by the state to this marginalized community falls far short of their expectations, leaving them helpless. This paper discusses the methods used in bringing the status quo of the marginalized farmers to the forefront by comparing-and-contrasting the existing rhetoric and reality of the rural diaspora. It is seen from the hands-on oral accounts of farmers that they are left hanging between the state and their farms. Unrepresented, this community's progress and future stand severely affected. The paper presents how the visual medium acts as a catalyst for social advocacy by bridging the gap between administrative services and the marginalized rural communities. The finding was that there exists a disconnect between policymakers and the farming community, which has hindered the progress of the farmers. These two communities live exclusively from each other. In conclusion, it is seen that when the gaps between administrators and farmers are plugged through grass-root efforts utilizing visual medium, the farmer's economic situation got better, and the community prospered.

Keywords: farmers, social advocacy, marginalized, story telling

Procedia PDF Downloads 150
3985 Electronic Tongue as an Innovative Non-Destructive Tool for the Quality Monitoring of Fruits

Authors: Mahdi Ghasemi-Varnamkhasti, Ayat Mohammad-Razdari, Seyedeh-Hoda Yoosefian

Abstract:

Taste is an important sensory property governing acceptance of products for administration through mouth. The advent of artificial sensorial systems as non-destructive tools able to mimic chemical senses such as those known as electronic tongue (ET) has open a variety of practical applications and new possibilities in many fields where the presence of taste is the phenomenon under control. In recent years, electronic tongue technology opened the possibility to exploit information on taste attributes of fruits providing real time information about quality and ripeness. Electronic tongue systems have received considerable attention in the field of sensor technology during the last two decade because of numerous applications in diverse fields of applied sciences. This paper deals with some facets of this technology in the quality monitoring of fruits along with more recent its applications.

Keywords: fruit, electronic tongue, non-destructive, taste machine, horticultural

Procedia PDF Downloads 254
3984 Tempo-Spatial Pattern of Progress and Disparity in Child Health in Uttar Pradesh, India

Authors: Gudakesh Yadav

Abstract:

Uttar Pradesh is one of the poorest performing states of India in terms of child health. Using data from the three round of NFHS and two rounds of DLHS, this paper attempts to examine tempo-spatial change in child health and care practices in Uttar Pradesh and its regions. Rate-ratio, CI, multivariate, and decomposition analysis has been used for the study. Findings demonstrate that child health care practices have improved over the time in all regions of the state. However; western and southern region registered the lowest progress in child immunization. Nevertheless, there is no decline in prevalence of diarrhea and ARI over the period, and it remains critically high in the western and southern region. These regions also poorly performed in giving ORS, diarrhoea and ARI treatment. Public health services are least preferred for diarrhoea and ARI treatment. Results from decomposition analysis reveal that rural area, mother’s illiteracy and wealth contributed highest to the low utilization of the child health care practices consistently over the period of time. The study calls for targeted intervention for vulnerable children to accelerate child health care service utilization. Poor performing regions should be targeted and routinely monitored on poor child health indicators.

Keywords: Acute Respiratory Infection (ARI), decomposition, diarrhea, inequality, immunization

Procedia PDF Downloads 299
3983 Digimesh Wireless Sensor Network-Based Real-Time Monitoring of ECG Signal

Authors: Sahraoui Halima, Dahani Ameur, Tigrine Abedelkader

Abstract:

DigiMesh technology represents a pioneering advancement in wireless networking, offering cost-effective and energy-efficient capabilities. Its inherent simplicity and adaptability facilitate the seamless transfer of data between network nodes, extending the range and ensuring robust connectivity through autonomous self-healing mechanisms. In light of these advantages, this study introduces a medical platform harnessed with DigiMesh wireless network technology characterized by low power consumption, immunity to interference, and user-friendly operation. The primary application of this platform is the real-time, long-distance monitoring of Electrocardiogram (ECG) signals, with the added capacity for simultaneous monitoring of ECG signals from multiple patients. The experimental setup comprises key components such as Raspberry Pi, E-Health Sensor Shield, and Xbee DigiMesh modules. The platform is composed of multiple ECG acquisition devices labeled as Sensor Node 1 and Sensor Node 2, with a Raspberry Pi serving as the central hub (Sink Node). Two communication approaches are proposed: Single-hop and multi-hop. In the Single-hop approach, ECG signals are directly transmitted from a sensor node to the sink node through the XBee3 DigiMesh RF Module, establishing peer-to-peer connections. This approach was tested in the first experiment to assess the feasibility of deploying wireless sensor networks (WSN). In the multi-hop approach, two sensor nodes communicate with the server (Sink Node) in a star configuration. This setup was tested in the second experiment. The primary objective of this research is to evaluate the performance of both Single-hop and multi-hop approaches in diverse scenarios, including open areas and obstructed environments. Experimental results indicate the DigiMesh network's effectiveness in Single-hop mode, with reliable communication over distances of approximately 300 meters in open areas. In the multi-hop configuration, the network demonstrated robust performance across approximately three floors, even in the presence of obstacles, without the need for additional router devices. This study offers valuable insights into the capabilities of DigiMesh wireless technology for real-time ECG monitoring in healthcare applications, demonstrating its potential for use in diverse medical scenarios.

Keywords: DigiMesh protocol, ECG signal, real-time monitoring, medical platform

Procedia PDF Downloads 78
3982 Monitoring Three-Dimensional Models of Tree and Forest by Using Digital Close-Range Photogrammetry

Authors: S. Y. Cicekli

Abstract:

In this study, tree-dimensional model of tree was created by using terrestrial close range photogrammetry. For this close range photos were taken. Photomodeler Pro 5 software was used for camera calibration and create three-dimensional model of trees. In first test, three-dimensional model of a tree was created, in the second test three-dimensional model of three trees were created. This study aim is creating three-dimensional model of trees and indicate the use of close-range photogrammetry in forestry. At the end of the study, three-dimensional model of tree and three trees were created. This study showed that usability of close-range photogrammetry for monitoring tree and forests three-dimensional model.

Keywords: close- range photogrammetry, forest, tree, three-dimensional model

Procedia PDF Downloads 386
3981 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant

Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.

Abstract:

The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.

Keywords: availability, displacement, vibration, rio-vibro, condition monitoring

Procedia PDF Downloads 89
3980 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults

Authors: Sarah Odofin, Zhiwei Gao, Sun Kai

Abstract:

Operations, maintenance and reliability of wind turbines have received much attention over the years due to rapid expansion of wind farms. This paper explores early fault diagnosis scale technique based on a unique scheme of a 5MW wind turbine system that is optimized by genetic algorithm to be very sensitive to faults and resilient to disturbances. A quantitative model based analysis is pragmatic for primary fault diagnosis monitoring assessment to minimize downtime mostly caused by components breakdown and exploit productivity consistency. Simulation results are computed validating the wind turbine model which demonstrates system performance in a practical application of fault type examples. The results show the satisfactory effectiveness of the applied performance investigated in a Matlab/Simulink/Gatool environment.

Keywords: disturbance robustness, fault monitoring and detection, genetic algorithm, observer technique

Procedia PDF Downloads 378
3979 A Method to Estimate Wheat Yield Using Landsat Data

Authors: Zama Mahmood

Abstract:

The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.

Keywords: landsat, NDVI, remote sensing, satellite images, yield

Procedia PDF Downloads 332
3978 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor

Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung

Abstract:

One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.

Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible

Procedia PDF Downloads 86
3977 Monitoring Synthesis of Biodiesel through Online Density Measurements

Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino

Abstract:

The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.

Keywords: biodiesel, density measurements, online continuous monitoring, synthesis

Procedia PDF Downloads 574
3976 Harnessing Cutting-Edge Technologies and Innovative Ideas in the Design, Development, and Management of Hybrid Operating Rooms

Authors: Samir Hessas

Abstract:

Modern medicine is witnessing a profound transformation as advanced technology reshapes surgical environments. Hybrid operating rooms, where state-of-the-art medical equipment, advanced imaging solutions, and Artificial Intelligence (AI) converge, are at the forefront of this revolution. In this comprehensive exploration, we scrutinize the multifaceted facets of AI and delve into an array of groundbreaking technologies. We also discuss visionary concepts that hold the potential to revolutionize hybrid operating rooms, making them more efficient and patient-centered. These innovations encompass real-time imaging, surgical simulation, IoT and remote monitoring, 3D printing, telemedicine, quantum computing, and nanotechnology. The outcome of this fusion of technology and imagination is a promising future of surgical precision, individualized patient care, and unprecedented medical advances in hybrid operating rooms.

Keywords: artificial intelligence, hybrid operating rooms, telemedicine, monitoring

Procedia PDF Downloads 82
3975 Observer-based Robust Diagnosis for Wind Turbine System

Authors: Sarah Odofin, Zhiwei Gao

Abstract:

Operations and maintenance of wind turbine have received much attention by researcher due to rapid expansion of wind farms. This paper explores a novel fault diagnosis that is designed and optimized to be very sensitive to faults and robust to disturbances. The faults considered are the sensor faults of which the augmented observer is considered to enlarge faults and to be robust to disturbance. A qualitative model based analysis is proposed for early fault diagnosis to minimize downtime mostly caused by components breakdown and exploit productivity. Simulation results are computed validating the models provided which demonstrates system performance using practical application of fault type examples. The results demonstrate the effectiveness of the developed techniques investigated in a Matlab/Simulink environment.

Keywords: wind turbine, condition monitoring, genetic algorithm, fault diagnosis, augmented observer, disturbance robustness, fault estimation, sensor monitoring

Procedia PDF Downloads 496
3974 Radiological Hazard Assessments and Control of Radionuclides Emitted from Building Materials in Kuwait Using Expert Systems

Authors: Abdulla Almulla, Wafaa Mahdi

Abstract:

Building materials can make a significant contribution to the level of natural radioactivity in closed dwelling areas. Therefore, developing an expert system for monitoring the activity concentrations (ACs) of naturally occurring radioactive materials (NORMs) existing in building materials is useful for limiting the population’s exposure to gamma radiation emitted from those materials. The present work not only is aimed at examining the indoor radon concentration emitted by the building materials that are originated from various countries but are commercially available in Kuwait, but also is aimed at developing an expert system for monitoring the radiation emitted from these materials and classifying it as normal (acceptable) or dangerous (unacceptable). This system makes it possible to always monitor any radiological risks to human health. When detecting high doses of radiation, the system gives warning messages.

Keywords: building materials, NORMs, HNBRA, radionuclides, activity concentrations, expert systems

Procedia PDF Downloads 168
3973 Artificial Intelligence Based Abnormality Detection System and Real Valuᵀᴹ Product Design

Authors: Junbeom Lee, Jaehyuck Cho, Wookyeong Jeong, Jonghan Won, Jungmin Hwang, Youngseok Song, Taikyeong Jeong

Abstract:

This paper investigates and analyzes meta-learning technologies that use multiple-cameras to monitor and check abnormal behavior in people in real-time in the area of healthcare fields. Advances in artificial intelligence and computer vision technologies have confirmed that cameras can be useful for individual health monitoring and abnormal behavior detection. Through this, it is possible to establish a system that can respond early by automatically detecting abnormal behavior of the elderly, such as patients and the elderly. In this paper, we use a technique called meta-learning to analyze image data collected from cameras and develop a commercial product to determine abnormal behavior. Meta-learning applies machine learning algorithms to help systems learn and adapt quickly to new real data. Through this, the accuracy and reliability of the abnormal behavior discrimination system can be improved. In addition, this study proposes a meta-learning-based abnormal behavior detection system that includes steps such as data collection and preprocessing, feature extraction and selection, and classification model development. Various healthcare scenarios and experiments analyze the performance of the proposed system and demonstrate excellence compared to other existing methods. Through this study, we present the possibility that camera-based meta-learning technology can be useful for monitoring and testing abnormal behavior in the healthcare area.

Keywords: artificial intelligence, abnormal behavior, early detection, health monitoring

Procedia PDF Downloads 85
3972 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 108
3971 Long-Term Sitting Posture Identifier Connected with Cloud Service

Authors: Manikandan S. P., Sharmila N.

Abstract:

Pain in the neck, intermediate and anterior, and even low back may occur in one or more locations. Numerous factors can lead to back discomfort, which can manifest into sensations in the other parts of your body. Up to 80% of people will have low back problems at a certain stage of their lives, making spine-related pain a highly prevalent ailment. Roughly twice as commonly as neck pain, low back discomfort also happens about as often as knee pain. According to current studies, using digital devices for extended periods of time and poor sitting posture are the main causes of neck and low back pain. There are numerous monitoring techniques provided to enhance the sitting posture for the aforementioned problems. A sophisticated technique to monitor the extended sitting position is suggested in this research based on this problem. The system is made up of an inertial measurement unit, a T-shirt, an Arduino board, a buzzer, and a mobile app with cloud services. Based on the anatomical position of the spinal cord, the inertial measurement unit was positioned on the inner back side of the T-shirt. The IMU (inertial measurement unit) sensor will evaluate the hip position, imbalanced shoulder, and bending angle. Based on the output provided by the IMU, the data will be analyzed by Arduino, supplied through the cloud, and shared with a mobile app for continuous monitoring. The buzzer will sound if the measured data is mismatched with the human body's natural position. The implementation and data prediction with design to identify balanced and unbalanced posture using a posture monitoring t-shirt will be further discussed in this research article.

Keywords: IMU, posture, IOT, textile

Procedia PDF Downloads 87
3970 Design of New Sustainable Pavement Concrete: An Experimental Road

Authors: Manuel Rosales, Francisco Agrela, Julia Rosales

Abstract:

The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road.

Keywords: biomass bottom ash, construction and demolition waste, recycled concrete pavements, full-scale experimental road, monitoring

Procedia PDF Downloads 67
3969 Identification of Force Vector on an Elastic Solid Using an Embeded PVDF Senor Array

Authors: Andrew Youssef, David Matthews, Jie Pan

Abstract:

Identifying the magnitude and direction of a force on an elastic solid is highly desirable, as this allows for investigation and continual monitoring of the dynamic loading. This was traditionally conducted by connecting the solid to the supporting structure by multi-axial force transducer, providing that the transducer will not change the mounting conditions. Polyvinylidene fluoride (PVDF) film is a versatile force transducer that can be easily embedded in structures. Here a PVDF sensor array is embedded inside a simple structure in an effort to determine the force vector applied to the structure is an inverse problem. In this paper, forces of different magnitudes and directions where applied to the structure with an impact hammer, and the output of the PVDF was captured and processed to gain an estimate of the forces applied by the hammer. The outcome extends the scope of application of PVDF sensors for measuring the external or contact force vectors.

Keywords: embedded sensor, monitoring, PVDF, vibration

Procedia PDF Downloads 336
3968 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 297
3967 Development and Implementation of An "Electric Island" Monitoring Infrastructure for Promoting Energy Efficiency in Schools

Authors: Vladislav Grigorovitch, Marina Grigorovitch, David Pearlmutter, Erez Gal

Abstract:

The concept of “electric island” is involved with achieving the balance between the self-power generation ability of each educational institution and energy consumption demand. Photo-Voltaic (PV) solar system installed on the roofs of educational buildings is a common way to absorb the available solar energy and generate electricity for self-consumption and even for returning to the grid. The main objective of this research is to develop and implement an “electric island” monitoring infrastructure for promoting energy efficiency in educational buildings. A microscale monitoring methodology will be developed to provide a platform to estimate energy consumption performance classified by rooms and subspaces rather than the more common macroscale monitoring of the whole building. The monitoring platform will be established on the experimental sites, enabling an estimation and further analysis of the variety of environmental and physical conditions. For each building, separate measurement configurations will be applied taking into account the specific requirements, restrictions, location and infrastructure issues. The direct results of the measurements will be analyzed to provide deeper understanding of the impact of environmental conditions and sustainability construction standards, not only on the energy demand of public building, but also on the energy consumption habits of the children that study in those schools and the educational and administrative staff that is responsible for providing the thermal comfort conditions and healthy studying atmosphere for the children. A monitoring methodology being developed in this research is providing online access to real-time data of Interferential Therapy (IFTs) from any mobile phone or computer by simply browsing the dedicated website, providing powerful tools for policy makers for better decision making while developing PV production infrastructure to achieve “electric islands” in educational buildings. A detailed measurement configuration was technically designed based on the specific conditions and restriction of each of the pilot buildings. A monitoring and analysis methodology includes a large variety of environmental parameters inside and outside the schools to investigate the impact of environmental conditions both on the energy performance of the school and educational abilities of the children. Indoor measurements are mandatory to acquire the energy consumption data, temperature, humidity, carbon dioxide and other air quality conditions in different parts of the building. In addition to that, we aim to study the awareness of the users to the energy consideration and thus the impact on their energy consumption habits. The monitoring of outdoor conditions is vital for proper design of the off-grid energy supply system and validation of its sufficient capacity. The suggested outcomes of this research include: 1. both experimental sites are designed to have PV production and storage capabilities; 2. Developing an online information feedback platform. The platform will provide consumer dedicated information to academic researchers, municipality officials and educational staff and students; 3. Designing an environmental work path for educational staff regarding optimal conditions and efficient hours for operating air conditioning, natural ventilation, closing of blinds, etc.

Keywords: sustainability, electric island, IOT, smart building

Procedia PDF Downloads 179
3966 Organic Agriculture Harmony in Nutrition, Environment and Health: Case Study in Iran

Authors: Sara Jelodarian

Abstract:

Organic agriculture is a kind of living and dynamic agriculture that was introduced in the early 20th century. The fundamental basis for organic agriculture is in harmony with nature. This version of farming emphasizes removing growth hormones, chemical fertilizers, toxins, radiation, genetic manipulation and instead, integration of modern scientific techniques (such as biologic and microbial control) that leads to the production of healthy food and the preservation of the environment and use of agricultural products such as forage and manure. Supports from governments for the markets producing organic products and taking advantage of the experiences from other successful societies in this field can help progress the positive and effective aspects of this technology, especially in developing countries. This research proves that till 2030, 25% of the global agricultural lands would be covered by organic farming. Consequently Iran, due to its rich genetic resources and various climates, can be a pioneer in promoting organic products. In addition, for sustainable farming, blend of organic and other innovative systems is needed. Important limitations exist to accept these systems, also a diversity of policy instruments will be required to comfort their development and implementation. The paper was conducted to results of compilation of reports, issues, books, articles related to the subject with library studies and research. Likewise we combined experimental and survey to get data.

Keywords: develop, production markets, progress, strategic role, technology

Procedia PDF Downloads 117
3965 A Case Study on Problems Originated from Critical Path Method Application in a Governmental Construction Project

Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali

Abstract:

In public construction projects, determining the contract period in the award phase is one of the most important factors. The contract period establishes the baseline for creating the cash flow curve and progress payment planning in the post-award phase. If overestimated, project duration causes losses for both the owner and the contractor. Therefore, it is essential to base construction project duration on reliable forecasting. In Turkey, schedules are usually built using the bar chart (Gantt) schedule, especially for governmental construction agencies. The usage of these schedules is limited for bidding purposes. Although the bar-chart schedule is useful in some cases, it lacks logical connections between activities; it would be harder to obtain the activities that have more effects than others on the project's total duration, especially in large complex projects. In this study, a construction schedule is prepared with Critical Path Method (CPM) that addresses the above-mentioned discrepancies. CPM is a simple and effective method that displays project time and critical paths, showing results of forward and backward calculations with considering the logic relationships between activities; it is a powerful tool for planning and managing all kinds of construction projects and is a very convenient method for the construction industry. CPM provides a much more useful and precise approach than traditional bar-chart diagrams that form the basis of construction planning and control. CPM has two main application utilities in the construction field; the first one is obtaining project duration, which is called an as-planned schedule that includes as-planned activity durations with relationships between subsequent activities. Another utility is during the project execution; each activity is tracked, and their durations are recorded in order to obtain as-built schedule, which is named as a black box of the project. The latter is more useful for delay analysis, and conflict resolutions. These features of CPM have been popular around the world. However, it has not been yet extensively used in Turkey. In this study, a real construction project is investigated as a case study; CPM-based scheduling is used for establishing both of as-built and as-planned schedules. Problems that emerged during the construction phase are identified and categorized. Subsequently, solutions are suggested. Two scenarios were considered. In the first scenario, project progress was monitored based as CPM was used to track and manage progress; this was carried out based on real-time data. In the second scenario, project progress was supposedly tracked based on the assumption that the Gantt chart was used. The S-curves of the two scenarios are plotted and interpreted. Comparing the results, possible faults of the latter scenario are highlighted, and solutions are suggested. The importance of CPM implementation has been emphasized and it has been proposed to make it mandatory for preparation of construction schedule based on CPM for public construction projects contracts.

Keywords: as-built, case-study, critical path method, Turkish government sector projects

Procedia PDF Downloads 118
3964 Development of a Non-Dispersive Infrared Multi Gas Analyzer for a TMS

Authors: T. V. Dinh, I. Y. Choi, J. W. Ahn, Y. H. Oh, G. Bo, J. Y. Lee, J. C. Kim

Abstract:

A Non-Dispersive Infrared (NDIR) multi-gas analyzer has been developed to monitor the emission of carbon monoxide (CO) and sulfur dioxide (SO2) from various industries. The NDIR technique for gas measurement is based on the wavelength absorption in the infrared spectrum as a way to detect particular gasses. NDIR analyzers have popularly applied in the Tele-Monitoring System (TMS). The advantage of the NDIR analyzer is low energy consumption and cost compared with other spectroscopy methods. However, zero/span drift and interference are its urgent issues to be solved. Multi-pathway technique based on optical White cell was employed to improve the sensitivity of the analyzer in this work. A pyroelectric detector was used to detect the Infrared radiation. The analytical range of the analyzer was 0 ~ 200 ppm. The instrument response time was < 2 min. The detection limits of CO and SO2 were < 4 ppm and < 6 ppm, respectively. The zero and span drift of 24 h was less than 3%. The linearity of the analyzer was less than 2.5% of reference values. The precision and accuracy of both CO and SO2 channels were < 2.5% of relative standard deviation. In general, the analyzer performed well. However, the detection limit and 24h drift should be improved to be a more competitive instrument.

Keywords: analyzer, CEMS, monitoring, NDIR, TMS

Procedia PDF Downloads 255
3963 Feasibility of Voluntary Deep Inspiration Breath-Hold Radiotherapy Technique Implementation without Deep Inspiration Breath-Hold-Assisting Device

Authors: Auwal Abubakar, Shazril Imran Shaukat, Noor Khairiah A. Karim, Mohammed Zakir Kassim, Gokula Kumar Appalanaido, Hafiz Mohd Zin

Abstract:

Background: Voluntary deep inspiration breath-hold radiotherapy (vDIBH-RT) is an effective cardiac dose reduction technique during left breast radiotherapy. This study aimed to assess the accuracy of the implementation of the vDIBH technique among left breast cancer patients without the use of a special device such as a surface-guided imaging system. Methods: The vDIBH-RT technique was implemented among thirteen (13) left breast cancer patients at the Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia. Breath-hold monitoring was performed based on breath-hold skin marks and laser light congruence observed on zoomed CCTV images from the control console during each delivery. The initial setup was verified using cone beam computed tomography (CBCT) during breath-hold. Each field was delivered using multiple beam segments to allow a delivery time of 20 seconds, which can be tolerated by patients in breath-hold. The data were analysed using an in-house developed MATLAB algorithm. PTV margin was computed based on van Herk's margin recipe. Results: The setup error analysed from CBCT shows that the population systematic error in lateral (x), longitudinal (y), and vertical (z) axes was 2.28 mm, 3.35 mm, and 3.10 mm, respectively. Based on the CBCT image guidance, the Planning target volume (PTV) margin that would be required for vDIBH-RT using CCTV/Laser monitoring technique is 7.77 mm, 10.85 mm, and 10.93 mm in x, y, and z axes, respectively. Conclusion: It is feasible to safely implement vDIBH-RT among left breast cancer patients without special equipment. The breath-hold monitoring technique is cost-effective, radiation-free, easy to implement, and allows real-time breath-hold monitoring.

Keywords: vDIBH, cone beam computed tomography, radiotherapy, left breast cancer

Procedia PDF Downloads 55
3962 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops

Authors: Catalina Albornoz, Giacomo Barbieri

Abstract:

Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.

Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature

Procedia PDF Downloads 386